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ABSTRACT 

Protein phosphorylation is a ubiquitous protein 
post-translational modification, which plays an impor-
tant role in cellular signaling systems underlying vari-
ous physiological and pathological processes. Current 
in silico methods mainly focused on the prediction of 
phosphorylation sites, but rare methods considered 
whether a phosphorylation site is functional or not. 
Since functional phosphorylation sites are more valu-
able for further experimental research and a proportion 
of phosphorylation sites have no direct functional ef-
fects, the prediction of functional phosphorylation sites 
is quite necessary for this research area. Previous 
studies have shown that functional phosphorylation 
sites are more conserved than non-functional phos-
phorylation sites in evolution. Thus, in our method, we 
developed a web server by integrating existing phos-
phorylation site prediction methods, as well as both 
absolute and relative evolutionary conservation scores 
to predict the most likely functional phosphorylation 
sites. Using our method, we predicted the most likely 
functional sites of the human, rat and mouse proteomes 
and built a database for the predicted sites. By the 
analysis of overall prediction results, we demonstrated 
that protein phosphorylation plays an important role in 
all the enriched KEGG pathways. By the analysis of 
protein-specific prediction results, we demonstrated 
the usefulness of our method for individual protein 
studies. Our method would help to characterize the 
most likely functional phosphorylation sites for further 
studies in this research area. 
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INTRODUCTION 

Protein phosphorylation is a kind of post-translational modi-
fication and has been shown to be one of the most essential 
regulatory and signaling mechanisms in the cell (Zolnierowicz 
and Bollen, 2000). The process is catalyzed by protein 
kinases, in which the γ phosphate on ATP or GTP is trans-
ferred to the substrates. In eukaryotic cells, phosphorylation 
usually takes place on Serine (S), Threonine (T) or Tyrosine 
(Y) of the substrate protein. The phosphate on substrates can 
be removed by phosphatases, so the phosphorylation proc-
ess is reversible: it is determined by the balance between the 
protein kinases and phosphatases. This reversible character 
allows the phosphorylation process to work like a switch in a 
living cell. Specific substrates could be activated by protein 
kinases under the simulation of an external signal. After the 
signal wanes, the activated substrates could be inactivated 
by phosphatases and wait for the next signal. Phosphoryla-
tion can regulate a variety of important protein functions, 
including subcellular localization, protein degradation and 
stabilization, as well as biochemical activities (Cohen, 2000; 
Ficarro et al., 2002; Manning et al., 2002a; Zannini et al., 
2012). There are usually a series of phosphorylation proc-
esses involved in a normal biological function in vivo (Uber-
sax and Ferrell, 2007; Cai et al., 2012). It was also implicated 
in various pathological processes, such as cancer (Finn and 
Lu, 2008; Ollila and Makela, 2011, insulin resistance (Tanti 
and Jager, 2009), polyglutamine disease (Zhou et al., 2008) 
and Alzheimer's disease (Chung, 2009). 

In an eukaryotic cell, about 30%–50% of the proteins can 
be phosphorylated (Pinna and Ruzzene, 1996). There are 
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also hundreds of kinases within an eukaryotic genome, for 
instances: 518 protein kinases in humans (Manning et al., 
2002b), 540 kinases in mice (Caenepeel et al., 2004) and 251 
kinases in Drosophila (Morrison et al., 2000). The enzymes 
must be specific and act only on a defined subset of cellular 
targets to ensure signal fidelity. Cells must have a mechanism 
to control the phosphorylation process involving so many 
kinases and protein substrates simultaneously and precisely. 
This mechanism is mainly realized by the specific recogniza-
tion of protein kinases to substrates, which determines the 
exact time and place for phosphorylation to occur. Thus, the 
identification of the involved kinases and their phosphorylation 
sites is the first step to understand the mechanism.  

Currently there are a number of computational methods 
for phosphorylation site prediction. Generally, these methods 
can be divided into two categories: non-kinase-specific and 
kinase-specific phosphorylation site prediction. For non- ki-
nase-specific phosphorylation site prediction, there exist 
NetPhos (Blom et al., 1999), DISPHOS (Iakoucheva et al., 
2004), PHOSIDA (Gnad et al., 2007), etc.. For kinase-specific 
phosphorylation site prediction, there exist GPS (Xue et al., 
2010), NetPhosK (Blom et al., 2004), KinasePhos (Wong et 
al., 2007), PPSP (Xue et al., 2006), etc.. Although these 
methods could predict whether S/Y/T sites could be phos-
phorylated or not, they cannot predict whether a phosphory-
lation site is functional or not, which is a major issue for fur-
ther experimental researches. 

For the phosphorylation sites with known functions, it had 
been demonstrated that they are under strong functional 
constraints and are evolutionarily more conserved than those 
with no characterized functions (Landry et al., 2009; Ba and 
Moses, 2010). So the evolutionary information of S/Y/T sites 
can be incorporated to identify the most likely functional 
phosphorylation sites. Since most phosphosites occur in 

disordered regions and the conservation of phosphorylation 
sites is also influenced by the region in which the residue is 
located (Landry et al., 2009), it is necessary to consider the 
relative conservation of an S/Y/T site against its flanking re-
gion. Based on these considerations, we developed a predic-
tion method that incorporated both absolute and relative 
conservation information of S/Y/T sites to facilitate the identi-
fication of the most likely functional phosphorylation sites. 

RESULTS 

Web server development 

We developed a web server, which incorporated NetPhos 
(Blom et al., 1999) and NetPhosK (Blom et al., 2004) to predict 
general and kinase-specific phosphorylation sites. Users can 
also upload prediction results from other phosphorylation site 
prediction tools as a formatted table (the table template can be 
downloaded from the web server). PhosphoSitePlus (Horn-
beck et al., 2012) was incorporated to mark whether a pre-
dicted phosphorylation site is experimentally validated or not. 
Then, the server calculated the absolute and relative conser-
vation score for each possible phosphorylation site with 
Rate4site. Both scores were normalized to the range of 0-1, 
and the larger the relative and absolute conservation score is, 
the more likely the phosphorylation site is functional. The ac-
cess of the web server is “http://lifecenter.sgst.cn/ppps/en/ 
home.do”. Using the web server, users could predict most 
likely functional phosphorylation sites using UniProt ID, the 
query box is shown as Fig. 1, and the query result is shown as 
Fig. 2. The web server could also search the predicted results in 
the constructed human, rat and mouse database and the query 
box is shown as Fig. 3. Users could also search the database by 
a specific kinase and the query box is shown as Fig. 4.  

 

 
 

Figure 1.  The search box for prediction of more likely functional phosphorylation sites by UniProt IDs 
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Figure 2.  The prediction results of the web server. 
 

 
Figure 3.  Search in the constructed human, rat and mouse database. 

 

 
 

Figure 4.  Kinase-specific search in the constructed human, rat and mouse database. 
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Human, rat and mouse database construction 

We selected the phosphorylation sites predicted by both 
NetPhos and GPS (Xue et al., 2010), and the conservation 
scores could be calculated to construct the human, rat and 
mouse database. For human, rat and mouse proteome, the 
number of the phosphorylation sites predicted by NetPhos, 
GPS or both, and the statistics of the final database are 
shown in Table 1. The “Database sites” column indicates the 
selected predicted phosphorylation sites in the database. The 
“Protein sequences” column indicates the number of protein 
sequences containing the selected predicted phosphorylation 
sites in the database. The “Experimentally validated sites” 
column indicates the number of experimentally validated 
phosphorylation sites in the database.  

Analysis of relative and absolute conservation scores of 
human, rat and mouse database 

We compared the density distribution of the relative and ab-
solute conservation score of human, rat and mouse database 

using R stats package (Fig. 5). The density distribution of the 
relative conservation score of human, rat and mouse are 
consistent, the density distribution of the absolute conserva-
tion score are also consistent. For both relative and absolute 
conservation score density distribution, there are two peaks: 
one at about 0.025 and one at about 0.80. So our method not 
only can predict which phosphorylation sites are most likely to 
be functional, but also can give clues to which phosphoryla-
tion sites are least likely to be functional, thus can help rele-
vant researchers to select more conserved and important 
phosphorylation sites to perform further studies. The density 
distribution of the relative and absolute conservation score 
intersect at about 0.85. For conservation score larger than 
0.85, the distribution density of the relative conservation 
score is larger than the absolute conservation score. It may 
be explained that some phosphorylation sites are more con-
served against its flanking region than against the overall 
protein sequence. For the majority of conservation score less 
than 0.85, the distribution density of the absolute conserva-
tion score is larger than the relative conservation score, indi-
cating that some phosphorylation sites are less conserved  

 
Table 1  Statistics of the constructed human, rat and mouse database 

 NetPhos predicted sites GPS predicted 
sites Both predicted sites Database

sites Protein sequences Experimentally  
validated sites 

Human 657160 1774630 650289 551104 17771 28339 

Rat 826362 2227169 816504 282438 12726 1064 

Mouse 1064226 2885697 1053162 355280 14715 7938 
  

 
 

Figure 5.  The density distribution of the relative and absolute conservation score of human, rat and mouse database. 
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against their flanking region than against the overall protein 
sequence. Previous studies showed that the conservation of 
phosphorylation sites is also influenced by the region in which 
the residue is located (Landry et al., 2009), the density dis-
tribution of the absolute and relative conservation score also 
demonstrated that it is necessary to consider both the relative 
and absolute conservation of an S/Y/T site against its flanking 
region and the overall protein sequence, respectively. 

General prediction results 

We used the selected proteins as mentioned in the Materials 
and methods section to do the KEGG pathway enrichment 
analysis. The results for human, rat and mouse are shown in 
Table 2, Table 3 and Table 4, respectively. We found that the 
functions of protein phosphorylation in all the enriched KEGG 
pathways are supported by previous studies. 

 
Table 2  Enriched KEGG pathways for selected human proteins 
KEGG 
ID  P value KEGG Term  References 

04110 0.000  Cell cycle  Bradbury et al., 1974; Lee et al., 1988; Atherton-Fessler et al., 1993; Lew and Kornbluth, 1996; Ma-
tsuoka et al., 1998; Konishi et al., 2002; Yu and Chen, 2004 

05215 0.000  Prostate cancer  Haldar et al., 1996; Lin et al., 2002; El Sheikh et al., 2004; Jiang et al., 2004; Kreisberg et al., 2004; 
Jaggi et al., 2005; Chen et al., 2006; Shimada et al., 2006; Mahajan et al., 2007; Bianchini et al., 2008

04520 0.000  Adherens junction  Volberg et al., 1992; Collares-Buzato et al., 1998; Andriopoulou et al., 1999; Gomez et al., 1999; Tins-
ley et al., 1999; Serres et al., 2000; Shasby et al., 2002 

04910 0.000  Insulin  
signaling pathway  

Myers et al., 1998; Zick, 2001; Aguirre et al., 2002; Andreozzi et al., 2004; Ueki et al., 2004; Gual et al., 
2005; McManus et al., 2005; Ueno et al., 2005; D'Alessandris et al., 2007; Wang et al., 2007 

03013 0.000  RNA transport  Aubol et al., 2004; Topisirovic et al., 2004 

03040 0.000  Spliceosome  Mermoud et al., 1994; Wang et al., 1999; Mathew et al., 2008 

05200 0.000  Pathways in cancer  Foster and Wimalasena, 1996; Itoh et al., 2002; Viglietto et al., 2002; Vivanco and Sawyers, 2002; 
Altomare et al., 2004; Viatour et al., 2005; Cicenas, 2008 

05213 0.000  Endometrial cancer  Kleinman et al., 1996; Kanamori et al., 2001; Terakawa et al., 2003 

05220 0.000  Chronic  
myeloid leukemia  

Oda et al., 1996; Coluccia et al., 2007; Jilani et al., 2008; Jalkanen et al., 2011; Zhang et al., 2012 

04810 0.000  Regulation of  
actin cytoskeleton  

Arber et al., 1998; Sumi et al., 1999; Head et al., 2003; Vardouli et al., 2005; Park et al., 2012 

04114 0.000  Oocyte meiosis  Dekel, 1996; Fan et al., 2002; Wang et al., 2006a; Liang et al., 2007; Swain and Smith, 2007 

05223 0.000  Non-small cell  
lung cancer  

Lee et al., 2002; Cappuzzo et al., 2004; Kim et al., 2005; Tang et al., 2006; Tsurutani et al., 2006 

04012 0.000  ErbB  
signaling pathway  

Sweeney and Carraway, 2000; El Sheikh et al., 2004; Fan et al., 2005; Schmidt et al., 2011 

04530 0.000  Tight junction  Nigam et al., 1991; Collares-Buzato et al., 1998; Shen et al., 2006; Wang et al., 2006b; Aono and Hirai, 
2008; Rao, 2009; Sallee and Burridge, 2009 

04144 0.000  Endocytosis  Slepnev et al., 1998; Nucifora and Fox, 1999; Cousin et al., 2001; Whistler et al., 2001; Schaefer et al., 
2002; Collawn, 2006; Zhu et al., 2007; Clayton et al., 2010 

05214 0.000  Glioma  Oude Weernink et al., 1996; Nakada et al., 2004; Bornhauser and Lindholm, 2005; McDonough et al., 
2005; van der Horst et al., 2005; Nakada et al., 2010; Feng et al., 2011 

04120 0.000  Ubiquitin mediated  
proteolysis  

Willems et al., 1996; Skowyra et al., 1997; Willems et al., 1999; Karin and Ben-Neriah, 2000; Koepp et 
al., 2001; Busino et al., 2004 

04914 0.000  Progesterone-mediated 
oocyte maturation  

Mulner et al., 1985; Muslin et al., 1993; Nebreda et al., 1995; Ju et al., 2002 

05212 0.000  Pancreatic cancer  Ng et al., 2001; Adachi et al., 2010; Deming et al., 2010; Nakashima et al., 2011; Vo et al., 2011; Zheng 
et al., 2011; Ma et al., 2012 

04270 0.000  Vascular smooth  
muscle contraction  

Walker et al., 1994; Zhang et al., 1994; Hirano et al., 2004; Kordowska et al., 2006; Anfinogenova et 
al., 2007 

05219 0.000  Bladder cancer  Yamamoto et al., 2006; Miyata et al., 2009; Szanto et al., 2009; Wang et al., 2010; Khadjavi et al., 
2011; Ou et al., 2011 

04010 0.000  MAPK  
signaling pathway  

Aubin et al., 2004; Mylonis et al., 2006; Carriere et al., 2008; Junttila et al., 2008; Matsumoto et al., 
2008; Kim et al., 2011; Li et al., 2011 

04510 0.000  Focal adhesion  Kornberg et al., 1992; Calalb et al., 1995; Chen et al., 1996; Slack, 1998; Tang et al., 1999; Brunton et 
al., 2005; Mimura et al., 2005 

04720 0.000  Long-term  
potentiation  

Atkins et al., 1997; Barria et al., 1997; Fujii et al., 2000; Manabe et al., 2000; Lonart et al., 2003; 
Serrano et al., 2005; Bouzioukh et al., 2007; Capron et al., 2007; Schafe et al., 2008 

04150 0.000  mTOR  
signaling pathway  

Altomare et al., 2004; Acosta-Jaquez et al., 2009; Copp et al., 2009; Kruck et al., 2010; Rosner et al., 
2010; Dai et al., 2011 
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Table 3  Enriched KEGG pathways for selected rat proteins 
KEGG 
ID  P value Term  References 

04722  0.000  Neurotrophin signaling 
pathway  

Mutoh et al., 2000; Wang et al., 2000; Viegi et al., 2002; Arevolo et al., 2006; Butowt and von 
Bartheld, 2009; Zhang et al., 2009 

04910  0.000  Insulin signaling  
pathway  

Myers et al., 1998; Zick, 2001; Aguirre et al., 2002; Andreozzi et al., 2004; Ueki et al., 2004; Gual et
al., 2005; McManus et al., 2005; Ueno et al., 2005; D'Alessandris et al., 2007; Wang et al., 2007 

04720  0.000  Long-term potentiation  Atkins et al., 1997; Barria et al., 1997; Fujii et al., 2000; Manabe et al., 2000; Lonart et al., 2003; 
Serrano et al., 2005; Bouzioukh et al., 2007; Capron et al., 2007; Schafe et al., 2008 

04012  0.000  ErbB signaling pathway Sweeney and Carraway, 2000; El Sheikh et al., 2004; Fan et al., 2005; Schmidt et al., 2011 

05214  0.000  Glioma  Oude Weernink et al., 1996; Nakada et al., 2004; Bornhauser and Lindholm, 2005; McDonough et 
al., 2005; van der Horst et al., 2005; Nakada et al., 2010; Feng et al., 2011 

04810  0.000  Regulation of actin 
cytoskeleton  

Arber et al., 1998; Sumi et al., 1999; Head et al., 2003; Vardouli et al., 2005; Park et al., 2012 

04270  0.001  Vascular smooth  
muscle contraction  

Walker et al., 1994; Zhang et al., 1994; Hirano et al., 2004; Kordowska et al., 2006; Anfinogenova et 
al., 2007 

05223  0.001  Non-small cell lung 
cancer  

Lee et al., 2002; Cappuzzo et al., 2004; Kim et al., 2005; Tang et al., 2006; Tsurutani et al., 2006 

 
Table 4  Enriched KEGG pathways for selected mouse proteins 
KEGG 
ID  P value Term  References 

04530  0.000  Tight junction  Nigam et al., 1991; Collares-Buzato et al., 1998; Shen et al., 2006; Wang et al., 2006b; Aono and 
Hirai, 2008; Rao, 2009; Sallee and Burridge, 2009 

04510  0.000  Focal adhesion  Kornberg et al., 1992; Calalb et al., 1995; Chen et al., 1996; Slack, 1998; Tang et al., 1999; Brunton 
et al., 2005; Mimura et al., 2005 

04012  0.000  ErbB signaling pathway  Sweeney and Carraway, 2000; El Sheikh et al., 2004; Fan et al., 2005; Schmidt et al., 2011 
04670  0.000  Leukocyte transendothe- 

lial migration  
Alevriadou, 2003; Allingham et al., 2007; Barberis et al., 2009; Muller, 2009; Fernandez-Borja et al., 
2010 

04520  0.000  Adherens junction  Volberg et al., 1992; Collares-Buzato et al., 1998; Andriopoulou et al., 1999; Gomez et al., 1999; 
Tinsley et al., 1999; Serres et al., 2000; Shasby et al., 2002 

04910  0.000  Insulin signaling pathway  Myers et al., 1998; Zick, 2001; Aguirre et al., 2002; Andreozzi et al., 2004; Ueki et al., 2004; Gual et 
al., 2005; McManus et al., 2005; Ueno et al., 2005; D'Alessandris et al., 2007; Wang et al., 2007 

04810  0.000  Regulation of actin  
cytoskeleton  

Arber et al., 1998; Sumi et al., 1999; Head et al., 2003; Vardouli et al., 2005; Park et al., 2012 

05213  0.001  Endometrial cancer  Kleinman et al., 1996; Kanamori et al., 2001; Terakawa et al., 2003 

 
Enrichment analysis for human 

For the human proteome, we selected a total of 1755 proteins 
containing 2834 predicted phosphorylation sites (the selec-
tion criteria of top 10% is 0.918232). We matched the 1755 
selected UniProt protein IDs to their gene ids using the R 
package org.Hs.eg.db and used all the gene ids in the 
org.Hs.egUNIPROT table within this R package as the back-
ground. The cutoff of the P value in the enrichment analysis 
was set to 0.001. There are 25 enriched KEGG pathways 
(Table 2), in all of which protein phosphorylation has been 
demonstrated to play important roles, as shown in the Ref-
erences column of Table 2. 

Enrichment analysis for rat 

For the rat proteome, we selected a total of 85 protein se-
quences containing 107 predicted phosphorylation sites (the 
selection criteria of top 10% is 0.923121). We matched the 85 
selected UniProt protein IDs to their gene ids using the R 

package org.Rn.eg.db and used all the gene ids in the 
org.Rn.egUNIPROT table within this R package as the back-
ground. The cutoff of the P value in the analysis was set to 
0.001. There are 8 enriched KEGG pathways (listed in Table 
3) for the selected rat proteins. The important roles of protein 
phosphorylation in all of these KEGG pathways had been 
supported by previous studies. 

Enrichment analysis for mouse 

For the mouse proteome, we selected a total of 555 protein 
sequences containing 794 predicted phosphorylation sites 
(the selection criteria of top 10% is 0.917137). We matched 
the 555 selected UniProt protein IDs to their gene ids using 
the R package org.Mm.eg.db and used all the gene ids in the 
org.Mm.egUNIPROT table within this R package as the 
background. The cutoff of the P value in the analysis was set 
to 0.001. There are 8 enriched KEGG pathways (Table 4) for 
the selected mouse proteins. The important roles of protein 
phosphorylation in all of these enriched KEGG pathways 
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have been supported by previous studies. 

Protein specific prediction results 

We used two well-studied proteins, p53 and Cyclin-depend-
ent kinase inhibitor 1B, in which phosphorylation plays an 
important role, to demonstrate the usefulness of our method 
for individual protein phosphorylation studies. 

p53 

Our method totally predicted 23 phosphorylation sites in p53 
(Table 5). We ranked the predicted phosphorylation sites by 
their relative conservation scores. Within these 23 sites, 14 
sites have been experimentally validated to be phosphory-
lated. And according to the annotation of UniProt (Version 
196), 9 phosphorylation sites have been supported to be 
functional. Our method predicted 5 of these 9 functional 
phosphorylation sites (site 15, 46, 392, 315 and 9). The 
ranks of the relative conservation score of these 5 sites 
were 2, 3, 5, 6 and 19, respectively. p53 serine 15 phos-
phorylation could direct its interaction with B56γ and the 
tumor suppressor activity of B56γ-specific protein phos-
phatase 2A (Shouse et al., 2008). p53 serine 46 could be 

phosphorylated by HIPK2 upon UV irradiation, which could 
regulate p53 apoptotic activity and is required for acetylation 
by CREBBP (D'Orazi et al., 2002; Hofmann et al., 2002; 
Chang et al., 2005; Lee et al., 2009). Phosphorylation at 
serine 9 by HIPK4 could increase the repression activity of 
p53 at p53 repressive promoters (Arai et al., 2007). Phos-
phorylation of serine 392 stabilizes the tetramer formation of 
tumor suppressor protein p53 and could stimulate the 
DNA-binding ability of p53 (Sakaguchi et al., 1997; Kapoor 
et al., 2000). Phosphorylation of p53 at serine 315 after 
irradiation damage could stimulate p53-dependent tran-
scription (Blaydes et al., 2001). 

We can see that 4 of these 5 sites were within the top 6 
sites ranked by the relative conservation score. For site 9, it 
may be explained that the function of site 9 phosphorylation is 
relatively less important for biological activities and a previous 
study has demonstrated that the specific recognition of Ser9 
appears to be dependent upon additional determinants of 
p53 beyond the N-terminal 65 amino acids (Soubeyrand et al., 
2004). But for site 9, we can also find that the relative con-
servation score (0.3185200) is much larger than the absolute 
conservation score (0.1658500), indicating it is more con-
served against its flanking region than against the overall 
protein sequence. 

 
Table 5  Predicted p53 phosphorylation sites 

Rank Sequence  Site  Residue Validated Absolute conservation score  Relative conservation score 

1 P04637  303  S no 0.6791800  0.8640700  
2 P04637  15  S yes 0.7778000  0.8542900  
3 P04637  46  S yes 0.5023500  0.8389500  
4 P04637  211  T no 0.8468500  0.8309000  
5 P04637  392  S yes 0.8517600  0.8048300  
6 P04637  315  S yes 0.6791800  0.7976600  
7 P04637  284  T no 0.8468500  0.7892800  
8 P04637  215  S yes 0.8517600  0.7698900  

9 P04637  121  S no  0.8517600  0.7693900  

10 P04637  269  S no 0.8517600  0.7678400  

11 P04637  366  S yes 0.5387800  0.6999100  

12 P04637  376  S yes 0.4991900  0.6883600  

13 P04637  163  Y no 0.7719500  0.6545700  

14 P04637  183  S no 0.6474700  0.4546000  

15 P04637  99  S yes 0.4991900  0.4506600  

16 P04637  155  T yes 0.4119200  0.3710500  

17 P04637  9  S yes 0.1658500  0.3185200  

18 P04637  260  S no 0.5472000  0.3151700  

19 P04637  304  T no 0.2678600  0.2932800  

20 P04637  371  S yes 0.1512700  0.1801200  

21 P04637  377  T yes 0.2521900  0.1721600  

22 P04637  150  T yes 0.0648860  0.0831870  

23 P04637  81  T yes 0.0071032  0.0081448  
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Cyclin-dependent kinase inhibitor 1B 

For cyclin-dependent kinase inhibitor 1B, our method pre-
dicted totally 19 phosphorylation sites (Table 6), within which 
10 sites have been experimentally validated. According to the 
annotation of UniProt (Version 138), a total of 5 phosphoryla-
tion sites have been supported to be functional. Our method 
predicted 3 of these 5 functional phosphorylation sites, i.e. 
site 187, 10 and 198. The rank of the relative conservation 
score of these 3 sites were 2, 6 and 12, respectively. Phos-
phorylation of threonine 187 leads to protein ubiquitination 
and proteasomal degradation (Boehm et al., 2002; Fujita et 
al., 2002; Motti et al., 2004; Hao et al., 2005; Sabile et al., 
2006). Phosphorylation of serine 10 is the major site of 
phosphorylation in resting cells, which takes place at the 
G(0)-G1 phase and leads to protein stability (Boehm et al., 
2002; Fujita et al., 2002; Motti et al., 2004). Phosphorylation 
of threonine 198 is required for interaction with 14-3-3 pro-
teins (Fujita et al., 2002, 2003; Motti et al., 2004). The relative 
conservation scores of all these three sites were larger than 
0.7. The high relative conservation score of other sites may 
be explained by the possibility that the function of these sites 
may not have been studies or these sites may not work by 
phosphorylation directly. However there were also 6 pre-
dicted phosphorylation sites with relative conservation scores 
less than 0.2. It may give further studies a clue that re-
searchers could pay less attention to these sites than those 
having higher conservation scores. 

DISCUSSION 

In this work, a prediction web server was developed to facili-
tate the identification of the most likely functional protein 
phosphorylation sites by incorporating both the absolute and 
relative evolutionary conservation scores. The larger the 
relative and absolute conservation score is, the more likely 
the phosphorylation sites is functional. To facilitate the usage 
of our method, we also selected and integrated two existing 
computational methods: NetPhos and NetPhosK for general 
and kinase-specific phosphorylation site prediction, respec-
tively. Using our method, we predicted the most likely func-
tional sites of the human, rat and mouse proteomes and built 
a database for the predicted phosphorylation sites. By the 
analysis of overall prediction results, we demonstrated that 
protein phosphorylation plays an important role in all the en-
riched KEGG pathways. By the analysis of protein-specific 
prediction results, we also demonstrated the usefulness of 
our method for individual protein studies. Our method would 
help to characterize the most likely functional phosphorylation 
sites for further studies in this research area. 

MATERIALS AND METHODS 

Web server development 

In our pipeline, we first predicted all possible phosphorylation sites for 
a protein with NetPhos (Blom et al., 1999) and NetPhosK (Blom et al.,  

 
Table 6  Cyclin-dependent kinase inhibitor 1B predicted phosphorylation sites 

Rank Sequence Site Residue Validated Absolute conservation score Relative conservation score 

1 P46527 83 S yes 0.91213 0.9451900 

2 P46527 187 T yes 0.89140 0.9250400 

3 P46527 74 Y yes 0.80464 0.8947000 

4 P46527 161 S no 0.91181 0.8888900 

5 P46527 178 S yes 0.42948 0.8449600 

6 P46527 10 S yes 0.91213 0.8214100 

7 P46527 110 S no 0.71083 0.8168600 

8 P46527 175 S no 0.38966 0.7975000 

9 P46527 27 S no 0.91213 0.7801300 

10 P46527 7 S yes 0.91213 0.7548800 

11 P46527 160 S no 0.74949 0.7440600 

12 P46527 198 T yes 0.42011 0.7163300 

13 P46527 140 S yes 0.46412 0.7131600 

14 P46527 138 S no 0.10456 0.1775700 

15 P46527 128 T no 0.21473 0.1357200 

16 P46527 183 S no 0.12140 0.1085000 

17 P46527 157 T yes 0.04299 0.0915960 

18 P46527 42 T no 0.31554 0.0580880 

19 P46527 12 S yes 0.37267 0.0068863 
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2004), which are two existing computational methods for 
non-kinase-specific and kinase-specific prediction, respectively. The 
prediction results from other phosphorylation site prediction methods 
can also be provided as a formatted table (the table template can be 
downloaded from the web server). We incorporated PhosphoSitePlus 
(Hornbeck et al., 2012), which is a database containing experimen-
tally validated phosphorylation sites, to mark whether a predicted 
phosphorylation site is experimentally validated or not.  

For conservation score calculation, we used customized 
Rate4Site with default parameters (Pupko et al., 2002; Mayrose et al., 
2004), which can compute the evolutionary rate for each site in a 
multiple sequence alignment. The alignments of ortholog families 
were downloaded from the NCBI HomoloGene database (Sayers et 
al., 2012). For the calculation of the absolute conservation score, we 
normalized the evolutionary rate r of a phosphorylated site according 
to the rates of all the residues in the protein, i.e. 

−
=

( )
( )

all
abs

all

r μ rz
σ r

 

Where μ(rall) and σ(rall) are the mean and standard deviation of the 
evolutionary rates of all residues. For the calculation of relative con-
servation score, we normalized r according to the rates of the flanking 
residues around the phosphorylated site, 5 to the left and 5 to the 
right, i.e. 

±

±

−
= 5

5

( )
( )rel

r μ rz
σ r

 

We transformed the zabs and zrel scores to [0, 1] by using the prob-
ability function of the standard normal distribution. 

Human, rat and mouse database construction 

We downloaded the proteome sequences of human, rat and mouse 
from UniProt (Consortium, 2012). Using our method, we predicted the 
phosphorylation sites of these proteomes. To guarantee the predic-
tion accuracy of our method, we took the phosphorylation sites pre-
dicted by both general and kinase-specific methods and having the 
conservation scores to construct the human, rat and mouse database. 
We then incorporated PhosphoSitePlus (Hornbeck et al., 2012) to 
mark whether the predicted sites have been experimentally validated 
or not.  

General and protein-specific prediction  

Since the function information of phosphorylation sites is limited, it 
is difficult to construct a benchmark dataset to test the overall pre-
diction performance of our method. We ranked the predicted 
phosphorylation sites in the human, rat and mouse database ac-
cording to the relative conservation score and selected the top 10% 
of the experimentally validated phosphorylation sites. Then we 
selected the protein sequences containing these top 10% sites and 
did KEGG enrichment of such proteins to find whether protein 
phosphorylation plays an important role in the enriched KEGG 
pathways. 

We used two well-studied proteins, p53 and Cyclin-dependent 
kinase inhibitor 1B in which phosphorylation plays an important role, 
to demonstrate the usage of our method for individual protein 
studies. 
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