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ABSTRACT 

The self-renewal and multipotent potentials in neural 
stem cells (NSCs) maintain the normal physiological 
functions of central nervous system (CNS). The ab-
normal differentiation of NSCs would lead to CNS dis-
orders. However, the mechanisms of how NSCs differ-
entiate into astrocytes, oligodendrocytes (OLs) and 
neurons are still unclear, which is mainly due to the 
complexity of differentiation processes and the limita-
tion of the cell separation method. In this study, we 
modeled the dynamics of neural cell interactions in a 
systemic approach by mining the high-throughput ge-
nomic and proteomic data, and identified 8615 genes 
that are involved in various biological processes and 
functions with significant changes during the differen-
tiation processes. A total of 1559 genes are specifically 
expressed in neural cells, in which 242 genes are NSC 
specific, 215 are astrocyte specific, 551 are OL specific, 
and 563 are neuron specific. In addition, we proposed 
57 transcriptional regulators specifically expressed in 
NSCs may play essential roles in the development 
courses. These findings provide more comprehensive 
analysis for better understanding the endogenous 
mechanisms of NSC fate determination. 

KEYWORDS   neural stem cell, cell differentiation, mo-
lecular networks 
 

INTRODUCTION 

Neural stem cells (NSCs) are central nervous system (CNS) 
originated multipotent stem cells, which possess self-renewal 
potential and have the ability to differentiate into astrocytes, 
oligodendrocytes (OLs) and neurons along with the devel-
opment time course (Temple, 2001). They play essential 
roles in repairing and maintaining normal CNS cells. Besides, 
tissue engineering by normal NSCs transplantation also 
enables the clinical therapeutic applications for CNS regres-
sive diseases, such as Alzheimer’s, Parkinson’s, Hunting-
ton’s disease and other CNS disorders (Storch and Schwarz, 
2002; Lee et al., 2005; Oliveira and Hodges, 2005; Sanberg, 
2007; Tang et al., 2008; Moghadam et al., 2009; Zhongling et 
al., 2009; Makri et al., 2010). 

In recent years, progresses have been made in finding out 
regulating factors which determine the neural stem cell dif-
ferentiation orientations. The npBAF complex (neural pro-
genitors-specific chromatin remodeling complex), together 
with the nBAF complex (neuron-specific chromatin remodel-
ing complex), are required for chromatin remodeling during 
the transition from NSCs to adult neurons (Lessard et al., 
2007). Nestin, a well-known protein marker for NSCs, is criti-
cal for NSCs survival, renewal and proliferation (Park et al., 
2010). Chrdl1 (Chordin-like protein 1, Neurogenesin-1, Ng1) 
is reported to prevent glial fate during NSCs differentiation 
(Ueki et al., 2003). Cxxc5 (CXXC-type zinc finger protein 5) is 
proposed to be a negative regulator of canonical Wnt signali-
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signaling pathway in response to BMP4 (bone morphogenetic 
protein 4). Furthermore, it also affects telencephalic forebrain 
development and telencephalic NSCs differentiation into 
various cells (Andersson et al., 2009). The extracellular 
heme-binding protein Cyb5d2 (Cytochrome b5 domain-  
containing protein 2, Neuferricin), could also promote adult 
neurogenesis (Kimura et al., 2010). The transcription factor 
Sox2, along with Sox8 and Sox10, is also required for the 
maintenance of NSCs multipotent status (Episkopou, 2005; 
Maka et al., 2005; Favaro et al., 2009). Several recent studies 
also indicate the Pax6, a transcription factor of Pax family, 
may have crucial roles in adult neurogenesis (Matsumoto and 
Osumi, 2008; Osumi et al., 2008). Some other studies dem-
onstrated that the differentiation of NSCs is controlled by both 
signaling transduction and transcriptional regulation. A recent 
in vitro study also reported many genes and signaling path-
ways are involved in neural stem cell differentiation (Park et 
al., 2012). Advances of epigenetic mechanisms regulating 
neural stem cell differentiation have been reviewed (Namihira 
et al., 2008; Juliandi et al., 2010). In spite of these efforts, the 
molecular mechanisms of NSCs differentiation are still un-
foreseen. And the main obstacle is the complexity of differen-
tiation processes and lack of purification procedures to dis-
tinguish different NSCs products (the astrocytes, neurons and 
OLs) with high specificity and precision (Cahoy et al., 2008).  

Recently, with the application of the fluorescent-activated 
cell sorting (FACS) technology (Cahoy et al., 2008), these 
technical difficulties have been well resolved. In the present 
study, we gain an insight into the mechanisms of NSC dif-
ferentiation in a system approach by employing the public 
available gene expression data. We show that, many signal-
ing pathways as well as many transcription factors contrib-
uted to the differentiation process. Investigation of gene ex-
pression of the four neural cell-types (NSCs, astrocytes, 
neurons and OLs) by comparing with non-CNS cells shows 
many newly identified specifically expressed genes in CNS. 
In addition, according to the genes involved in this process, we 
constructed a molecular interaction network which may deter-
mine the NSCs fates. Our study provides a more comprehen-
sive analysis of the mechanisms of NSCs differentiation. 

RESULTS 

Gene expression profile of neural cells 

Besides astrocytes, neurons and OLs, expressions of some 
well described gene markers of NSCs in mRNA level were 
also validated. Expressions of these gene markers (Fig. 1A 
and 1B) are consistent with previously reported data, dem-
onstrating the reliability of the selected samples. 

Genes that are not expressed in any of the neural cells are 
excluded. So MAS 5.0 algorithm and absent/present (A/P) 
calls were introduced to exclude probes without consistent 
expression in all of the eight cell types (see MATERIALS 

AND METHODS). As a result, a collection of 28,175 probes 
covering 17,327 unique genes were observed that have no 
less than two-thirds ″P″ signals in at least one cell type. In 
order to find the genes that are differentially expressed 
among the neural cells, probe expression levels which were 
significantly up/down-regulated by at least 1.5-fold comparing 
with the NSCs after a log2-transformed expression by 
GCRMA (Wu et al., 2004) were required. Consequently, a 
total of 11,808 probes representing 8615 unique genes were 
considered differentially expressed during the process of 
NSCs differentiation significantly. Among these genes, 4285 
were significantly expressed during any astrocyte develop-
ment stage including 2139 (~49.3%) up-regulated and 2196 
(~50.7%) down-regulated; 5943 were significantly expressed 
during any neuron development stage including 3138 
(~52.1%) up-regulated and 2885 (~47.9%) down-regulated; 
and 5955 were significantly expressed during any OL devel-
opment stage including 3086 (~49.9%) up-regulated and 
3098 (~50.1%) down-regulated. 

Identifying specifically expressed genes of neural cells 

Identifying specifically expressed genes of neural cells will 
help us distinguish their characteristics from other cell types 
and further promote their functional mechanism research. It 
was reported that cell type specific genes were identified by 
quantitative comparison of different gene expressions among 
astrocytes, neurons and OLs (Cahoy et al., 2008). However, 
these quantitative comparisons only restricted to astrocytes, 
neurons and OLs, which are the three major neural cells. In 
order to understand the underlying mechanism of NSC dif-
ferentiation, it is better to distinguish the expression charact-
eristics among all of the NSC and its products as well as 
other non-neural cell/tissue types. Here, the neural cell, 
non-CNS and non-multipotent cell samples of 14 different 
tissues which were used in previous mouse transcriptome 
analysis (Thorrez et al., 2008) were utilized, including adipose 
tissue, adrenal gland, bone marrow, diaphragm, eye, heart, 
kidney, liver, lung, muscle, salivary gland, small intestine, 
spleen and thymus. 

We identified neural cells specifically expressed genes 
from the 8615 unique genes. As a result, 1559 genes were 
specifically expressed in at least one of the eight neural cells. 
In order to further distinguish the eight neural cells, the 
Maximum Relevance Minimum Redundancy (mRMR) feature 
selection method (see MATERIALS AND METHODS) (Ding 
and Peng, 2005; Peng et al., 2007), which had been demon-
strated as a very useful supervised machine learning method 
for discriminative gene selection, was employed to sort these 
features (probes). Then, leave-one-out cross-validation com-
bined with the supervised SVM predicator (Chang and Lin, 
2011) was performed to determine how many features could 
best represent all the eight neural cell types. As illuminated in 
the IFS curve, a total of 1758 features were chosen when the 
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Figure 1.  mRNA level expressions of well described markers for NSCs, astrocytes, OLs and neurons. The y-axis repre-
sents gene expression level intensities and error bars represent +SEM (A), and the expression value is shown in (B). 

 
accuracy peaked and contained most features (Fig. 2A), 
which include 242 NSC specifically expressed genes, 215 
astrocyte specifically expressed genes, 551 OL specifically 
expressed genes, and 563 neuron specifically expressed 
genes (Fig. 2B; Table 2S). Notably, the most predictive 
accuracies were among 95% and 100%, indicating that 
most of the selected probes are specifically expressed. That 
means a small proportion of those probes could be sufficient 
to distinguish all neural cells. In addition, unsupervised hi-
erarchical clustering of these samples shows quite similar 
expression profiles between the same cell types (e.g. the 
NSCs samples obtained from two different studies show 
close relationships) and distinct expression profiles between 

different neural cells (Fig. S1), demonstrating the samples 
are stabilized and the specifically expressed genes we se-
lected are credible. 

General annotation of neural cells specifically expressed 
genes 

To identify the molecular characteristics of each neural cell, 
the functional enrichment analysis was performed by DAVID 
(Huang da et al., 2009a, b). These 1559 specifically ex-
pressed genes are involved in various functions (Fig. 3;     
p ≤ 0.01). In the prioritized gene functions, cell cycle, regula-
tion of transcription, DNA metabolic process, DNA damage, 
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Figure 2.  Cell-type-specific genes selection and expression in 
NSCs, astrocytes, OLs and neurons. (A) IFS curve for cell-type- 
specific markers selection. The X-axis is the selected probe number; 
the Y-axis is the predicated accuracy by leave-one-out cross-valida-
tion. (B) Destitution of specifically expressed genes in NSCs, 
astrocytes, OLs and neurons. 
 
DNA repair, ATPase and helicase activity, regulation of 
microtubule-based process, Wnt receptor signaling pathway 
and RNA processing were most relevant to NSCs functions 
(Fig. 3A). Nervous system development and cell differentia-
tion, embryonic morphogenesis and embryonic organ devel-
opment, activation of caspase activity by cytochrome c and 
enzyme linked receptor protein signaling pathway were en-
riched in astrocytes (Fig. 3B). Cell adhesion, nerve impulse 
and action potential in neuron, hyaluronic acid binding, 
channel activity and transmembrane transporter activity, 
neuron differentiation and negative regulation of molecular 
function were most relevant to ordinary function of OLs   
(Fig. 3C). While, obviously more functions were observed in 
neurons, such as channel activity and transmembrane trans-
porter activity, neuron differentiation, development and 
morphogenesis, serotonin and amine receptor activity, neu-
rotransmitter and neuropeptide receptor activity, somatostatin 
receptor activity, hormone activity, adult behavior, ephrin 
receptor activity, behavioral fear and  defense response, 
learning or memory, cAMP biosynthetic process and 
cAMP-mediated signaling, ion binding, cell adhesion, regula-
tion of neurological system process, regulation of neuro-
genesis, response to stress and pain andregulation of neuron 
apoptosis (Fig. 3D). Details of these function clusterings are 
available in Table S3 (p ≤ 0.01). 

Table 1 lists all of the significantly enriched pathways 
separately (p ≤ 0.05). Although some common pathways 
were detected (e.g. basal cell carcinoma pathway and neu-

roactive ligand-receptor interaction pathway), nearly abso-
lutely different pathways are enriched in different cells (Table 
1), indicating the differences of their functional mechanisms. 
To be specific, cell cycle, basal cell carcinoma, glycosyl-
phosphatidylinositol (GPI)-anchor biosynthesis are deposed 
in NSCs. Basal cell carcinoma, pathways in cancer, colorec-
tal cancer, amyotrophic lateral sclerosis (ALS), dorso-ventral 
axis formation, MAPK signaling pathway, melanoma, apop-
tosis, prostate cancer are deposed in astrocytes. Cell adhe-
sion molecules (CAMs), axon guidance, neuroactive ligand- 
receptor interaction, gap junction are deposed in OLs, and 
neuroactive ligand-receptor interaction, axon guidance, cal-
cium signaling pathway are deposed in neurons. 

These results indicate that NSCs differentiation is a com-
plex biological process, which includes many important sig-
naling pathways and genes with various functions. It’s difficult 
to imagine that a single gene or signaling pathway could 
initiate the whole differentiation processes. So, a system 
approach is more powerful to understand the complex dif-
ferentiation process. 

Molecular interaction network models 

We particularly paid attention to those genes that specifi-
cally expressed in NSCs and function in transcriptional 
regulation. To detect potential functional associations be-
tween the 57 transcriptional regulators (Fig. 3; Table 2) and 
all of the specifically expressed genes in neural cells, we 
performed Pearson correlation coefficient (PCC) analysis 
between them based on the 36 samples. The resulted 
co-expression network contains 56 transcriptional regula-
tors and 187 other genes with 6645 unique functional asso-
ciations when PPC ≥ 0.80 (Table S4). As depicted, there 
were double apices in our dataset compared with only one 
apex in the randomly generated dataset (Fig. 4A); that is, it 
was increased other than decreased in number when PCC 

≥ 0.45, indicating these genes could be regulated by the 
transcriptional regulators. Besides, it’s obvious that there is 
an increase both in number and ratio when the PPC ≥ 0.80 
(Fig. 4A and 4B), demonstrating the possibility was much 
more than random. 

Literature curation indicated that at least 10 in 56 tran-
scriptional regulators have potential roles in differentiation, 
development or cell fate determination, including ASCL1, 
HIP1, MYBL1, POU3F4, RCOR2, SMARCC1, SOX11, SOX3, 
TEAD2, ZFP2 and ZFP354C (ZNF354C). This suggested 
that they may play important roles in NSCs differentiation. 
Furthermore, public protein−protein interaction (PPI) data-
bases, such as BioGRID (Stark et al., 2011), DIP (Salwinski 
et al., 2004), IntAct (Aranda et al., 2010) and STRING 
(Szklarczyk et al., 2011) were all used to find additional in-
teractions with the 10 regulators. These databases contain 
both literature curated associations and computationally  
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Figure 3.  General annotation of most significantly enriched functions of specifically expressed genes in NSCs (A), as-
trocytes (B), OLs (C) and neurons (D) (p ≤ 0.01). 

 
 

predicated associations. In order to remove most irrele-
vant proteins, we use the depth first search (DFS) algo-
rithm to search associations in the first depth, as we 
demonstrated in our previous study (Wang et al., 2011). 
Besides, some additional irrelevant proteins from 
STRING database (Szklarczyk et al., 2011) were ex-

cluded by using an integrated score threshold 0.800. The 
protein−protein interaction network includes 237 nodes 
and 252 edges, as is shown in Fig. 5. Due to the limita-
tion of the data, no functional association was found 
about ZFP354C, and only a few associations were found 
about ZFP2 and RCOR2. 
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Table 1  Pathway enrichment analysis of neural cells specifically expressed genes  

Index Enriched KEGG pathways p value FDR 

NSC enriched pathways 

1 mmu04110:Cell cycle 5.74E-03 5.66 

2 mmu05217:Basal cell carcinoma 1.32E-02 12.61 

3 mmu00563:Glycosylphosphatidylinositol(GPI)-anchor biosynthesis 2.12E-02 19.47 

Astrocyte enriched pathways 

1 mmu05217:Basal cell carcinoma 7.07E-04 0.76 

2 mmu05200:Pathways in cancer 2.37E-03 2.53 

3 mmu05210:Colorectal cancer 3.72E-03 3.95 

4 mmu05014:Amyotrophic lateral sclerosis (ALS) 8.66E-03 8.97 

5 mmu04320:Dorso-ventral axis formation 1.15E-02 11.77 

6 mmu04010:MAPK signaling pathway 1.33E-02 13.44 

7 mmu05218:Melanoma 1.57E-02 15.75 

8 mmu04210:Apoptosis 2.69E-02 25.50 

9 mmu05215:Prostate cancer 2.93E-02 27.50 

Oligodendrocye enriched pathways 

1 mmu04514:Cell adhesion molecules (CAMs) 1.57E-04 0.18 

2 mmu04360:Axon guidance 8.47E-04 0.95 

3 mmu04080:Neuroactive ligand-receptor interaction 1.07E-02 11.37 

4 mmu04540:Gap junction 2.41E-02 24.03 

Neuron enriched pathways 

1 mmu04080:Neuroactive ligand-receptor interaction 3.09E-14 0.00 

2 mmu04360:Axon guidance 1.32E-06 0.00 

3 mmu04020:Calcium signaling pathway 6.35E-05 0.07 

p ≤ 0.05 
 
Table 2  Transcriptional regulation related genes enriched in NSCs 

Index Probe name Gene symbol Gene name 

1 1452334_at CENPF centromere protein F 
2 1430139_at, 1453361_at HELLS (ZFM1, ZNF162) helicase, lymphoid specific 

3 
1422851_at, 1450780_s_at, 
1450781_at 

HMGA2 high mobility group AT-hook 2 

4 1429557_at MCM8 minichromosome maintenance deficient 8 
5 1416310_at NUSAP1 nucleolar and spindle associated protein 1 
6 1417323_at, 1425416_s_at PSRC1 proline/serine-rich coiled-coil 1 
7 1423026_at, 1438453_at RAD51C Rad51 homolog c (S. cerevisiae) 

8 1422321_a_at SF1 splicing factor 1 

9 1422979_at, 1433996_at SUV39H2 suppressor of variegation 3-9 homolog 2 

10 1437086_at, 1450164_at ASCL1 achaete-scute complex homolog 1 

11 1421149_a_at ATN1 atrophin 1 

12 1428649_at CAND1 cullin associated and neddylation disassociated 1 

13 1421933_at CBX5 chromobox homolog 5 (Drosophila HP1a) 

14 1442576_at CREB5 cAMP responsive element binding protein 5 

15 1432272_a_at ERCC4 
excision repair cross-complementing rodent repair deficiency, 
complementation group 4 

(to be continued on the next page) 
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(Continued) 
 

Index Probe name Gene symbol Gene name 

16 1420998_at ETV5 ets variant gene 5 

17 1448834_at FOXM1 forkhead box M1 

18 1424756_at HIP1 huntingtin interacting protein 1 

19 1420565_at HOXA1 homeo box A1 

20 1422546_at ILF3 interleukin enhancer binding factor 3 

21 1420665_at ITGB3BP integrin beta 3 binding protein (beta3-endonexin) 

22 1450402_at MED1 mediator complex subunit 1 

23 1452816_at MLF1IP myeloid leukemia factor 1 interacting protein 

24 1450481_at MYBL1 myeloblastosis oncogene-like 1 

25 1451841_a_at NCOR2 nuclear receptor co-repressor 2 

26 1441325_at NKRF NF-kappaB repressing factor 

27 1421567_at, 1450287_at NPAS3 neuronal PAS domain protein 3 

28 1450854_at PA2G4 proliferation-associated 2G4 

29 1427550_at PEG10 paternally expressed 10 

30 1453761_at PHF6 PHD finger protein 6 

31 1436738_at PIF1 PIF1 5'-to-3' DNA helicase homolog 

32 1422164_at POU3F4 POU domain, class 3, transcription factor 4 

33 1423318_at RAD18 RAD18 homolog 

34 1421430_at RAD51L1 RAD51-like 1 

35 1417302_at RCOR2 REST corepressor 2 

36 1450489_at SALL1 sal-like 1 

37 1416670_at SETDB1 SET domain, bifurcated 1 

38 1423417_at SMARCC1 
SWI/SNF related, matrix associated, actin dependent regulator 
of chromatin, subfamily c, member 1 

39 1436790_a_at SOX11 SRY-box containing gene 11 

40 1435192_at, 1450485_at SOX3 SRY-box containing gene 3 

41 1449370_at SOX4 SRY-box containing gene 4 

42 1449578_at SUPT16H suppressor of Ty 16 homolog 

43 1442289_at TAF1D 
TATA box binding protein (Tbp)-associated factor, RNA  
polymerase I, D 

44 1457351_at TAF2 
TAF2 RNA polymerase II, TATA box binding protein  
(TBP)-associated factor 

45 1450100_a_at TCERG1 transcription elongation regulator 1 (CA150) 

46 1448519_at TEAD2 TEA domain family member 2 

47 1431115_at TGIF2 TGFB-induced factor homeobox 2 

48 1430384_at TLE4 transducin-like enhancer of split 4, homolog of Drosophila E(spl) 

49 1452818_at TTF2 transcription termination factor, RNA polymerase II 

50 1452088_at ZBED3 zinc finger, BED domain containing 3 

51 1428887_at ZFP157 (ZNF157) zinc finger protein 157 

52 1452025_a_at ZFP2 zinc finger protein 2 

53 1450321_at ZFP354C (ZNF354C) zinc finger protein 354C 

54 1421251_at ZFP40 (HIVEP1, ZNF40) zinc finger protein 40 

55 1451816_at ZFP451 (ZNF451) zinc finger protein 451 

56 1458274_at ZFP69 (ZNF69) zinc finger protein 69 

57 1421395_at ZIK1 zinc finger protein interacting with K protein 1    
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Figure 4.  Pearson correlation coefficients distribution curve. (A) 
The green line represents the numbers of co-expression pairs be-
tween our gene set (57 NSC specific regulators and other specifically 
expressed genes); the red line represents the numbers of 
co-expression pairs between randomly generated gene set (ran-
domly generated 1559 genes and 57 genes in the randomly gener-
ated genes). (B) The purple line represents the ratio of our gene set 
versus randomly generated gene set. 

 

MATERIALS AND METHODS 

Neural cells related gene expression data preparation 

The raw data of gene expression series GSE12499, 
GSE18326 and GSE9566 were collected from NCBI Gene 
Expression Omnibus (GEO) (http: //www.ncbi.nlm.nih.gov/ 
geo/) (Barrett et al., 2011). The series GSE12499 was origi-
nally reported to investigate the induced multipotent phe-
nomenon by exogenous expression of an embryonic stem 
cell (ESC) specific transcription factor Oct4 in NSCs (Kim et 
al., 2009). The series GSE18326 was first reported to study 
the impact effects of FoxO3 null mutant on NSC maintenance 
(Renault et al., 2009). The series GSE9566 contains various 
neural cell samples with high specificity and precision sorted 
by FACS (Cahoy et al., 2008) except NSCs. All of the three 
gene expression series are based on the same and widely 

used Affymetrix Mouse Genome 430 2.0 Array, which con-
tains 45101 probes of ~22,000 unique genes. The wild-type 
(WT) NSC samples were selected from GSE12499 and 
GSE18326. All representative samples of astrocytes, OLs 
and neurons were selected from GSE9566. A summarization 
of all samples used is listed in Table S1. 

Neural cells related data pre-process 

We grouped all these samples according to their cell types 
and development stages (Table S1). To be specific, we 
grouped the 36 samples as NSCs, immature astrocytes (P1), 
maturing astrocytes (P7–P8), mature astrocytes (P17–P30), 
maturing neurons (P7), mature neurons (P16), immature OLs 
(OPCs), maturing OLs and mature OLs (Myelin OLs). (P 
represents postnatal day). Obviously, genes that do not ex-
press in any of the grouped cell types have no significance. 
Only those probes that presented in at least two-thirds of the 
same cell-type, or called consistently expressed genes 
(probes in actual) in previous study, were kept (Cahoy et al., 
2008). The absent/present (A/P) calls were employed to 
achieve this goal. Probes that were detected as ″P″ usually 
possess much bigger MAS 5.0 intensities as well as smaller 
p-values compared with those detected as ″A″. And the 
p-value was usually considered as no statistical significance 
often caused by a low detected intensity value. The GCRMA 
method in Bioconductor package was conducted for raw data 
normalization (Wu et al., 2004). GCRMA generally could 
obtain more accurate gene expression values than RMA 
method in microarray normalization. Genes with fold changes 
less than 1.5 were excluded for further process. 

Functional and signaling pathway enrichment analysis 

Gene ontology (GO) functional enrichment analysis and sig-
naling pathway enrichment analysis of the significantly 
changed genes were performed by using DAVID (The Data-
base for Annotation, Visualization and Integrated Discovery, 
http://david.abcc.ncifcrf.gov) (Huang da et al., 2009a, b), 
which is a powerful tool for biological meaning exploration. 

Tissue/cell-type specific expression analysis 

We require that the candidate neural cells specifically ex-
pressed genes must satisfy the following criteria: (A) the gene 
expression level no less than the GCRMA normalized mean 
value plus 3-fold standard deviation among the 22 tissue/cell 
types (eight neural cells and 14 ordinary cells) and (B) at least 
1.5-fold of the mean value was considered as specifically 
expressed as described in formula (1) and (2): 

1∑
n

i
i=

x = x
n 1

              (1) 
 
 
 



57 master regulators involved in neural stem cell differentiation  Protein & Cell 
 

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012 221 

          

 
 

Figure 5.  The protein−protein interaction network involved in the master regulators. The master regulators are shown in 
bigger light green nodes. 

 

−∑
n

i
i=

s = x x
n

2

1

1 ( )                (2) 

Where n represents the number of tissues; n is 22 here. xi  is 
the expression leave in the i-th tissue of a gene (probe), x  
is the mean expression value among the n tissues of this 
gene, and s is the standard deviation. For a neural cell spe-
cifically expressed gene, it’s expression level must be ≥ x + 
3s and ≥ 1.5 x . 

These genes were then sorted by the Maximum Rele-

vance Minimum Redundancy (mRMR, http://penglab.janelia. 
org/proj/mRMR/) feature selection method (Ding and Peng, 
2005; Peng et al., 2005). The mRMR method balances the 
relevant features and redundant features to generate a better 
classification performance. In other words, it requires the 
selected features (probes) are highly related to the target 
categories (tissue/cell type), and tries to reduce the redun-
dancy between all selected features as much as possible. 
Here, the redundant features (probes) should not be ex-
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cluded. So, only Maximum Relevance feature selection 
method was performed. Firstly, mRMR will generate a list of 
sorted genes (probes in actual) according to the maximum 
relevance minimum redundancy criterion. However, not all of 
these genes (probes) will be considered specifically ex-
pressed in a certain cell type. Therefore, Incremental Feature 
Selection (IFS) method was then performed to select the top 
N genes (probes) which could better characterize all the 
neural cells. To achieve this goal, we should construct a se-
ries of sub-feature collections from the total listed probes, as 
shown in formula (3): 

 1 2 10{ , ,..., ,..., } ( )=  i iS p p p p i10 1758≤ ≤  (3) 
where ip  is the i-th probe in the sorted probe listed, iS  is 
sub-feature collection containing i probes (the total probe 
number is 1758). Combing with the SVM predicator (Chang 
and Lin, 2011), leave-one-out cross-validation was employed 
to evaluate the performance (only for neural cells) of each 
sub-feature collection. If the predicated accuracy is maximum, 
the corresponding i genes (probes) would be considered as 
neural cells specifically expressed. The detailed method was 
also described in our former work (Wang et al., 2012). 

DISCUSSION AND CONCLUSION 

We conducted a systemic analysis by employing the highly 
purified gene expression data, combined with protein−protein 
interaction data. The dynamics of NSCs differentiation were 
reconstructed by computational modeling from the aspect of 
both specifically expressed transcriptomic data from gene 
expression arrays and proteomic data containing various 
interactions. The gene specific expression strategy is espe-
cially suitable for resolving this complex differentiation prob-
lem with multi-cell types. It allows us to better describe their 
own properties as well as discriminate their differences. This 
systemic approach is the basis of globally detecting key 
regulators. 

The primary goal of our work is to find out which regulators 
dominate the differentiation processes. It is known that NSCs 
could differentiate into three major neural cells: astrocytes, 
neurons and OLs. Therefore we assumed that there may be 
some factors that drive the NSCs exit to the cell cycle of mul-
tipotent status and control the different differentiation direc-
tions. Indeed, we identified 29 genes that mediate the neural 
cell mitosis and chromosome remodeling, including 
4632434I11RIK, APC, ASPM, CCNB1, CDC25C, CDC7, 
CENPF, CEP55, ERCC6L, EXO1, FANCD2, FANCI, HELLS, 
HMGA2, INCENP, KIF20B, LFNG, MCM8, NASP, NCAPD3, 
NUSAP1, PSRC1, RAD51C, SEPT2, SF1, SKP2, SMC2, 
SPDYA and SUV39H2, as well as 57 potential regulating 
genes (Table 2) which may play essential roles in the differ-
entiation processes. We predicated their downstream target 
genes from gene co-expression (Suzuki et al., 2009) samples. 
The transcriptional regulation interactions were shown in 

Table S4. By manual curation, 10 transcription factors were 
identified as key regulators. These genes are all enriched in 
the early stage (NSCs) of the neural cell differentiation proc-
esses, which suggested that they may change the direction of 
cell cycle and initiate the NSC differentiation. In conclusion, 
these findings describe some key regulators that we suggest 
could determine the NSC fates. 

In addition, the promoter binding situations of the 1559 
genes were detected by employing JASPAR CORE database 
(Portales-Casamar et al., 2010) analysis. Specifically, −400 bp 
− +100 bp from the transcription start sites (TSS) of the 1559 
genes were selected from NCBI Mouse Genome Assembly 
Build 37.1, and were subsequently sent to JASPAR CORE 
database for binding analysis with default parameters. How-
ever, no binding was found by the 57 regulators, which was 
primarily due to the limited motif information. And it was re-
ported that the accuracy of this motif based method is gener-
ally no more than 15%. So more biological experiments such 
as ChIP-chip or ChIP-seq will be needed in the future re-
search. 

Besides, signal transduction and microRNA regulation are 
also under our consideration. And many relevant methods, 
tools and databases are publicly available, such as the mi-
croRNA database miRBase (Kozomara and Griffiths-Jones, 
2011), the signal transduction network mining methods 
CASCADE_SCAN (Wang et al., 2011), NetSearch (Steffen et 
al., 2002) and integer linear programming (Zhao et al., 2008). 
However, in this study we only focused on transcriptional 
regulations and protein−protein interactions. 

In summary, our studies provide a more comprehensive 
analysis of the dynamics during NSC differentiation in a sys-
tem approach based on neural cells specifically expressed 
genes. It suggests that some regulators may play essential 
roles during the development stages. These findings provide 
more theoretic evidence for further studies. 
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