Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2011 Jan 8;1(12):1118–1127. doi: 10.1007/s13238-010-0144-5

High affinity soluble ILT2 receptor: a potent inhibitor of CD8+ T cell activation

Ruth K Moysey 1, Yi Li 1, Samantha J Paston 1, Emma E Baston 1, Malkit S Sami 1, Brian J Cameron 1, Jessie Gavarret 1, Penio Todorov 1, Annelise Vuidepot 1, Steven M Dunn 1, Nicholas J Pumphrey 1, Katherine J Adams 1, Fang Yuan 1, Rebecca E Dennis 1, Deborah H Sutton 1, Andy D Johnson 1, Joanna E Brewer 1, Rebecca Ashfield 1, Nikolai M Lissin 1, Bent K Jakobsen 1,
PMCID: PMC4875079  PMID: 21213105

Abstract

Using directed mutagenesis and phage display on a soluble fragment of the human immunoglobulin super-family receptor ILT2 (synonyms: LIR1, MIR7, CD85j), we have selected a range of mutants with binding affinities enhanced by up to 168,000-fold towards the conserved region of major histocompatibility complex (MHC) class I molecules. Produced in a dimeric form, either by chemical cross-linking with bivalent polyethylene glycol (PEG) derivatives or as a genetic fusion with human IgG Fc-fragment, the mutants exhibited a further increase in ligand-binding strength due to the avidity effect, with resident half-times (t 1/2) on the surface of MHC I-positive cells of many hours. The novel compounds antagonized the interaction of CD8 co-receptor with MHC I in vitro without affecting the peptide-specific binding of T-cell receptors (TCRs). In both cytokine-release assays and cell-killing experiments the engineered receptors inhibited the activation of CD8+ cytotoxic T lymphocytes (CTLs) in the presence of their target cells, with subnanomolar potency and in a dose-dependent manner. As a selective inhibitor of CD8+ CTL responses, the engineered high affinity ILT2 receptor presents a new tool for studying the activation mechanism of different subsets of CTLs and could have potential for the development of novel autoimmunity therapies.

Keywords: CD8+ T cells, cellular activation, autoimmunity, cell surface molecules, binding affinity, phage display

Footnotes

These authors contributed equally to this work.

References

  1. Bernardeau K., Gouard S., David G., Ruellan A.L., Devys A., Barbet J., Bonneville M., Cherel M., Davodeau F. Assessment of CD8 involvement in T cell clone avidity by direct measurement of HLA-A2/Mage3 complex density using a high-affinity TCR like monoclonal antibody. Eur J Immunol. 2005;35:2864–2875. doi: 10.1002/eji.200526307. [DOI] [PubMed] [Google Scholar]
  2. Binstadt B.A., Brumbaugh K.M., Dick C.J., Scharenberg A.M., Williams B.L., Colonna M., Lanier L.L., Kinet J.P., Abraham R.T., Leibson P.J. Sequential involvement of Lck and SHP-1 with MHC-recognizing receptors on NK cells inhibits FcRinitiated tyrosine kinase activation. Immunity. 1996;5:629–638. doi: 10.1016/S1074-7613(00)80276-9. [DOI] [PubMed] [Google Scholar]
  3. Borges L., Cosman D. LIRs/ILTs/MIRs, inhibitory and stimulatory Ig-superfamily receptors expressed in myeloid and lymphoid cells. Cytokine Growth Factor Rev. 2000;11:209–217. doi: 10.1016/S1359-6101(00)00007-1. [DOI] [PubMed] [Google Scholar]
  4. Buslepp J., Kerry S.E., Loftus D., Frelinger J.A., Appella E., Collins E.J. High affinity xenoreactive TCR:MHC interaction recruits CD8 in absence of binding to MHC. J Immunol. 2003;170:373–383. doi: 10.4049/jimmunol.170.1.373. [DOI] [PubMed] [Google Scholar]
  5. Cella M., Nakajima H., Facchetti F., Hoffmann T., Colonna M. ILT receptors at the interface between lymphoid and myeloid cells. Curr Top Microbiol Immunol. 2000;251:161–166. doi: 10.1007/978-3-642-57276-0_20. [DOI] [PubMed] [Google Scholar]
  6. Chang H.C., Tan K., Hsu Y.M. CD8alphabeta has two distinct binding modes of interaction with peptide-major histocompatibility complex class I. J Biol Chem. 2006;281:28090–28096. doi: 10.1074/jbc.M604931200. [DOI] [PubMed] [Google Scholar]
  7. Chapman T.L., Heikema A.P., West A.P., Jr, Bjorkman P.J. Crystal structure and ligand binding properties of the D1D2 region of the inhibitory receptor LIR-1 (ILT2) Immunity. 2000;13:727–736. doi: 10.1016/S1074-7613(00)00071-6. [DOI] [PubMed] [Google Scholar]
  8. Clackson T., Hoogenboom H.R., Griffiths A.D., Winter G. Making antibody fragments using phage display libraries. Nature. 1991;352:624–628. doi: 10.1038/352624a0. [DOI] [PubMed] [Google Scholar]
  9. Cole D.K., Rizkallah P.J., Sami M., Lissin N.M., Gao F., Bell J.I., Boulter J.M., Glick M., Vuidepot A.L., Jakobsen B.K., et al. Crystallization and preliminary X-ray structural studies of a high-affinity CD8alphaalpha co-receptor to pMHC. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2005;61:285–287. doi: 10.1107/S1744309105002988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Colonna M., Navarro F., Bellon T., Llano M., Garcia P., Samaridis J., Angman L., Cella M., Lopez-Botet M. A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells. J Exp Med. 1997;186:1809–1818. doi: 10.1084/jem.186.11.1809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dunn S.M., Rizkallah P.J., Baston E., Mahon T., Cameron B., Moysey R., Gao F., Sami M., Boulter J., Li Y., et al. Directed evolution of human T cell receptor CDR2 residues by phage display dramatically enhances affinity for cognate peptide-MHC without increasing apparent cross-reactivity. Protein Sci. 2006;15:710–721. doi: 10.1110/ps.051936406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fanger N.A., Borges L., Cosman D. The leukocyte immunoglobulin-like receptors (LIRs): a new family of immune regulators. J Leukoc Biol. 1999;66:231–236. doi: 10.1002/jlb.66.2.231. [DOI] [PubMed] [Google Scholar]
  13. Fee C.J., Van Alstine J.M. Prediction of the viscosity radius and the size exclusion chromatography behavior of PEGylated proteins. Bioconjug Chem. 2004;15:1304–1313. doi: 10.1021/bc049843w. [DOI] [PubMed] [Google Scholar]
  14. Gaberc-Porekar V., Zore I., Podobnik B., Menart V. Obstacles and pitfalls in the PEGylation of therapeutic proteins. Curr Opin Drug Discov Devel. 2008;11:242–250. [PubMed] [Google Scholar]
  15. Gao G.F., Jakobsen B.K. Molecular interactions of coreceptor CD8 and MHC class I: the molecular basis for functional coordination with the T-cell receptor. Immunol Today. 2000;21:630–636. doi: 10.1016/S0167-5699(00)01750-3. [DOI] [PubMed] [Google Scholar]
  16. Garboczi D.N., Hung D.T., Wiley D.C. HLA-A2-peptide complexes: refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides. Proc Natl Acad Sci USA. 1992;89:3429–3433. doi: 10.1073/pnas.89.8.3429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hamerman, J.A., and Lanier, L.L. (2006). Inhibition of immune responses by ITAM-bearing receptors. Sci STKE 2006, re1. [DOI] [PubMed]
  18. Ivashkiv L.B. Cross-regulation of signaling by ITAM-associated receptors. Nat Immunol. 2009;10:340–347. doi: 10.1038/ni.1706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kerry S.E., Buslepp J., Cramer L.A., Maile R., Hensley L.L., Nielsen A.I., Kavathas P., Vilen B.J., Collins E.J., Frelinger J.A. Interplay between TCR affinity and necessity of coreceptor ligation: high-affinity peptide-MHC/TCR interaction overcomes lack of CD8 engagement. J Immunol. 2003;171:4493–4503. doi: 10.4049/jimmunol.171.9.4493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Laugel B., Price D.A., Milicic A., Sewell A.K. CD8 exerts differential effects on the deployment of cytotoxic T lymphocyte effector functions. Eur J Immunol. 2007;37:905–913. doi: 10.1002/eji.200636718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lepin E.J., Bastin J.M., Allan D.S., Roncador G., Braud V.M., Mason D.Y., van der Merwe P.A., McMichael A.J., Bell J.I., Powis S.H., et al. Functional characterization of HLA-F and binding of HLA-F tetramers to ILT2 and ILT4 receptors. Eur J Immunol. 2000;30:3552–3561. doi: 10.1002/1521-4141(200012)30:12<3552::AID-IMMU3552>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  22. Li Y., Moysey R., Molloy P.E., Vuidepot A.L., Mahon T., Baston E., Dunn S., Liddy N., Jacob J., Jakobsen B.K., et al. Directed evolution of human T-cell receptors with picomolar affinities by phage display. Nat Biotechnol. 2005;23:349–354. doi: 10.1038/nbt1070. [DOI] [PubMed] [Google Scholar]
  23. McCafferty J., Griffiths A.D., Winter G., Chiswell D.J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature. 1990;348:552–554. doi: 10.1038/348552a0. [DOI] [PubMed] [Google Scholar]
  24. McNicol A.M., Bendle G., Holler A., Matjeka T., Dalton E., Rettig L., Zamoyska R., Uckert W., Xue S.A., Stauss H.J. CD8alpha/alpha homodimers fail to function as co-receptor for a CD8-dependent TCR. Eur J Immunol. 2007;37:1634–1641. doi: 10.1002/eji.200636900. [DOI] [PubMed] [Google Scholar]
  25. Natarajan K., Dimasi N., Wang J., Mariuzza R.A., Margulies D. H. Structure and function of natural killer cell receptors: multiple molecular solutions to self, nonself discrimination. Annu Rev Immunol. 2002;20!:853–885. doi: 10.1146/annurev.immunol.20.100301.064812. [DOI] [PubMed] [Google Scholar]
  26. Navarro F., Llano M., Bellon T., Colonna M., Geraghty D.E., Lopez-Botet M. The ILT2(LIR1) and CD94/NKG2A NK cell receptors respectively recognize HLA-G1 and HLA-E molecules co-expressed on target cells. Eur J Immunol. 1999;29:277–283. doi: 10.1002/(SICI)1521-4141(199901)29:01<277::AID-IMMU277>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  27. Roberts M.J., Bentley M.D., Harris J.M. Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev. 2002;54:459–476. doi: 10.1016/S0169-409X(02)00022-4. [DOI] [PubMed] [Google Scholar]
  28. Saverino D., Fabbi M., Ghiotto F., Merlo A., Bruno S., Zarcone D., Tenca C., Tiso M., Santoro G., Anastasi G., et al. The CD85/LIR-1/ILT2 inhibitory receptor is expressed by all human T lymphocytes and down-regulates their functions. J Immunol. 2000;165:3742–3755. doi: 10.4049/jimmunol.165.7.3742. [DOI] [PubMed] [Google Scholar]
  29. Sewell A.K., Gerth U.C., Price D.A., Purbhoo M.A., Boulter J.M., Gao G.F., Bell J.I., Phillips R.E., Jakobsen B.K. Antagonism of cytotoxic T-lymphocyte activation by soluble CD8. Nat Med. 1999;5:399–404. doi: 10.1038/7398. [DOI] [PubMed] [Google Scholar]
  30. Veronese F.M., Mero A. The impact of PEGylation on biological therapies. BioDrugs. 2008;22:315–329. doi: 10.2165/00063030-200822050-00004. [DOI] [PubMed] [Google Scholar]
  31. Willcox B.E., Gao G.F., Wyer J.R., O’Callaghan C.A., Boulter J.M., Jones E.Y., van der Merwe P.A., Bell J.I., Jakobsen B.K. Production of soluble alphabeta T-cell receptor heterodimers suitable for biophysical analysis of ligand binding. Protein Sci. 1999;8:2418–2423. doi: 10.1110/ps.8.11.2418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Willcox B.E., Thomas L.M., Bjorkman P.J. Crystal structure of HLA-A2 bound to LIR-1, a host and viral major histocompatibility complex receptor. Nat Immunol. 2003;4:913–919. doi: 10.1038/ni961. [DOI] [PubMed] [Google Scholar]
  33. Willcox B.E., Thomas L.M., Chapman T.L., Heikema A.P., West A. P., Jr, Bjorkman P.J. Crystal structure of LIR-2 (ILT4) at 1.8 A: differences from LIR-1 (ILT2) in regions implicated in the binding of the Human Cytomegalovirus class I MHC homolog UL18. BMC Struct Biol. 2002;2:6. doi: 10.1186/1472-6807-2-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wyer J.R., Willcox B.E., Gao G.F., Gerth U.C., Davis S.J., Bell J.I., van der Merwe P.A., Jakobsen B.K. T cell receptor and coreceptor CD8 alphaalpha bind peptide-MHC independently and with distinct kinetics. Immunity. 1999;10:219–225. doi: 10.1016/S1074-7613(00)80022-9. [DOI] [PubMed] [Google Scholar]
  35. Zhang Y., Liu Y., Moxley K.M., Golden-Mason L., Hughes M.G., Liu T., Heemskerk M.H., Rosen H.R., Nishimura M.I., Gale M. Transduction of human T cells with a novel T-cell receptor confers anti-HCV reactivity. PLoS Pathog. 2010;6:e1001018. doi: 10.1371/journal.ppat.1001018. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES