Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2011 Aug 6;2(7):531–542. doi: 10.1007/s13238-011-1079-1

Thiabendazole inhibits ubiquinone reduction activity of mitochondrial respiratory complex II via a water molecule mediated binding feature

Qiangjun Zhou 1,2, Yujia Zhai 1, Jizhong Lou 1, Man Liu 1, Xiaoyun Pang 1, Fei Sun 1,
PMCID: PMC4875242  PMID: 21822798

Abstract

The mitochondrial respiratory complex II or succinate: ubiquinone oxidoreductase (SQR) is a key membrane complex in both the tricarboxylic acid cycle and aerobic respiration. Five disinfectant compounds were investigated with their potent inhibition effects on the ubiquinone reduction activity of the porcine mitochondrial SQR by enzymatic assay and crystallography. Crystal structure of the SQR bound with thiabendazole (TBZ) reveals a different inhibitor-binding feature at the ubiquinone binding site where a water molecule plays an important role. The obvious inhibitory effect of TBZ based on the biochemical data (IC50 ∼100 μmol/L) and the significant structure-based binding affinity calculation (∼94 μmol/L) draw the suspicion of using TBZ as a good disinfectant compound for nematode infections treatment and fruit storage.

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s13238-011-1079-1 and is accessible for authorized users.

Keywords: mitochondrial respiratory complex II, thiabendazole, pentachlorophenol, inhibition, crystallography

Electronic supplementary material

13238_2011_1079_MOESM1_ESM.pdf (888.3KB, pdf)

Supplementary material, approximately 888 KB.

Footnotes

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s13238-011-1079-1 and is accessible for authorized users.

References

  1. Afanas’eva E.V., Kostyrko V.A. Pentachlorophenol inhibition of succinate oxidation by the respiratory chain in submitochondrial particles from the bovine heart. Biokhimiia. 1986;51:823–829. [PubMed] [Google Scholar]
  2. Allen P.M., Gottlieb D. Mechanism of action of the fungicide thiabendazole, 2-(4′-thiazolyl) benzimidazole. Appl Microbiol. 1970;20:919–926. doi: 10.1128/am.20.6.919-926.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ames E.R., Cheney J.M., Rubin R. The efficacy of thiabendazole and bephenium hydroxynaphthoate against Ostertagia ostertagi and Cooperia oncophora in experimentally infected calves. Am J Vet Res. 1963;24:295–299. [PubMed] [Google Scholar]
  4. Amino H., Osanai A., Miyadera H., Shinjyo N., Tomitsuka E., Taka H., Mineki R., Murayama K., Takamiya S., Aoki T., et al. Isolation and characterization of the stage-specific cytochrome b small subunit (CybS) of Ascaris suum complex II from the aerobic respiratory chain of larval mitochondria. Mol Biochem Parasitol. 2003;128:175–186. doi: 10.1016/S0166-6851(03)00074-4. [DOI] [PubMed] [Google Scholar]
  5. Amino H., Wang H., Hirawake H., Saruta F., Mizuchi D., Mineki R., Shindo N., Murayama K., Takamiya S., Aoki T., et al. Stage-specific isoforms of Ascaris suum complex. II: The fumarate reductase of the parasitic adult and the succinate dehydrogenase of free-living larvae share a common iron-sulfur subunit. Mol Biochem Parasitol. 2000;106:63–76. doi: 10.1016/S0166-6851(99)00200-5. [DOI] [PubMed] [Google Scholar]
  6. Armson A., Grubb W.B., Mendis A.H. Strongyloides ratti: fumarate reductase and succinate dehydrogenase activities of infective larvae. Int J Parasitol. 1993;23:809–811. doi: 10.1016/0020-7519(93)90079-E. [DOI] [PubMed] [Google Scholar]
  7. Armson A., Grubb W.B., Mendis A.H. The effect of electron transport (ET) inhibitors and thiabendazole on the fumarate reductase (FR) and succinate dehydrogenase (SDH) of Strongyloides ratti infective (L3) larvae. Int J Parasitol. 1995;25:261–263. doi: 10.1016/0020-7519(94)E0061-Q. [DOI] [PubMed] [Google Scholar]
  8. Bion E., Pariente E.A., Maitre F. Severe cholestasis and sicca syndrome after thiabendazole. J Hepatol. 1995;23:762–763. doi: 10.1016/0168-8278(95)80048-4. [DOI] [PubMed] [Google Scholar]
  9. Brown H.D., Matzuk A.R., Lives I.R., Peterson L.H.H., Peterson S.A., Sarett L.H., Egerton J.R., Yakstis J.J., Campbell W.C., Cuckler A.C. Antiparasitic drugs, IV.2-(4′-thiazolyl)-benzimidazole, a new anthelmintic. J Am Chem Soc. 1961;83:1764–1765. doi: 10.1021/ja01468a052. [DOI] [Google Scholar]
  10. Cecchini G., Maklashina E., Yankovskaya V., Iverson T.M., Iwata S. Variation in proton donor/acceptor pathways in succinate:quinone oxidoreductases. FEBS Lett. 2003;545:31–38. doi: 10.1016/S0014-5793(03)00390-9. [DOI] [PubMed] [Google Scholar]
  11. Cuckler A.C. Thiabendazole, a new broad spectrum anthelmintic. J Parasitol. 1961;47:36–37. [Google Scholar]
  12. DeLano, W.L. (2002). The PyMOL Molecular Graphics System on World Wide Web http://www.pymol.org.
  13. Emsley P., Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. [DOI] [PubMed] [Google Scholar]
  14. Eswar, N., Webb, B., Marti-Renom, M.A., Madhusudhan, M.S., Eramian, D., Shen, M.Y., Pieper, U., and Sali, A. (2006). Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics Chapter 5, Unit 5 6. [DOI] [PMC free article] [PubMed]
  15. Franklin R.E., Gosling R.G. Evidence for 2-chain helix in crystalline structure of sodium deoxyribonucleate. Nature. 1953;172:156–157. doi: 10.1038/172156a0. [DOI] [PubMed] [Google Scholar]
  16. Golden T.A., McElveen F.J., Jupia J.E., Lejeune C. Letter: Hematuria following thiabendazole. Arch Dermatol. 1974;110:295. doi: 10.1001/archderm.1974.01630080083025. [DOI] [PubMed] [Google Scholar]
  17. Gouet P., Courcelle E., Stuart D.I., Métoz F. ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics. 1999;15:305–308. doi: 10.1093/bioinformatics/15.4.305. [DOI] [PubMed] [Google Scholar]
  18. Hägerhäll C. Succinate: quinone oxidoreductases. Variations on a conserved theme. Biochim Biophys Acta. 1997;1320:107–141. doi: 10.1016/S0005-2728(97)00019-4. [DOI] [PubMed] [Google Scholar]
  19. Horsefield R., Yankovskaya V., Sexton G., Whittingham W., Shiomi K., Omura S., Byrne B., Cecchini G., Iwata S. Structural and computational analysis of the quinonebinding site of complex II (succinate-ubiquinone oxidoreductase): a mechanism of electron transfer and proton conduction during ubiquinone reduction. J Biol Chem. 2006;281:7309–7316. doi: 10.1074/jbc.M508173200. [DOI] [PubMed] [Google Scholar]
  20. Huang L.S., Sun G., Cobessi D., Wang A.C., Shen J.T., Tung E.Y., Anderson V.E., Berry E.A. 3-nitropropionic acid is a suicide inhibitor of mitochondrial respiration that, upon oxidation by complex II, forms a covalent adduct with a catalytic base arginine in the active site of the enzyme. J Biol Chem. 2006;281:5965–5972. doi: 10.1074/jbc.M511270200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Huo X., Su D., Wang A., Zhai Y., Xu J., Li X., Bartlam M., Sun F., Rao Z. Preliminary molecular characterization and crystallization of mitochondrial respiratory complex II from porcine heart. FEBS J. 2007;274:1524–1529. doi: 10.1111/j.1742-4658.2007.05698.x. [DOI] [PubMed] [Google Scholar]
  22. Igual-Adell R., Oltra-Alcaraz C., Soler-Company E., Sánchez-Sánchez P., Matogo-Oyana J., Rodríguez-Calabuig D. Efficacy and safety of ivermectin and thiabendazole in the treatment of strongyloidiasis. Expert Opin Pharmacother. 2004;5:2615–2619. doi: 10.1517/14656566.5.12.2615. [DOI] [PubMed] [Google Scholar]
  23. Iverson T.M., Luna-Chavez C., Cecchini G., Rees D.C. Structure of the Escherichia coli fumarate reductase respiratory complex. Science. 1999;284:1961–1966. doi: 10.1126/science.284.5422.1961. [DOI] [PubMed] [Google Scholar]
  24. Iverson T.M., Luna-Chavez C., Croal L.R., Cecchini G., Rees D.C. Crystallographic studies of the Escherichia coli quinolfumarate reductase with inhibitors bound to the quinol-binding site. J Biol Chem. 2002;277:16124–16130. doi: 10.1074/jbc.M200815200. [DOI] [PubMed] [Google Scholar]
  25. Iwata F., Shinjyo N., Amino H., Sakamoto K., Islam M.K., Tsuji N., Kita K. Change of subunit composition of mitochondrial complex II (succinate-ubiquinone reductase/quinol-fumarate reductase) in Ascaris suum during the migration in the experimental host. Parasitol Int. 2008;57:54–61. doi: 10.1016/j.parint.2007.08.002. [DOI] [PubMed] [Google Scholar]
  26. John C., Denis J. Succinate dehydrogenase and fumarate reductase activity in Aspoculuris Tetraptera and Ascaris Suum and the effect of the anthelmintics cambendazole, thiabendazole, and levamisole. Int J Parasitol. 1981;11:79–84. doi: 10.1016/0020-7519(81)90029-1. [DOI] [Google Scholar]
  27. Kita K., Hirawake H., Miyadera H., Amino H., Takeo S. Role of complex II in anaerobic respiration of the parasite mitochondria from Ascaris suum and Plasmodium falciparum. Biochim Biophys Acta. 2002;1553:123–139. doi: 10.1016/S0005-2728(01)00237-7. [DOI] [PubMed] [Google Scholar]
  28. Kita K., Vibat C.R., Meinhardt S., Guest J.R., Gennis R.B. One-step purification from Escherichia coli of complex II (succinate: ubiquinone oxidoreductase) associated with succinatereducible cytochrome b556. J Biol Chem. 1989;264:2672–2677. [PubMed] [Google Scholar]
  29. Kuramochi T., Hirawake H., Kojima S., Takamiya S., Furushima R., Aoki T., Komuniecki R., Kita K. Sequence comparison between the flavoprotein subunit of the fumarate reductase (complex II) of the anaerobic parasitic nematode, Ascaris suum and the succinate dehydrogenase of the aerobic, free-living nematode, Caenorhabditis elegans. Mol Biochem Parasitol. 1994;68:177–187. doi: 10.1016/0166-6851(94)90163-5. [DOI] [PubMed] [Google Scholar]
  30. Lancaster C.R., Kröger A., Auer M., Michel H. Structure of fumarate reductase from Wolinella succinogenes at 2.2 A resolution. Nature. 1999;402:377–385. doi: 10.1038/46483. [DOI] [PubMed] [Google Scholar]
  31. Laskowski R.A., MacArthur M.W., Moss D.S., Thornton J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst. 1993;26:283–291. doi: 10.1107/S0021889892009944. [DOI] [Google Scholar]
  32. Maklashina E., Cecchini G. Comparison of catalytic activity and inhibitors of quinone reactions of succinate dehydrogenase (Succinate-ubiquinone oxidoreductase) and fumarate reductase (Menaquinol-fumarate oxidoreductase) from Escherichia coli. Arch Biochem Biophys. 1999;369:223–232. doi: 10.1006/abbi.1999.1359. [DOI] [PubMed] [Google Scholar]
  33. Maklashina E., Cecchini G. The quinone-binding and catalytic site of complex II. Biochim Biophys Acta. 2010;1797:1877–1882. doi: 10.1016/j.bbabio.2010.02.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Maklashina E., Hellwig P., Rothery R.A., Kotlyar V., Sher Y., Weiner J.H., Cecchini G. Differences in protonation of ubiquinone and menaquinone in fumarate reductase from Escherichia coli. J Biol Chem. 2006;281:26655–26664. doi: 10.1074/jbc.M602938200. [DOI] [PubMed] [Google Scholar]
  35. Manivel J.C., Bloomer J.R., Snover D.C. Progressive bile duct injury after thiabendazole administration. Gastroenterology. 1987;93:245–249. doi: 10.1016/0016-5085(87)91009-2. [DOI] [PubMed] [Google Scholar]
  36. Matsson M., Hederstedt L. The carboxin-binding site on Paracoccus denitrificans succinate:quinone reductase identified by mutations. J Bioenerg Biomembr. 2001;33:99–105. doi: 10.1023/A:1010744330092. [DOI] [PubMed] [Google Scholar]
  37. McCoy A.J., Grosse-Kunstleve R.W., Storoni L.C., Read R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr D Biol Crystallogr. 2005;61:458–464. doi: 10.1107/S0907444905001617. [DOI] [PubMed] [Google Scholar]
  38. Mileni M., MacMillan F., Tziatzios C., Zwicker K., Haas A.H., Mäntele W., Simon J., Lancaster C.R. Heterologous production in Wolinella succinogenes and characterization of the quinol:fumarate reductase enzymes from Helicobacter pylori and Campylobacter jejuni. Biochem J. 2006;395:191–201. doi: 10.1042/BJ20051675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Miyadera H., Shiomi K., Ui H., Yamaguchi Y., Masuma R., Tomoda H., Miyoshi H., Osanai A., Kita K., Omura S. Atpenins, potent and specific inhibitors of mitochondrial complex II (succinate-ubiquinone oxidoreductase) Proc Natl Acad Sci U S A. 2003;100:473–477. doi: 10.1073/pnas.0237315100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. AutoDock4 and Auto-DockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Murshudov G.N., Vagin A.A., Dodson E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997;53:240–255. doi: 10.1107/S0907444996012255. [DOI] [PubMed] [Google Scholar]
  42. Ogata A., Ando H., Kubo Y., Hiraga K. Teratogenicity of thiabendazole in ICR mice. Food Chem Toxicol. 1984;22:509–520. doi: 10.1016/0278-6915(84)90220-5. [DOI] [PubMed] [Google Scholar]
  43. Otwinowski Z., Minor W. Processing of X-ray diffraction data collected in the oscillation mode. Methods Enzymol. 1997;276:307–326. doi: 10.1016/S0076-6879(97)76066-X. [DOI] [PubMed] [Google Scholar]
  44. Pawlowski Z.S., Skrzypinska K. Urine precipitates during thiabendazole treatment. Trans R Soc Trop Med Hyg. 1972;66:512. doi: 10.1016/0035-9203(72)90286-6. [DOI] [PubMed] [Google Scholar]
  45. Portugal R., Schaffel R., Almeida L., Spector N., Nucci M. Thiabendazole for the prophylaxis of strongyloidiasis in immunosuppressed patients with hematological diseases: a randomized double-blind placebo-controlled study. Haematologica. 2002;87:663–664. [PubMed] [Google Scholar]
  46. Ramsay R.R., Ackrell B.A., Coles C.J., Singer T.P., White G.A., Thorn G.D. Reaction site of carboxanilides and of thenoyltrifluoroacetone in complex II. Proc Natl Acad Sci U S A. 1981;78:825–828. doi: 10.1073/pnas.78.2.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Rex D., Lumeng L., Eble J., Rex L. Intrahepatic cholestasis and sicca complex after thiabendazole. Report of a case and review of the literature. Gastroenterology. 1983;85:718–721. [PubMed] [Google Scholar]
  48. Robinson H.J., Phares H.F., Graessle O.E. The toxicological and antifungal properties of thiabendazole. Ecotoxicol Environ Saf. 1978;1:471–476. doi: 10.1016/0147-6513(78)90015-5. [DOI] [PubMed] [Google Scholar]
  49. Robinson H.J., Stoerk H.C., Graessle O.E. Studies on the toxicologic and pharmacologic properties of thiabendazole. Toxicol Appl Pharmacol. 1965;7:53–63. doi: 10.1016/0041-008X(65)90074-8. [DOI] [PubMed] [Google Scholar]
  50. Roy M.A., Nugent F.W., Aretz H.T. Micronodular cirrhosis after thiabendazole. Dig Dis Sci. 1989;34:938–941. doi: 10.1007/BF01540282. [DOI] [PubMed] [Google Scholar]
  51. Ruprecht J., Yankovskaya V., Maklashina E., Iwata S., Cecchini G. Structure of Escherichia coli succinate: quinone oxidoreductase with an occupied and empty quinonebinding site. J Biol Chem. 2009;284:29836–29846. doi: 10.1074/jbc.M109.010058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Saraste M. Oxidative phosphorylation at the fin de siecle. Science. 1999;283:1488–1493. doi: 10.1126/science.283.5407.1488. [DOI] [PubMed] [Google Scholar]
  53. Stoscheck C.M. Quantitation of protein. Methods Enzymol. 1990;182:50–68. doi: 10.1016/0076-6879(90)82008-P. [DOI] [PubMed] [Google Scholar]
  54. Strong M., Sawaya M.R., Wang S., Phillips M., Cascio D., Eisenberg D. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2006;103:8060–8065. doi: 10.1073/pnas.0602606103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Sun F., Huo X., Zhai Y., Wang A., Xu J., Su D., Bartlam M., Rao Z. Crystal structure of mitochondrial respiratory membrane protein complex II. Cell. 2005;121:1043–1057. doi: 10.1016/j.cell.2005.05.025. [DOI] [PubMed] [Google Scholar]
  56. Tada Y., Fujitani T., Yano N., Yuzawa K., Nagasawa A., Aoki N., Ogata A., Yoneyama M. Chronic toxicity of thiabendazole (TBZ) in CD-1 mice. Toxicology. 2001;169:163–176. doi: 10.1016/S0300-483X(01)00506-6. [DOI] [PubMed] [Google Scholar]
  57. Thompson J.D., Higgins D.G., Gibson T.J. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Yankovskaya V., Horsefield R., Tornroth S., Luna-Chavez C., Miyoshi H., Leger C., Byrne B., Cecchini G., Iwata S. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science. 2003;299:700–704. doi: 10.1126/science.1079605. [DOI] [PubMed] [Google Scholar]
  59. Yankovskaya V., Sablin S.O., Ramsay R.R., Singer T.P., Ackrell B. A., Cecchini G., Miyoshi H. Inhibitor probes of the quinone binding sites of mammalian complex II and Escherichia coli fumarate reductase. J Biol Chem. 1996;271:21020–21024. doi: 10.1074/jbc.271.35.21020. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

13238_2011_1079_MOESM1_ESM.pdf (888.3KB, pdf)

Supplementary material, approximately 888 KB.


Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES