Abstract
Tunicamycin, a potent reversible translocase I inhibitor, is produced by several Actinomycetes species. The tunicamycin structure is highly unusual, and contains an 11-carbon dialdose sugar and an α, β-1″,11′-glycosidic linkage. Here we report the identification of a gene cluster essential for tunicamycin biosynthesis by high-throughput heterologous expression (HHE) strategy combined with a bioassay. Introduction of the genes into heterologous non-producing Streptomyces hosts results in production of tunicamycin by these strains, demonstrating the role of the genes for the biosynthesis of tunicamycins. Gene disruption experiments coupled with bioinformatic analysis revealed that the tunicamycin gene cluster is minimally composed of 12 genes (tunA-tunL). Amongst these is a putative radical SAM enzyme (Tun B) with a potentially unique role in biosynthetic carbon-carbon bond formation. Hence, a seven-step novel pathway is proposed for tunicamycin biosynthesis. Moreover, two gene clusters for the potential biosynthesis of tunicamycin-like antibiotics were also identified in Streptomyces clavuligerus ATCC 27064 and Actinosynnema mirums DSM 43827. These data provide clarification of the novel mechanisms for tunicamycin biosynthesis, and for the generation of new-designer tunicamycin analogs with selective/enhanced bioactivity via combinatorial biosynthesis strategies.
Electronic Supplementary Material
Supplementary material is available for this article at 10.1007/s13238-010-0127-6 and is accessible for authorized users.
Keywords: tunicamycin, biosynthetic gene cluster, high-throughput heterologous expression, bioassay, combinatorial biosynthesis
Electronic supplementary material
Footnotes
These authors contributed equally to the work.
Electronic Supplementary Material
Supplementary material is available for this article at 10.1007/s13238-010-0127-6 and is accessible for authorized users.
Contributor Information
Neil P. J. Price, Email: zxdeng@sjtu.edu.cn
Zixin Deng, Email: neil.price@ars.usda.gov.
References
- Bai L., Li L., Xu H., Minagawa K., Yu Y., Zhang Y., Zhou X., Floss H.G., Mahmud T., Deng Z. Functional analysis of the validamycin biosynthetic gene cluster and engineered production of validoxylamine A. Chem Biol. 2006;13:387–397. doi: 10.1016/j.chembiol.2006.02.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bentley S.D., Chater K.F., Cerdeño-Tárraga A.M., Challis G.L., Thomson N.R., James K.D., Harris D.E., Quail M.A., Kieser H., Harper D., et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) Nature. 2002;417:141–147. doi: 10.1038/417141a. [DOI] [PubMed] [Google Scholar]
- Chen W., Huang T., He X., Meng Q., You D., Bai L., Li J., Wu M., Li R., Xie Z., et al. Characterization of the polyoxin biosynthetic gene cluster from Streptomyces cacaoi and engineered production of polyoxin H. J Biol Chem. 2009;284:10627–10638. doi: 10.1074/jbc.M807534200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Creuzenet C., Belanger M., Wakarchuk W.W., Lam J.S. Expression, purification, and biochemical characterization of WbpP, a new UDP-GlcNAc C4 epimerase from Pseudomonas aeruginosa serotype O6. J Biol Chem. 2000;275:19060–19067. doi: 10.1074/jbc.M001171200. [DOI] [PubMed] [Google Scholar]
- Eckardt K. Tunicamycins, streptovirudins, and corynetoxins, a special subclass of nucleoside antibiotics. J Nat Prod. 1983;46:544–550. doi: 10.1021/np50028a020. [DOI] [PubMed] [Google Scholar]
- Eckardt K., Thrum H., Bradler G., Tonew E., Tonew M. Streptovirudins, new antibiotics with antibacterial and antiviral activity. II. Isolation, chemical characterization and biological activity of streptovirudins A1, A2, B1, B2, C1, C2, D1, and D2. J Antibiot (Tokyo) 1975;28:274–279. doi: 10.7164/antibiotics.28.274. [DOI] [PubMed] [Google Scholar]
- Gross J.W., Hegeman A.D., Vestling M.M., Frey P.A. Characterization of enzymatic processes by rapid mix-quench mass spectrometry: the case of dTDP-glucose 4,6-dehydratase. Biochemistry. 2000;39:13633–13640. doi: 10.1021/bi001963d. [DOI] [PubMed] [Google Scholar]
- Gust B., Challis G.L., Fowler K., Kieser T., Chater K.F. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A. 2003;100:1541–1546. doi: 10.1073/pnas.0337542100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishikawa J., Hotta K. FramePlot: a new implementation of the frame analysis for predicting protein-coding regions in bacterial DNA with a high G + C content. FEMS Microbiol Lett. 1999;174:251–253. doi: 10.1111/j.1574-6968.1999.tb13576.x. [DOI] [PubMed] [Google Scholar]
- Jian X., Pang X., Yu Y., Zhou X., Deng Z. Identification of genes necessary for jinggangmycin biosynthesis from Streptomyces hygroscopicus 10–22. Antonie Van Leeuwenhoek. 2006;90:29–39. doi: 10.1007/s10482-006-9058-x. [DOI] [PubMed] [Google Scholar]
- Kapp U., Macedo S., Hall D.R., Leiros I., McSweeney S.M., Mitchell E. Structure of Deinococcus radiodurans tunicamycin-resistance protein (TmrD), a phosphotransferase. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008;64:479–486. doi: 10.1107/S1744309108011822. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaysser L., Lutsch L., Siebenberg S., Wemakor E., Kammerer B., Gust B. Identification and manipulation of the caprazamycin gene cluster lead to new simplified liponucleoside antibiotics and give insights into the biosynthetic pathway. J Biol Chem. 2009;284:14987–14996. doi: 10.1074/jbc.M901258200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaysser L., Siebenberg S., Kammerer B., Gust B. Analysis of the liposidomycin gene cluster leads to the identification of new caprazamycin derivatives. Chembiochem. 2010;11:191–196. doi: 10.1002/cbic.200900637. [DOI] [PubMed] [Google Scholar]
- Keenan R.W., Hamill R.L., Occolowitz J.L., Elbein A.D. Biological activities of isolated tunicamycin and streptovirudin fractions. Biochemistry. 1981;20:2968–2973. doi: 10.1021/bi00513a039. [DOI] [PubMed] [Google Scholar]
- Kenig M., Reading C. Holomycin and an antibiotic (MM 19290) related to tunicamycin, metabolites of Streptomyces clavuligerus. J Antibiot (Tokyo) 1979;32:549–554. doi: 10.7164/antibiotics.32.549. [DOI] [PubMed] [Google Scholar]
- Kieser T., Bibb M.J., Chater K.F., Butter M.J., Hopwood D.A. Practical Streptomyces Genetics. 2nd ed. Norwich, United Kingdom: John Innes Foundation; 2000. [Google Scholar]
- Kimura K., Bugg T.D. Recent advances in antimicrobial nucleoside antibiotics targeting cell wall biosynthesis. Nat Prod Rep. 2003;20:252–273. doi: 10.1039/b202149h. [DOI] [PubMed] [Google Scholar]
- Liang X., Lu Y., Neubert T.A., Resh M.D. Mass spectrometric analysis of GAP-43/neuromodulin reveals the presence of a variety of fatty acylated species. J Biol Chem. 2002;277:33032–33040. doi: 10.1074/jbc.M204607200. [DOI] [PubMed] [Google Scholar]
- Martinez A., Kolvek S.J., Yip C.L., Hopke J., Brown K.A., MacNeil I.A., Osburne M.S. Genetically modified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression hosts. Appl Environ Microbiol. 2004;70:2452–2463. doi: 10.1128/AEM.70.4.2452-2463.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Medema M.H., Trefzer A., Kovalchuk A., van den Berg M., Müller U., Heijne W., Wu L., Alam M.T., Ronning C.M., Nierman W.C., et al. The sequence of a 1.8-mb bacterial linear plasmid reveals a rich evolutionary reservoir of secondary metabolic pathways. Genome Biol Evol. 2010;2:212–224. doi: 10.1093/gbe/evq013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noda Y., Takatsuki A., Yoda K., Yamasaki M. TmrB protein, which confers resistance to tunicamycin on Bacillus subtilis, binds tunicamycin. Biosci Biotechnol Biochem. 1995;59:321–322. doi: 10.1271/bbb.59.321. [DOI] [PubMed] [Google Scholar]
- Noda Y., Yoda K., Takatsuki A., Yamasaki M. TmrB protein, responsible for tunicamycin resistance of Bacillus subtilis, is a novel ATP-binding membrane protein. J Bacteriol. 1992;174:4302–4307. doi: 10.1128/jb.174.13.4302-4307.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Omura S., Ikeda H., Ishikawa J., Hanamoto A., Takahashi C., Shinose M., Takahashi Y., Horikawa H., Nakazawa H., Osonoe T., et al. Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci U S A. 2001;98:12215–12220. doi: 10.1073/pnas.211433198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ostash B., Saghatelian A., Walker S. A streamlined metabolic pathway for the biosynthesis of moenomycin A. Chem Biol. 2007;14:257–267. doi: 10.1016/j.chembiol.2007.01.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patterson S.I., Skene J.H. Novel inhibitory action of tunicamycin homologues suggests a role for dynamic protein fatty acylation in growth cone-mediated neurite extension. J Cell Biol. 1994;124:521–536. doi: 10.1083/jcb.124.4.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Price N.P., Momany F.A. Modeling bacterial UDPHexNAc: polyprenol-P HexNAc-1-P transferases. Glycobiology. 2005;15:29R–42R. doi: 10.1093/glycob/cwi065. [DOI] [PubMed] [Google Scholar]
- Price N.P., Tsvetanova B. Biosynthesis of the tunicamycins: a review. J Antibiot (Tokyo) 2007;60:485–491. doi: 10.1038/ja.2007.62. [DOI] [PubMed] [Google Scholar]
- Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: a Laboratory Manual. 2nd ed. NY: Cold Spring Harbor Laboratory Press; 1989. [Google Scholar]
- Singh D., Seo M.J., Kwon H.J., Rajkarnikar A., Kim K.R., Kim S. O., Suh J.W. Genetic localization and heterologous expression of validamycin biosynthetic gene cluster isolated from Streptomyces hygroscopicus var. limoneus KCCM 11405 (IFO 12704) Gene. 2006;376:13–23. doi: 10.1016/j.gene.2005.12.035. [DOI] [PubMed] [Google Scholar]
- Tsvetanova B.C., Kiemle D.J., Price N.P. Biosynthesis of tunicamycin and metabolic origin of the 11-carbon dialdose sugar, tunicamine. J Biol Chem. 2002;277:35289–35296. doi: 10.1074/jbc.M201345200. [DOI] [PubMed] [Google Scholar]
- Tsvetanova B.C., Price N.P. Liquid chromatographyelectrospray mass spectrometry of tunicamycin-type antibiotics. Anal Biochem. 2001;289:147–156. doi: 10.1006/abio.2000.4952. [DOI] [PubMed] [Google Scholar]
- Vogel P., Petterson D.S., Berry P.H., Frahn J.L., Anderton N., Cockrum P.A., Edgar J.A., Jago M.V., Lanigan G.W., Payne A. L., et al. Isolation of a group of glycolipid toxins from seedheads of annual ryegrass Lolium rigidum Gaud.) infected by Corynebacterium rathayi. Aust J Exp Biol Med Sci. 1981;59:455–467. doi: 10.1038/icb.1981.39. [DOI] [PubMed] [Google Scholar]
- Wecksler S.R., Stoll S., Tran H., Magnusson O.T., Wu S.P., King D., Britt R.D., Klinman J.P. Pyrroloquinoline quinone biogenesis: demonstration that PqqE from Klebsiella pneumoniae is a radical S-adenosyl-L-methionine enzyme. Biochemistry. 2009;48:10151–10161. doi: 10.1021/bi900918b. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winn M., Goss R.J., Kimura K., Bugg T.D. Antimicrobial nucleoside antibiotics targeting cell wall assembly: recent advances in structure-function studies and nucleoside biosynthesis. Nat Prod Rep. 2010;27:279–304. doi: 10.1039/B816215H. [DOI] [PubMed] [Google Scholar]
- Xu L., Appell M., Kennedy S., Momany F.A., Price N.P. Conformational analysis of chirally deuterated tunicamycin as an active site probe of UDP-N-acetylhexosamine:polyprenol-P Nacetylhexosamine-1-P translocases. Biochemistry. 2004;43:13248–13255. doi: 10.1021/bi048327q. [DOI] [PubMed] [Google Scholar]
- Yu T.W., Bai L., Clade D., Hoffmann D., Toelzer S., Trinh K.Q., Xu J., Moss S.J., Leistner E., Floss H.G. The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc Natl Acad Sci U S A. 2002;99:7968–7973. doi: 10.1073/pnas.092697199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu Y., Bai L., Minagawa K., Jian X., Li L., Li J., Chen S., Cao E., Mahmud T., Floss H.G., et al. Gene cluster responsible for validamycin biosynthesis in Streptomyces hygroscopicus subsp. jinggangensis 5008. Appl Environ Microbiol. 2005;71:5066–5076. doi: 10.1128/AEM.71.9.5066-5076.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zayas C.L., Escalante-Semerena J.C. Reassessment of the late steps of coenzyme B12 synthesis in Salmonella enterica: evidence that dephosphorylation of adenosylcobalamin-5′-phosphate by the CobC phosphatase is the last step of the pathway. J Bacteriol. 2007;189:2210–2218. doi: 10.1128/JB.01665-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.