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ABSTRACT 

Large-conductance Ca2+-activated K+ channels (BK 
channels) constitute an key physiological link between 
cellular Ca2+ signaling and electrical signaling at the 
plasma membrane. Thus these channels are critical to 
the control of action potential firing and neurotrans-
mitter release in several types of neurons, as well as 
the dynamic control of smooth muscle tone in resis-
tance arteries, airway, and bladder. Recent advances in 
our understanding of K+ channel structure and function 
have led to new insight toward the molecular mecha-
nisms of opening and closing (gating) of these chan-
nels. Here we will focus on mechanisms of BK channel 
gating by Ca2+, transmembrane voltage, and auxiliary 
subunit proteins. 

KEYWORDS   RCK domain, voltage sensor, blood pres-
sure, leucine-rich repeat-containing (LRRC) protein. 
 

INTRODUCTION 

Large-conductance Ca2+-activated K+ channels (known as 
Maxi-K or BK channels) are found in many different tissues in 
the human body, including nerve, smooth and skeletal mus-
cle, and endocrine cells in the salivary and pituitary glands 
and pancreas, as well as a wide range of organisms in the 
animal kingdom, including nematodes, mollusks, Drosophila, 
and vertebrates (Gorman and Thomas, 1980; Barrett et al., 
1982; Morris et al., 1986; Singer and Walsh, 1986; Adelman 
et al., 1992; Butler et al., 1993; Ferrer et al., 1996; Wang et al., 
2001). These plasma membrane channels are characterized 
by their synergistic activation by cytoplasmic Ca2+ and elec-
trical depolarization of the membrane, to yield rapid effux of 
K+ under physiological conditions. The rapid K+ efflux can be 
detected electrically as a large outward current, and this 

consequently results in a rapid hyperpolarization of the 
membrane. 

The ubiquitous nature of BK channel expression points to 
the potential fundamental importance of BK channels in cel-
lular physiology, in linking cytoplasmic Ca2+ signaling events 
with electrical signaling at the plasma membrane in a wide 
variety of organisms and tissues. Consistent with this idea, 
dysfunction of BK channels through mutations in its chan-
nel-forming subunits and its associated modulatory subunits 
can lead to disease in model organisms and humans. These 
include epilepsy and neurological disease, high blood pres-
sure and cardiac hypertrophy, asthma, urinary incontinence, 
and erectile dysfunction (Brenner et al., 2000b; Meredith et al., 
2004; Brenner et al., 2005; Werner et al., 2005; Imlach et al., 
2008; Seibold et al., 2008; Wang et al., 2009; Semenov et al., 
2011). Thus an understanding of the molecular interactions 
and events that control gating of BK channels will be impor-
tant in the development of therapeutic measures to improve 
human health. 

BASIC ARCHITECTURE AND SUBUNIT  
COMPOSITION 

The BK channel is a member of the voltage-gated K (Kv) 
channel superfamily (Adelman et al., 1992; Butler et al., 1993; 
Pallanck and Ganetzky, 1994; McCobb et al., 1995). The 
pore-forming component of the channel is made up of four 
identical alpha subunits (Shen et al., 1994); in turn each BK 
alpha subunit contains seven transmembrane segments  
(Fig. 1) (named S0–S6; (Wallner et al., 1996; Meera et al., 
1997)). The S1–S6 segments are analogous to the S1–S6 of 
the other Kv channels; the S5–S6 segments line the pore, 
and the S1–S4 segments contribute to “sensing” the transm-
embrane voltage, by way of a series of charged residues in 
the S4 region. The additional and relatively unique S0 region 
gives the BK channel an extracellular N-terminus, and forms  
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Figure 1.  Molecular architecture of the BK channel. (A) Schematic diagram and topology of a BK channel subunit. Each sub-
unit contains a transmembrane voltage-sensing domain (S0-S4 helices, orange) and pore domain (S5-P-S6 helices, red), and two 
tandem cytoplasmic RCK domains (RCK1, magenta; RCK2, purple). (B) Model of the human BK channel, based on alignment of 
the pore domain from the crystal structure of the Kv1.2-Kv2.1 chimera (PDB ID 2R9R) and MthK channel (PDB ID 3RBZ). The 
voltage-sensing domain, pore domain, and RCK domains have been colored according to the diagram in A, to illustrate the hypo-
thetical three-dimensional arrangement of the domains. The approximate location of the plasma membrane is shaded gray. (C) BK 
channel model from part B viewed from above the extracellular side, illustrating the four-fold symmetrical arrangement of the do-
mains about the central K+ conduction pathway. (D) Crystal structure of the Ca2+-bound “gating ring” of RCK domains (PDB ID 
3U6N). Ca2+ ions are shown as green spheres.  

 
a functionally important interaction with the β1 subunit 
(Wallner et al., 1996; Meera et al., 1997; Morrow et al., 2006; 
Liu et al., 2008). The S0 segment also forms an integral part 
of the BK channel voltage-sensor domain (Koval et al., 2007; 
Pantazis et al., 2010). 

The remaining portion of each BK alpha subunit consists 
of a tandem pair of regulator of K+ conductance (RCK) do-
mains that form the cytoplasmic Ca2+ sensor of the channel 
(Schreiber and Salkoff, 1997; Schreiber et al., 1999; Bian et 
al., 2001; Jiang et al., 2001; Bao et al., 2002). The RCK do-

main is the key defining structural feature of the BK channel 
and its paralogs within the SLO K+ channel subfamily, con-
sisting of the BK channel (encoded by the KCNMA gene, also 
known as Kca1.1 or slo1), the Na+-activated K+ channel 
(KCNT, or slo2), and the voltage-dependent, H+-inhibited K+ 
channel known as slo3 (KCNU) (Wei et al., 1996; Schreiber 
et al., 1998; Yuan et al., 2000; Salkoff et al., 2006). Among 
these, BK and slo3 channels also appear to have the addi-
tional S0 transmembrane domain, defined by sequence ho-
mology, whereas slo2 channels do not (Yuan et al., 2000; 
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Koval et al., 2007). 
Although BK channels are defined functionally by their 

relatively large unitary conductance and activation by both 
depolarization and cytoplasmic Ca2+, BK channel currents 
measured in native tissues exhibit gating properties and 
Ca2+-sensitivity that can vary across cell types. This diversity 
arises in part from mutiple alternative-splice sites that result in 
BK channels with different amino acid sequences, which can 
give rise to varied apparent sensitivities to depolarization and 
cytoplasmic Ca2+ in natively-expressed channels (Lagrutta et 
al., 1994; Johnson et al., 2011). In addition, BK channels in 
native tissues are known to co-assemble with at least two 
different classes of modulatory auxiliary subunits: the BK β 
subunits (β1–4), and a family of leucine-rich repeat containing 
proteins (LRRC proteins), now referred to as BK “γ” subunits 
(Knaus et al., 1994; Tanaka et al., 1997; Brenner et al., 
2000a; Yan and Aldrich, 2010, 2012). The β subunits are 
each ~20 kDa per subunit, with two transmembrane seg-
ments and a large extracellular domain, whereas the γ sub-
units are each ~35 kDa per subunit, with a large, extracellular 
leucine-rich repeat domain consisting of six leucine-rich re-
peat units (LRR1–6), and a single transmembrane segment 
(Fig. 2). Because both of these classes of auxiliary subunits 
contain putative membrane-spanning segments and sub-
stantial extracellular domains, it seems likely that a compo-
nent of their functional effects arises from interactions with  

 

 
 

Figure 2.  Schematic diagrams and topology of a BK 
channel β and γ auxiliary subunits. Each β subunit family 
member (left) contains two transmembrane segments con-
nected by an extracellular domain, which contains a conserved 
N-linked glycosylation site (indicated by the yellow triangle). 
Each γ subunit family member (right) contains an extracellular 
leucine-rich repeat domain comprised of six leucine-rich repeat 
(LRR) units (LRR1–LRR6), followed by a single transmem-
brane segment. These subunits likely effect BK channel gating 
in part through interactions with the BK channel volt-
age-sensing domains.  

the BK voltage-sensing domain (Morrow et al., 2006; Liu et al., 
2008; Wu et al., 2009). 

Both β and γ subunits exhibit tissue-specific expression, 
and impose an array functional effects on BK channel activa-
tion properties, which can be inhibitory (β2 and β3), facilita-
tory (β1, γ1–4), or mixed (β4) (summarized in Table 1) 
(Nimigean and Magleby, 1999; Brenner et al., 2000a; Cox 
and Aldrich, 2000; Nimigean and Magleby, 2000; Bao and 
Cox, 2005; Wang et al., 2006; Yan and Aldrich, 2012). The 
inhibitory effect of the β2 subunit arises from an apparent 
“ball and chain” mechanism, with the inactivation “ball” en-
coded at the cytoplasmic carboxy-terminal end of the β sub-
unit, binding at the cytoplasmic side of the BK channel pore 
and blocking current flow (Brenner et al., 2000a; Xia et al., 
2003; Benzinger et al., 2006; Savalli et al., 2007; 
Gonzalez-Perez et al., 2012). In contrast, the inhibitory effect 
of the β3 subunit (specifically the β3b subtype) arises from 
inactivation imparted by the cytoplasmic amino-terminal end 
of the subunit, as well as effects on voltage-dependent gating 
independent of the amino-terminus (Zeng et al., 2001). 

The functional effects of mixtures of different β and γ 
subunits on BK channel gating are not yet known. Because 
these different classes of auxiliary subunits can exhibit over-
lapping expression patterns (e.g., β4 with γ3 and γ4, and β1 
with γ1), it will be important learn how combinations of β and 
γ subunits impact channel function and cellular physiology. 

PHYSIOLOGY AND FUNCTION 

As mentioned above, BK channels are opened by both 
membrane depolarization and cytoplasmic Ca2+ (Barrett et al., 
1982; Moczydlowski and Latorre, 1983; Rothberg and 
Magleby, 2000; Horrigan and Aldrich, 2002). In biophysical 
studies of BK channel activation and gating using either na-
tive BK channels expressed in skeletal muscle cells or mouse 
or human BK channels heterologously-expressed in mam-
malian cell lines or Xenopus oocytes, it was found that BK 
channels required micromolar levels of Ca2+ to be completely 
activated with physiological levels of membrane depolariza-
tion (Barrett et al., 1982; Magleby and Pallotta, 1983; 
McManus and Magleby, 1991; Cox et al., 1997a; Cui et al., 
1997; Rothberg and Magleby, 1999, 2000; Horrigan and 
Aldrich, 2002). This seemed to be at odds with the levels of 
global [Ca2+] typically estimated during Ca2+ signalling events, 
which are thought to be <1 μmol/L. 

It is now clear that BK channel opening in vascular smooth 
muscle is linked to Ca2+ release from the endplasmic reticu-
lum (ER), which in turn leads to repolarization of the smooth 
muscle cell membrane (Brayden and Nelson, 1992; Jaggar et 
al., 1998; Knot et al., 1998; Perez et al., 1999). Although it 
was initially unclear whether ER Ca2+ release was sufficient 
to activate BK channels, it was discovered that highly local-
ized Ca2+ release events, known as “Ca2+ sparks”, are re-
sponsible. A Ca2+ spark results from concerted opening of 
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Table 1  Summary of tissue localization and functional effects of BK channel auxiliary subunits 

Subunit  Tissue(s)  Functional effect  References  
β1  Smooth muscle  Facilitates voltage-sensor 

activation  
Nimigean and Magleby, 1999; Brenner et al., 
2000a, 2000b; Cox and Aldrich, 2000; Nimigean 
and Magleby, 2000; Patterson et al., 2002; Qian 
et al., 2002; Bao and Cox, 2005; Wang and 
Brenner, 2006  

β2 Chromaffin cells; ovary  Inactivation  Xia et al., 2003; Benzinger et al., 2006; Gon-
zalez-Perez et al., 2012  

β3 Testis  Inactivation  Lingle et al., 2001; Zeng et al., 2001, 2007 

β4 Brain  Facilitates voltage-sensor 
activation  

Brenner et al., 2000a, 2005; Wang et al., 2006  

γ1 (LRRC26)  Aorta; intestinal epithelium; trachea;  
prostate; thyroid; thymus; salivary gland 

Facilitates voltage-sensor 
activation  

Yan and Aldrich, 2010, 2012 

γ2 (LRRC52)  Testis; skeletal muscle  Facilitates voltage-sensor  
activation  

Yan and Aldrich, 2012 

γ3 (LRRC55)  Brain  Facilitates voltage-sensor 
activation  

Yan and Aldrich, 2012 

γ4 (LRRC38)  Brain; testis; skeletal muscle; thymus; 
adrenal gland  

Facilitates voltage-sensor 
activation  

Yan and Aldrich, 2012 

 
several ryanodine receptor (RYR) channels, which form ap-
parent microdomains where the ER membrane in close 
proximity to the plasma membrane, localized near BK chan-
nels (ZhuGe et al., 1998, 2002). Within these microdomains, 
local [Ca2+] can reach 10 μmol/L, which is sufficient for acti-
vation of BK channels leading to membrane repolarization 
(ZhuGe et al., 2002). Through this repolarization effect, BK 
channel activity deactivates voltage-dependent Ca2+ chan-
nels at the plasma membrane, limiting both Ca2+ influx and 
subsequent smooth muscle contraction (Fig. 3) (Filosa et al., 
2006; Ledoux et al., 2006; Girouard et al., 2010). 

In addition, BK channels in smooth muscle are 
co-expressed with the β1 subunit that contributes to en-
hancement of apparent Ca2+ sensitivity compared with BK 
channels expressed in the absence of the β1 subunit 
 

 
 

Figure 3.  Representative pathway depicting modulation 
of BK channel activity through Ca2+ influx via Ca2+ chan-
nels at the plasma membrane (gray cylinder), or localized 
Ca2+ release events (“Ca2+ sparks”) from intracellular 
stores such as sarcoplasmic reticulum (SR) via ryanodine 
receptors (RYR).  

(Nimigean and Magleby, 1999; Brenner et al., 2000b; Cox 
and Aldrich, 2000; Nimigean and Magleby, 2000; Patterson et 
al., 2002; Qian et al., 2002; Zhu et al., 2002; Bao and Cox, 
2005). Consistent with the presumed physiological role of 
these channels in regulating smooth muscle contraction, 
mice in which the BK β1 subunit has been knocked-out dis-
play chronic high blood pressure, coupled with cardiac hy-
pertrophy that likely results from the chronically increased 
load on the heart muscle from pumping against a higher re-
sistance (Brenner et al., 2000b). It is likely that BK channels 
in these tissues are also coexpressed with the γ1 subunit 
(LRRC26), which would be expected to further enhance 
opening of the channels arising from physiological Ca2+ sig-
naling events (Yan and Aldrich, 2012). The physiological 
effects of targeted LRRC26 deletion are not yet known. 

Aside from their well-established role in controlling Ca2+ 
entry in smooth muscle cells, BK channels also modulate the 
shapes of neuronal action potentials, which consequently 
controls Ca2+ entry in neurons (Brenner et al., 2005; Meredith 
et al., 2006; Wang et al., 2006; Jaffe et al., 2011). Knockout 
mice lacking the neuron-specific BK β4 subunit are prone to 
non-convulsive temporal lobe seizures, which arise in part from 
hyperexcitability of dentate gyrus neurons. This hyperexcitabil-
ity, in turn, arises from rapid activation of BK channels lacking 
the β4 subunit. Normally, BK channels activate slowly relative 
to the action potential; this allows Ca2+ entry (which occurs 
during the action potential) to activate SK channels, thus inhib-
iting subsequent repetitive firing. In the β4 knockout mouse, BK 
channels are activated much more rapidly, thus terminating the 
action potential before Ca2+ entry is sufficient to allow opening 
of SK channels. Similarly, mice lacking the pore-forming BK 
alpha subunit exhibit altered neuronal function and 
poorly-regulated circadian rhythms, a phenotype that arises 
from hyperexcitability of circadian pacemaker neurons in the 
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suprachiasmatic nucleus (Meredith et al., 2006). 

CURRENT WORKING HYPOTHESIS OF BK  
CHANNEL GATING 

The key role of BK channels in regulating the cell membrane 
potential in response to cytoplasmic Ca2+ signals has stimu-
lated investigation into the molecular mechanisms of their 
function. Because of their large ionic currents and conspicu-
ous lack of inactivation, the voltage- and Ca2+-dependent 
activation mechanisms of BK channels have been studied by 
elecrophysiological analysis with great quantitative rigor, 
leading to a remarkably detailed understanding of the ener-
getics coupling between the voltage-sensor, the Ca2+-sensor, 
and the molecular gate of the channel (Fig. 4) (Magleby and 
Pallotta, 1983; McManus and Magleby, 1991; Rothberg et al., 
1996; Cox et al., 1997b, a; Cui et al., 1997; Rothberg and 
Magleby, 1998; Horrigan and Aldrich, 1999; Horrigan et al., 
1999; Rothberg and Magleby, 1999; Cui and Aldrich, 2000; 
Rothberg and Magleby, 2000; Magleby, 2001; Horrigan and 
Aldrich, 2002; Magleby, 2003; Li and Aldrich, 2004; Rothberg, 
2004; Piskorowski and Aldrich, 2006; Shelley et al., 2010). 

We now understand the gating energetics of BK channels 
comprised of alpha subunits, as well as alpha + β1 and alpha 
+ β4 subunits in terms of well-defined allosteric models, in 
which channel gating is parameterized as being modulated 
by the movement of four voltage sensors and four “Ca2+ 
sensors”, where each Ca2+ sensor is governed by the binding 
of 1 Ca2+ ion. For BK channels comprised only of alpha sub-
units, for example, the channels are rarely observed to open 
under conditions in which the membrane is hyperpolarized 
and the cytoplasmic [Ca2+] is less than 0.5 μmol/L; thus under 
these conditions, the closed state of the pore is energetically 
much more stable than the open state, by a factor of ~107. 
However, the equilibrium between the open and closed states 
 

 
 

Figure 4.  Abbreviated kinetic scheme to describe gating 
of BK channels by voltage and Ca2+ (adapted from Horri-
gan and Aldrich, 2002). BK channels consist of a four Ca2+ 
sensors that can be empty (X) or bound (XCa), four voltage 
sensors that can exist in Resting (R) or Activated (A) states, 
and a pore that can be Closed (C) or Open (O). Binding of Ca2+ 
or activation of voltage sensors drives the pore from the closed 
to the open state.  

is driven toward the open state by a factor of ~25 with the 
activation of each voltage sensor, and by a factor of ~8 with 
the activation of each Ca2+ sensor. Thus activation of all four 
voltage sensors and all four Ca2+ sensors will shift the gating 
equilibrium toward the open state by a factor of (25)4(8)4, or 
1.6 × 109. 

Electrophysiological analysis of heterologously-expressed 
BK channels comprised of alpha + β1 subunits demonstrated 
that the functional effects of the β1 subunit could be ex-
plained primarily by a stabilization of the BK channel voltage 
sensor in the activated state (Nimigean and Magleby, 1999; 
Cox and Aldrich, 2000; Nimigean and Magleby, 2000; Bao 
and Cox, 2005). Direct structural interaction between the β1 
subunit and the BK voltage-sensing domain is supported by 
functional and biochemical analysis, which has demonstrated 
a key role for the S0 transmembrane helix and suggested that 
there are direct molecular contacts between S0 and the 
second transmembrane segment (TM2) of the β1 subunit, 
and between S1 and S2 and the first transmembrane seg-
ment (TM1) (Wallner et al., 1996; Morrow et al., 2006; Liu et 
al., 2008). Similarly, gating effects of the neuronal β4 subunit 
could be explained by stabilization of the BK channel voltage 
sensor in the activated state, in combination with relative 
stabilization of the pore in the closed state in the absence of 
voltage-sensor activation, giving rise to a gating phenotype in 
which the voltage-dependent activation is shift toward more 
positive voltages at low [Ca2+] and more negative voltages at 
higher [Ca2+] in channels comprised of alpha + β4 subunits 
(Wang et al., 2006; Wu et al., 2009). 

It can be seen from the studies described above that con-
clusions drawn from kinetic modeling of BK channel gating 
have been remarkably informative in terms of functional and 
structural mechanisms of gating and association with auxil-
iary subunits. It is likely that functional and quantitative kinetic 
strategies will continue to be useful in continued analysis of 
the gating mechanism. 

THE CYTOPLASMIC Ca2+-SENSING DOMAIN 

In structural terms, one of the most intriguing and unique 
aspects of the BK channel is its large cytoplasmic domain, 
which accounts for approximately 2/3 of the mass of its 
pore-forming alpha subunit (Butler et al., 1993). Initially, a 
cluster of five aspartate residues (D897–D901) within the 
sequence of cytoplasmic domain was proposed to form a 
possible Ca2+ binding site; consistent with this idea, 
charge-neutralization of these residues resulted in reduction 
of the channel’s Ca2+ sensitivity (Schreiber and Salkoff, 1997; 
Schreiber et al., 1999). However, mutations at this site, 
dubbed the “Ca2+ bowl”, could not on their own abolish Ca2+ 
sensitivity of the channel. It was soon found that additional 
charge-neutralizing mutations had to be introduced to elimi-
nate Ca2+ sensitivity, suggesting that the cytoplasmic domain 
contains at least three different sites that underlie activation 
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Figure 5.  Comparison of BK and MthK RCK domains. The BK channel tandem RCK domains (RCK1-RCK2, left, PDB ID 
3MT5; Yuan et al., 2010), shown next to a MthK channel RCK dimer (right, PDB ID 3RBZ; Pau et al., 2011). Selected helices have 
been colored to illustrate apparent homologous regions common to BK and MthK. Other secondary structural elements are colored 
according to: alpha = red, beta = yellow, coil = green. Ca2+ ions identified in the crystal structures are shown as green spheres. 
 

by divalent cations (Zhang et al., 2001; Bao et al., 2002; Shi 
et al., 2002; Xia et al., 2002; Bao et al., 2004; Cox, 2005; 
Zeng et al., 2005; Hu et al., 2006; Zhou et al., 2012). 

Initial insight toward the molecular architecture of the cy-
toplasmic domain came from the discovery of a class of pro-
karyotic orthologues of the BK channel. This class of chan-
nels was defined by the presence of the conserved RCK 
domain, which was found to be similar to the BK cytoplasmic 
domain. One of these prokaryotic K+ channels, MthK (from 
Methanobacterium thermoautotrophicum) was crystallized, 
revealing a structure in which a four-fold symmetrical ring of 
eight RCK domains, called the “gating ring”, undergoes con-
formational changes with the binding of multiple Ca2+ ions 
(Jiang et al., 2002; Dong et al., 2005; Ye et al., 2006; Pau et 
al., 2011). The discovery of this prokaryotic structure provided 
a great deal of insight, allowing for structural interpretation of 
functional studies performed on BK channels. For example, it 
was this work that led to the idea that Ca2+-dependent con-
formational changes in the RCK domains acted on the 
pore-lining helices of the channel through an apparently me-
chanically-passive linker sequence (Niu et al., 2004). 

Recently, the BK channel cytoplasmic domain was crys-
tallized, revealing a remarkable degree of conservation in the 
domain structure (Fig. 5), and formation of an RCK gating 
ring arrangement that is similar to that observed in MthK  
(Fig. 1D) (Wu et al., 2010; Yuan et al., 2010, 2011). Along 
with this groundbreaking achievement, however, further in-
triguing questions are raised. For example, structures of the 
BK cytoplasmic domain in the presence of Ca2+ revealed a 
Ca2+ ion bound in the predicted Ca2+ bowl, showing a struc-
tural motif that was remarkably well-predicted by previous 
functional studies (Bao et al., 2004). However, no Ca2+ ions 

are observed at the other Ca2+ binding sites predicted by 
mutagenesis and functional experiments. Because the known 
crystal structures consist only of the cytoplasmic domain, one 
could ask whether Ca2+ binding at the other sites requires 
crystallization of the entire channel complex? Additional ex-
periments are likely to hold the answer. 

CONCLUSIONS 

BK channels are physiologically important molecules involved 
in signaling pathways in neurons and smooth muscle, tissues 
that are critical to human health and are thus vulnerable to 
injury and disease. A great deal of effort over the past 30 
years has led to elucidation of auxiliary proteins involved in 
the tissue-specific functions of BK channels, as well as the 
structural and molecular basis of BK channel gating. However, 
as structural studies reveal the atomic basis of Ca2+ coordi-
nation by the channel, new questions arise concerning the 
molecular basis of BK channel gating (Wilkens and Aldrich, 
2006; Chen and Aldrich, 2011), suggesting that new mecha-
nisms have yet to be revealed. 
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