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Background & Aims—Understanding HCV transmission among people who inject drugs 

(PWID) is important for designing prevention strategies. This study investigated whether HCV 

infection among younger injectors occurs from few or many transmission events from older 

injectors to younger injectors among PWID in Vancouver, Canada.

Methods—HCV antibody-positive participants at enrolment or follow-up (1996-2012) were 

tested for HCV RNA and sequenced (Core-E2). Time-stamped phylogenetic trees were inferred 

using Bayesian Evolutionary Analysis Sampling Trees (BEAST). Association of age with 

phylogeny was tested using statistics implemented in the software Bayesian Tip Significance 

(BaTS) testing. Factors associated with clustering (maximum cluster age: five years) were 

identified using logistic regression.

Results—Among 699 participants with HCV subtype 1a, 1b, 2b and 3a infection (26% female, 

24% HIV+): 21% were younger (<27 years), and 10% had recent HCV seroconversion. When 

inferred cluster age was limited to <5 years, 15% (n=108) were in clusters/pairs. Although a 

moderate degree of segregation was observed between younger and older participants, there was 

also transmission between age groups. Younger age (<27 vs. >40, AOR: 3.14, 95% CI:1.54, 

6.39),HIV (AOR: 1.97, 95%-CI: 1.22, 3.18) and subtype 3a (AOR: 2.12, 95% CI: 1.33, 3.38) were 

independently associated with clustering.

Conclusions—In this population of PWID from Vancouver, HCV among young injectors was 

seeded from many transmission events between HCV-infected older and younger injectors. 

Phylogenetic clustering was associated with younger age and HIV. These data suggest that HCV 

transmission among PWID is complex, with transmission occurring between and among older and 

younger PWID.
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INTRODUCTION

Globally, the prevalence of hepatitis C virus (HCV) infection among people who inject 

drugs (PWID) is 50-80% [1]. HCV incidence remains high, particularly among young 

PWID [2-5]. A better understanding of HCV transmission among PWID is important for the 

design of HCV prevention strategies, including treatment as prevention. Traditional 

epidemiological approaches for evaluating factors associated with HCV infection are limited 

in that they measure factors associated with acquisition of infection, but may not reflect 

factors associated with transmission of infection.

Viral phylogenies provide an opportunity to infer ancestral relationships between observed 

sequence data [6]. A phylogeny is represented by a tree structure containing tips (observed 

data), nodes (inferred ancestors) and branches (connections between tips and nodes)[6]. 

Phylogenetic methods approximate the full transmission chain of an outbreak based on the 

available data, with additional information such as clinical or behavioural data informing the 

dynamics of infection and outcomes in the population (Reviewed in [7]). Bayesian Markov 

Chain Monte Carlo (MCMC) inference accounts for uncertainty during the process of 
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phylogenetic reconstruction by determining the probability of the tree given the data and 

modifiable model parameters.

Phylogenetic studies provide an opportunity to investigate underlying transmission patterns 

that cannot be determined through epidemiological studies (e.g. HIV) [8, 9]. In one cohort of 

PWID in Vancouver, Canada, younger age, HIV co-infection, HCV seroconversion and 

recent syringe borrowing were independently associated with HCV phylogenetic clustering 

[10]. In another cohort of young PWID in Vancouver, methamphetamine injecting was 

shown to be associated with HCV clustering [11].

The primary aim of this study was to investigate whether HCV infection in young injectors 

are seeded from many transmission events between HCV-infected older injectors and 

younger injectors (Fig. 1A), or whether HCV infection in young injectors is seeded from 

few transmission events from HCV-infected older injectors (Fig. 1B) in two prospective 

cohorts of PWID in Vancouver, Canada. Second, this study aimed to assess factors 

associated with phylogenetic clustering.

MATERIALS AND METHODS

Study population and design

The At Risk Youth Study (ARYS) and the Vancouver Injection Drug Users Study (VIDUS) 

are open prospective community-recruited cohorts of PWID in Vancouver, Canada. Detailed 

sampling and recruitment procedures for these cohorts have been described elsewhere 

[12-14]. Beginning in May 1996, active PWID (i.e., those who reported injecting drugs in 

the previous month) were recruited into VIDUS [13]. Beginning in September 2005, street-

involved youth (aged 14 and 26 years with use of illicit drugs in the past 30 days) were 

recruited into ARYS [14]. Participants must have resided in the Greater Vancouver region 

and provided written informed consent.

For the current study, all participants who: 1) were HCV antibody-positive at enrolment; or 

2) demonstrated recent HCV seroconversion (defined by an HCV antibody negative test at 

enrolment followed by an HCV antibody positive test at a subsequent study visit) between 

May 1996 and December 2012 and with an available sample for HCV RNA testing and 

sequencing were eligible for inclusion. The University of British Columbia/Providence 

Health Care Research Ethics Board approved this study.

Study assessments

At enrolment and semi-annually, participants completed an interviewer-administered 

questionnaire. Data on socio-demographic characteristics, as well as information pertaining 

to drug use patterns and risk behaviours were collected. Among anti-HCV positive 

participants, questionnaire data from the first anti-HCV antibody positive visit was utilized 

(i.e. at baseline for those with HCV infection at baseline, and at the first follow-up visit 

following infection among those with recent HCV seroconversion). Nurses collected blood 

samples for HIV and HCV serology, and also provided basic medical care and referrals to 

appropriate health care services. Participants received $30 CAD for each study visit.
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HCV RNA testing and sequencing

As previously described, HCV RNA was quantified using an in-house PCR (limit of 

detection: 200 IU/ml), and amplification and sequencing of a 1,514bp fragment of the HCV 

genome covering Core, Envelope-1, hypervariable region-1 and beginning of Envelope-2 

(E2) was attempted on all samples with detectable HCV RNA [15]. Purified amplicons were 

sequenced using the Sanger method and sequence chromatograms processed using RECall 

[16]. HCV subtype for each sequence obtained was determined using the COMET online 

tool [17].

Phylogenetic analysis

Bayesian inference—Among participants with HCV subtypes 1a, 2b, and 3a, 

phylogenetic trees of the Core-E2 fragment were estimated using the Bayesian Markov 

Chain Monte Carlo (MCMC) approach implemented in BEAST v1.8.1, as previously 

described [18]. The substitution rates of the Core-E2 region were estimated using a genomic 

partition model from an independent set of HCV isolates that exhibit strong temporal signal 

[19], with the rate estimate subsequently applied as a strong prior distribution on the 

molecular clock rate. The nucleotide substitution, molecular clock and coalescent priors are 

further described in Supplementary Information. Bayesian MCMC convergence and 

effective sampling sizes were assessed using Tracer v1.6, and a maximum clade credibility 

(MCC) inferred from the posterior set of trees in TreeAnnotator v1.8.1 [20], both with a 

10% burn-in of measured states.

Associating traits with inferred tree topology—Participant demographic and clinical 

characteristics were compared with the inferred phylogenies to identify traits that might 

correlate with the phylogenetic tree topology (Fig. 1C). By assigning particular 

characteristics to each participant and subsequently reconstructing the states of ancestral 

nodes in the phylogeny, we can determine whether a trait is more likely to be shared by 

participants whose viruses are closely related than would be expected by chance alone (i.e. 

when compared to randomly distributed characteristics on the same phylogeny) [21]. To 

account for phylogenetic uncertainty, the posterior set of trees was randomly subsampled to 

provide 1000 representative trees and 100 state randomisations were performed to provide a 

statistical significance test of the null distribution [21]. For the Association Index statistic, an 

observed-to-expected ratio provides a measure of the degree of association, with a value of 0 

being complete association and values above ≥1 showing no association.

Phylogenetic clustering—Pairs (n=2) or clusters(n≥3) were identified if the most 

common recent ancestor of the participants (inferred) was less than 5 years in the past, using 

a custom-made JAVA script (ClusterByTime; Dr Jayna Raghwani, http://

evolve.zoo.ox.ac.uk/Evolve/ClusterByTime.html). Since the script analyses a posterior set of 

trees, and not a single MCC tree, phylogenetic uncertainty is explicitly considered when 

identifying clusters by age. Results were compared to a 1.5% nucleotide genetic distance 

(excluding hypervariable region-1) threshold using Cluster Picker [22], and sensitivity 

analysis performed for both tMRCA and genetic distance limits. Further details are in 

Supplementary Information.
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Statistical analyses

Descriptive analyses were performed to characterise the study sample according to the 

following strata: being in a pair or cluster (n≥2 participants), or neither. Participant 

characteristics in these categories were compared using Chi-squared, Fisher's exact and 

Kruskal-Wallis tests (as appropriate).

Unadjusted logistic regression analyses were used to identify factors associated with pair/

cluster membership. Hypothesized factors were determined a priori on the basis of factors 

previously shown to be associated with HCV clustering and/or HCV acquisition. These 

factors included: sex [2]; younger age [23]; duration of injecting [24], cohort, recent HCV 

seroconversion [25]; and HIV status (positive vs. negative) [5]. In multivariate logistic 

regression analyses, two fully adjusted models containing all variables were assessed, with 

either age or duration of injecting included (given the potential for collinearity between 

these variables).

Statistically significant differences were assessed at p<0.05; all p-values are two-sided. All 

analyses were performed using STATA software (version 12.1; StataCorp L.P., College 

Station, Texas, USA).

RESULTS

Participant characteristics

In total, 2,688 participants from the ARYS (n=961) and VIDUS (n=1,727) cohorts were 

eligible for inclusion (Fig. 2). At enrolment, 52% (1,390 of 2,688) were HCV antibody 

positive. Among participants who were HCV antibody negative at enrolment (n=1299), 185 

participants demonstrated recent HCV seroconversion during follow-up, and were therefore 

eligible for inclusion.

Among 1,497 HCV antibody positive participants with available samples for HCV RNA 

testing, 74% (1,112 of 1,497) had detectable HCV RNA. PCR amplification and Sanger 

sequencing of the Core-E2 segment was obtainable for 76% (845 of 1,112) and 66% (732 of 

1,112) of participants with detectable HCV RNA, respectively. Low HCV RNA level 

(<10,000) and inadequate sample volume have previously been associated with an inability 

to obtain a Core-E2 segment among participants with detectable HCV RNA in this study 

[10].

Participant characteristics among those with available HCV sequencing (n=732) are shown 

in Table 1. Recent HCV seroconversion was observed in 10% (n=76) and HIV coinfection in 

23% (n=166) of participants. HCV genotype distribution was: 1a: 48% (n=347), 1b: 6% 

(n=44), 2a: 3% (n=20), 2b: 7% (n=52), 3a: 35% (n=256), 4a: <1% (n=4), 6a: 1% (n=8), 6e: 

<1% (n=1).

Phylogenetic clustering

Phylogenetic analysis was performed on a total of 699 Core-E2 sequences from participants 

with 1a, 1b, 2b and 3a infection, comprising the majority (95%) of the cohort. Among those 
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analysed, 22% (n=150) were younger (aged <27 years), while 10% (n=73) had recent HCV 

seroconversion.

A total of 108 (15%) participants were related, with 87 in pairs (2 participants, n=44 pairs, 

12%) and 21 in clusters (≥3 participants, n=6 clusters, 3%) if the most common recent 

ancestor of the participants (inferred) was less than 5 years in the past (Table 2). Pairs/

clusters ranged from two to six participants (median: 2). Sensitivity analysis varying the 

time to most common recent ancestor and genetic distance thresholds demonstrated high 

similarity, with agreement of 93.7-95.4% and kappa scores of 0.74-0.83 (Supplementary 

Information).

Phylogenetic clustering by age, recent HCV seroconversion and HIV co-infection

Among the identified pairs, the majority of participants were older participants (aged >27 

years) paired with other older participants (58/87, 67%). Meanwhile 18% of participants in 

pairs (16/87) were in pairs contained a younger and an old participant, and 16% of 

participants in pairs (14/87) were in pairs containing only younger participants. One younger 

participant was identified in two separate pairs: once with another younger participant and 

once with an older participant. Fifty-seven percent (12 of 21) of the participants in clusters 

were in a cluster containing a mix of younger and older participants, with the remaining (9 

of 21, 43%) being in clusters containing only older participants. There were no clusters 

containing only younger PWID in clusters defined by tMRCA. Similar outcomes were 

identified when clusters membership was defined as maximum genetic distance <1.5% 

(Supplementary Table 3).

Among the 28 younger PWID in transmission pairs/clusters, half (14 of 28, 50%) were in 

pairs containing only younger PWID, with 15 in pairs/clusters also containing older PWID. 

One younger participant was identified in two separate pairs, with another younger 

participant and with an older participant.

Representative time scaled phylogenies of pairs/clusters containing at least one participant 

with recent HCV seroconversion with time to most common recent ancestor less than five 

years (Fig. 3) show intermixing of age, gender, recent HCV seroconversion, and HIV 

coinfection among participants in the clusters.

Similar information on phylogenetic clustering for people with recent HCV seroconversion 

and HIV co-infection is shown in Supplementary Table 2. The minority of participants in 

pairs had recent HCV seroconversion (15%), while almost half (45%) were co-infected with 

HIV.

Assessing traits associated with inferred phylogeny

As shown in Fig. 4, the distribution of younger age across the phylogeny appeared disperse, 

without large-scale local expansions among younger participants or those with recent HCV 

infection.

Given this, the distribution of participant characteristics on the tips of the inferred phylogeny 

was compared to that expected by chance (i.e. when compared to randomly distributed 
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characteristics on the same phylogeny). For participants with subtype 1a, 2b and 3a (Table 3) 

infection, the null hypothesis of no association between patient characteristic and 

phylogenetic structure was rejected for younger (vs. older) participants (using the 

Association Index statistic), suggesting that viruses from younger participants were more 

likely to be closely related to viruses from other younger participants than to older 

participants, and vice versa (Fig. 1C). Similarly, viruses from participants in the ARYS 

study were more likely to be closely related to viruses from other ARYS participants than 

viruses from VIDUS participants, and conversely. For participants with subtype 1a infection, 

HIV co-infection was significant by Association Index (Table 3).

The Association Index ratio was modest for all characteristics found to be significant, with 

values ranging 0.36 – 0.88 (Table 3). Concordance between Association Index and an 

alternative measure of association, Parsimony Score, was high across the subtypes and 

characteristics (Supplementary Table 3).

Factors associated with phylogenetic clustering

In analyses adjusting for age (Table 4), factors independently associated with pair/cluster 

membership included younger age, HIV co-infection, and subtype 3a infection. In analyses 

adjusting for duration of injecting (Supplementary Table 4b), factors independently 

associated with pair/cluster membership included shorter duration of injecting, HIV co-

infection, and subtype 3a infection. The results were similar when cluster membership was 

defined by a maximum genetic distance threshold of 1.5% (Supplementary Table 4a-f).

DISCUSSION

This study characterises the molecular epidemiology of HCV among two cohorts of PWID 

recruited between 1996 and 2012 in Vancouver, Canada. HCV infection among young 

injectors (aged <27 years) was seeded from many transmission events between HCV-

infected older injectors and younger injectors. Phylogenetic association by age and cohort 

was observed in this population. The proportion of participants identified in a pair/cluster 

less than five years old was 15%, with younger age, shorter duration of injecting and HIV 

coinfection independently associated with phylogenetic clustering. Treatment as prevention 

strategies will likely require broad scale-up across both younger and older PWID 

populations to prevent both transmission and HCV-related liver disease. Further, these 

phylogenetic methodologies can be applied to emerging HCV epidemics among PWID in 

other settings.

Transmission of HCV infection occurred both within and between younger and older PWID 

in this study. When examining participant age within the inferred phylogeny, younger 

participants were dispersedly spread among older PWID, with little evidence that HCV 

transmission was confined by age. The Association Index statistic showed an intermediate 

level of phylogenetic structure, without complete separation of young and old into two 

groups. Grouping of sequences by age group suggests that viruses from younger participants 

are more likely to be closely related to viruses from other younger participants than 

randomly distributed across the phylogeny. Transmission within age groups in more 

common than among age classes, but the latter does occur. Further, within individual 
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clusters, it is apparent that younger participants are equally as likely to cluster with older 

PWID as with other younger PWID. As participants were categorised by age based on the 

ARYS definition of youth (i.e. <27 years old), the effect of co-clustering among age groups 

may be overestimated if participants were close to the stratification point (e.g. if a 

participant aged just less than 27 years co-clustered with a participant just older than 27 

years).

Younger injectors and those new to injecting are at greatest risk of acquiring HCV infection 

[26]. Initiation to injecting is complex and multifaceted, with transition associated with 

homelessness [27, 28], previous drug use patterns [28, 29], survival sex work [30], sexual or 

physical abuse [31], and social and injecting networks [32]. Similar factors are associated 

with HCV acquisition, in addition to female gender [2], HIV infection [2], requiring help 

injecting [33], having a partner who injects [33], and borrowing injecting equipment [23]. 

However, infection with HCV has been shown to be associated with initiating injection drug 

use with someone at least five years older [34]. Further, younger PWID may be introduced 

into high-risk injecting practices by older injectors, are more likely to require assistance 

injecting, and more likely to share injecting equipment [35]. The high degree of intermixing 

within clusters and low phylogenetic association between younger and older PWID in this 

study suggest that the HCV epidemic in this setting consisted of many different HCV 

transmission events from older to younger PWID. This is in comparison to an HCV 

epidemic where there might be few HCV transmission events from older to younger PWID, 

with subsequent ongoing transmission among younger PWID.

Overall, 15% of participants were in pairs or clusters when the inferred cluster was no older 

than five years, consistent with a genetic distance clustering threshold of 1.5%. This 

methodology for defining phylogenetic clusters resulted in a lower proportion of clustering 

than genetic-distance based methods [10, 36, 37]. However, it more accurately reflects the 

dynamics of transmission by incorporating phylogenetic uncertainty and utilising the 

molecular clock from a Bayesian Monte Carlo Markov Chain analysis. A similar 

methodology was implemented in studying HIV network formation [38], albeit without 

subsampling from the posterior set of trees to account for phylogenetic uncertainty. 

Determining cluster membership by age of the inferred cluster may provide an alternate 

method for the assessment of clustering in the context of transmission studies.

Factors associated with phylogenetic clustering in this study included younger age, shorter 

duration since injecting initiation, HIV co-infection, and subtype 3a infection. Younger age 

and HIV infection have been shown to be associated with acquisition of HCV infection [2, 

39] and phylogenetic clustering [10] in previous studies. This may be attributed to increased 

injecting risk behaviours among these sub-populations. Among young PWID in Vancouver, 

people with HIV/HCV co-infection were more likely to report syringe borrowing and greater 

than daily cocaine injecting than those with HCV alone [40]. The finding that a shorter 

duration since initiation of injecting was also associated with clustering is not surprising, 

given that younger PWID have a shorter duration since initiating injecting compared to older 

PWID. Phylogenetic clustering has also been shown to be associated with social and 

injecting networks, with cluster membership correlating with reported injecting relationships 

[25].
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This study has a number of limitations. The VIDUS and ARYS cohorts had differences in 

inclusion and exclusion criteria. To help mitigate potential cohort effects, all regression-

based analyses were adjusted for cohort of enrolment. However, it was crucial to combine 

ARYS and VIDUS participants in this study so that transmission events among PWID after 

2005 were included. Second, the VIDUS and ARYS studies are not random samples of the 

eligible population and the findings may not be generalizable to the broader Vancouver 

injection drug-using population or other urban settings. There also may be un-sampled 

additional parties involved in the transmission cluster and direction of HCV transmission 

cannot be determined. The naturally expected phylogenetic distribution of traits such as 

younger age and shorter duration injecting may not be random, on account of their probable 

recent infection and thus propensity for clustering. Further simulation of transmission and 

within-host dynamics may be required to further understand this effect. Third, the utilisation 

of PCR to amplify HCV RNA may introduce bias in the selection of participants given the 

nature of the methodology and the potential to insufficiently detect variant strains of the 

virus (including mixed infections). Lastly, information on all behaviours were collected by 

self-report and may be subject to response biases.

The promise of HCV treatment as a potential prevention strategy has been driven by 

modeling studies suggesting that HCV treatment for PWID can lead to substantial 

reductions in HCV prevalence and reduce transmission [41-43]. Given the complex 

dynamics of HCV transmission among PWID demonstrated in this study, HCV treatment as 

prevention strategies that target both young PWID (at greater risk of transmission) and older 

PWID (at greatest risk of HCV-related liver disease progression) may result in prevention of 

both new HCV infections and HCV-related advanced liver disease [44, 45]. While the 

findings from this study could be used to inform dynamics mathematical models of HCV 

transmission among PWID, further prospective interventional studies are also needed to 

evaluate optimal HCV treatment as prevention strategies.

In conclusion, this study of PWID from Vancouver demonstrates that HCV transmission 

among PWID is complex and multifaceted, with transmission occurring both between and 

within older and younger PWID. These data suggest that, despite an increased risk of HCV 

transmission among younger PWID, it is likely that HCV prevention strategies will require 

broad coverage among both young and old PWID.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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List of abbreviations in the order of appearance

HCV hepatitis C virus

PWID people who inject drugs

NSP needle and syringe programs

OST opioid substitution therapy

HIV human immunodeficiency virus

ARYS At Risk Youth Study

VIDUS Vancouver Injection Drug Users Study

RNA ribonucleic acid

PCR polymerase chain reaction

E2 envelope-2

MCMC Markov Chain Monte Carlo

BaTS Bayesian association of tip significance

tMRCA time to most common recent ancestor
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Fig 1. Potential modes of HCV transmission among people who inject drugs
This study sought to evaluate whether: (A) HCV infection in young injectors is seeded by 

many transmission events between HCV-infected older injectors and younger injectors, or 

(B) HCV infection in young injectors is seeded by few transmission events from HCV-

infected olderinjectors with further transmission among younger injectors. (C) Evaluation of 

phylogeny-trait correlation by Association Index (AI) illustrates the distribution of 

participant characteristics on the inferred phylogeny. The correlation between the phylogeny 

and traits may be high (i), low (ii) or moderate (iii). Permission obtained from Elsevier B.V. 

© Parker, J. et al. (2008) Correlating viral phenotypes with phylogeny: Accounting for 

phylogenetic uncertainty Infection, Genetics and Evolution doi: 10.1016/j.meegid.

2007.08.001
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Fig. 2. 
Participant disposition flow-chart.
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Fig. 3. Representative time scaled phylogenies of subclusters containing at least one participant 
with recent HCV seroconversion with time to most common recent ancestor less than five years
Dashed lines represent low frequency cluster members, while tips are annotated with 

participant age, gender, recent HCV seroconversion status (blue circle) and HIV status 

(orange circle).
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Fig. 4. Subsection of an inferred Bayesian common ancestor tree of VIDUS and ARYS 
participants with HCV subtype 1a infection
Tips are annotated with younger (<27 years, purple diamond) and older (>27 years, green 

square) age.

Jacka et al. Page 18

J Hepatol. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jacka et al. Page 19

Table 1

Characteristics of participants in the VIDUS and ARYS cohorts with HCV Core-E2 genotype result, stratified 

by age at enrolment/HCV seroconversion.

Characteristics Total n=699 Age <27 n=150 Age ≥27 n=549 p-value

Female sex (vs. male sex) 179 (26%) 54 (36%) 125 (23%) 0.001

High school education or higher (vs. less than high school) 165 (24%) 62 (41%) 103 (19%) <0.001

Unstable housing (vs. stable)
† 494 (71%) 110 (73%) 384 (70%) 0.419

Years injecting (median (Q1, Q3)) 13 (6, 23) 5 (3, 8) 16 (8, 24)

Duration of injecting (years) <0.001

    <3 78 (11%) 37 (25%) 41 (7%)

    3-10 213 (30%) 88 (59%) 125 (23%)

    10-20 187 (27%) 19 (13%) 168 (31%)

    ≥20 221 (32%) 6 (4%) 215 (39%)

Currently enrolled in methadone treatment 89 (13%) 15 (10%) 74 (14%) 0.262

Downtown East Side residence 
† 394 (56%) 52 (35%) 342 (62%) <0.001

Jail
† 100 (14%) 32 (21%) 68 (12%) 0.006

Syringe borrowing
† 271 (39%) 51 (34%) 220 (40%) 0.176

Crack use
† 195 (28%) 66 (44%) 129 (24%) <0.001

Cocaine injecting
† 556 (80%) 90 (60%) 466 (85%) <0.001

Heroin injecting
† 490 (70%) 106 (71%) 384 (70%) 0.864

Speedball injecting
† 264 (38%) 43 (29%) 221 (40%) 0.009

Methamphetamine injecting
† 51 (7%) 39 (26%) 12 (2%) <0.001

ARYS cohort 65 (9%) 61 (41%) 4 (<1%) <0.001

Recent HCV seroconversion 73 (10%) 39 (26%) 34 (6%) <0.001

HIV infection
† 165 (24%) 22 (15%) 143 (26%) 0.004

HCV subtype 0.223

    1a 347 (50%) 73 (49%) 274 (50%)

    1b 44 (6%) 6 (4%) 38 (7%)

    2b 52 (7%) 8 (5%) 44 (8%)

    3a 256 (37%) 63 (42%) 193 (35%)

†
In last six months. Missing data: ^ 1 participant, * 2 participants, # 6 participants.
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Table 2

Phylogenetic clustering by age among PWID in Vancouver, Canada.

5 year tMRCA threshold (n=699)

Number related 108 (15%)

Median cluster size (range) 2 (2-6)

Pairs (n=87
*
)

    Older only 58/87 (67%)

    Younger with older 16/87 (18%)

    Younger only 14/87 (16%)

Clusters (n=21)

    Older only 9/21 (43%)

    Younger with older 12/21 (57%)

    Younger only 0/21 (0%)

Among younger (n=28
*
)

    One younger with older 8/28 (29%)

    Two younger with older 7/28 (25%)

    Younger only 14/28 (50%)

*
One participant, aged <27 years, with HCV infection at baseline, was identified in two separate pairs.

J Hepatol. Author manuscript; available in PMC 2017 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jacka et al. Page 21

Table 3

Phylogeny-trait association test of participant characteristic distribution among people who inject drugs in 

Vancouver, Canada using BaTS

Characteristic Number
Association Index

Observed (95% CI) Expected (95% CI) Ratio p-value

Subtype 1a (n=347)

Age <27 years (vs. >27 years) 73 (21%) 11.0 (9.9, 12.1) 13.3 (11.7, 14.9) 0.83 0.010

Female (vs. Male) 82 (24%) 15.2 (14.1, 16.3) 14.5 (13.3, 15.9) 1.05 0.750

Inject <3 years (vs. ≥3 years) 36 (10%) 7.7 (6.8, 8.6) 7.4 (6.4, 8.2) 1.04 0.680

ARYS Cohort (vs. VIDUS) 27 (8%) 5.1 (4.4, 5.8) 5.8 (4.9, 6.7) 0.88 0.110

Recent HCV seroconversion (vs. HCV infection at baseline) 36 (10%) 6.7 (5.8, 7.6) 7.3 (6.3, 8.4) 0.92 0.170

HIV co-infection (vs. not) 92 (27%) 12.7 (11.5, 13.9) 15.7 (14.3, 17.2) 0.81 0.010

Subtype 1b (n=44)

Age <27 years (vs. >27 years) 6 (14%) 1.1 (0.9, 1.4) 1.1 (0.6, 1.5) 1.03 0.55

Female (vs. Male) 11 (25%) 1.5 (1.1, 1.9) 1.8 (1.2, 2.4) 0.8 0.14

Inject <3 years (vs. ≥3 years) 6 (14%) 1.1 (0.9, 1.3) 1.1 (0.6, 1.5) 0.95 0.43

ARYS Cohort (vs. VIDUS) 2 (5%) 0.4 (0.4, 0.5) 0.4 (0.1, 0.7) 0.97 0.37

Recent HCV seroconversion (vs. HCV infection at baseline) 2 (5%) 0.2 (0.1, 0.4) 0.4 (0.1, 0.7) 0.49 0.08

HIV co-infection (vs. not) 12 (27%) 1.6 (1.3, 1.8) 1.9 (1.2, 2.6) 0.83 0.27

Subtype 2b (n=52)

Age <27 years (vs. >27 years) 8 (15%) 0.5 (0.4, 0.8) 1.5 (1.0, 2.0) 0.36 <0.001

Female (vs. Male) 10 (19%) 2.1 (1.7, 2.4) 1.8 (1.1, 2.3) 1.19 0.770

Inject <3 years (vs. ≥3 years) 7 (13%) 1.5 (1.2, 1.7) 1.4 (1.0, 1.7) 1.11 0.680

ARYS Cohort (vs. VIDUS) 3 (6%) 0.1 (0.1, 0.1) 0.6 (0.3, 0.9) 0.09 <0.001

Recent HCV seroconversion (vs. HCV infection at baseline) 6 (12%) 0.8 (0.7, 1.0) 1.2 (0.7, 1.6) 0.70 0.080

HIV co-infection (vs. not) 13 (25%) 2.7 (2.3, 3.2) 2.1 (1.5, 2.8) 1.28 0.930

Subtype 3a (n=256)

Age <27 years (vs. >27 years) 73 (29%) 9.2 (8.2, 10.2) 12.0 (10.6, 13.7) 0.77 <0.001

Female (vs. Male) 76 (30%) 12.2 (11.1, 13.3) 12.1 (10.6, 13.8) 1.00 0.570

Inject <3 years (vs. ≥3 years) 34 (13%) 7.3 (6.7, 8.1) 6.7 (5.8, 7.8) 1.09 0.810

ARYS Cohort (vs. VIDUS) 33 (13%) 5.1 (4.4, 5.8) 6.5 (5.8, 7.3) 0.79 <0.001

Recent HCV seroconversion (vs. HCV infection at baseline) 29 (11%) 5.5 (4.9, 6.1) 5.9 (5.0, 6.8) 0.94 0.260

HIV co-infection (vs. not) 48 (19%) 8.3 (7.4, 9.2) 8.9 (7.7, 10.1) 0.94 0.210

BaTS: Bayesian Tip-association Significance test; CI: Confidence interval; ARYS: At-Risk Youth Study; VIDUS: Vancouver Injection Drug User 
Study
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Table 4

Factors associated with phylogenetic pair/cluster membership among people who inject drugs in Vancouver, 

Canada.

Characteristic No cluster (n=591) Cluster (n=108) p-value Unadjusted OR 
(95% CI)

p-value Adjusted OR 
(95% CI)

p-value

Age quartiles 0.005

    <27 123 (21%) 27 (25%) 2.20 (1.17, 4.12) 0.014 3.14 (1.54, 6.39) 0.002

    27 – 34 155 (26%) 42 (39%) 2.71 (1.51, 4.85) 0.001 2.70 (1.48, 4.91) 0.001

    35 – 39 123 (21%) 20 (19%) 1.63 (0.83, 3.17) 0.154 1.74 (0.88, 3.44) 0.108

    >40 190 (32%) 19 (18%) 1.00 - 1.00 -

Female (vs. Male) 149 (25%) 30 (28%) 0.574 1.14 (0.72, 1.81) 0.574 0.87 (0.53, 1.41) 0.564

Duration injecting (years) <0.001

    <3 55 (9%) 23 (21%) 4.45 (2.26, 8.75) <0.001

    3-10 172 (29%) 41 (38%) 2.53 (1.42, 4.53) 0.002

    10-20 162 (27%) 25 (23%) 1.64 (0.87, 3.08) 0.124

    >20 202 (34%) 19 (18%) 1.00 -

ARYS Cohort (vs. 
VIDUS)

58 (10%) 7 (6%) 0.273 0.64 (0.28, 1.44) 0.277 0.39 (0.15, 1.00) 0.049

Recent HCV 
seroconversion (vs. HCV 
infection at baseline)

60 (10%) 13 (12%) 0.556 1.21 (0.64, 2.29) 0.556 1.45 (0.72, 2.93) 0.302

HIV co-infection (vs. not) 128 (22%) 37 (34%) 0.005 1.89 (1.21, 2.94) 0.005 1.97 (1.22, 3.18) 0.005

HCV subtype 0.039

    1a 307 (52%) 40 (37%) 1.00 - 1.00 -

    1b 36 (6%) 8 (7%) 1.71 (0.74, 3.93) 0.21 2.13 (0.90, 5.03) 0.086

    2b 43 (7%) 9 (8%) 1.61 (0.73, 3.54) 0.24 1.67 (0.75, 3.76) 0.212

    3a 205 (35%) 51 (47%) 1.91 (1.22, 2.99) 0.005 2.12 (1.33, 3.38) 0.002

Note: Participants were classified as in a cluster if the time to most common recent ancestor of a potential cluster was less than five years

OR: Odds ratio; CI: Confidence interval; ARYS: At-Risk Youth Study; VIDUS: Vancouver Injection Drug User Study

Full model adjusted for age, sex, cohort of enrolment, recent HCV seroconversion, HIV infection, and HCV subtype;
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