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ABSTRACT

Arabidopsis BOTRYTIS-INDUCED KINASE1 (BIK1) is a 
receptor-like cytoplasmic kinase acting early in multiple 
signaling pathways important for plant growth and innate 
immunity. It is known to form a signaling complex with a 
cell-surface receptor FLS2 and a co-receptor kinase BAK1 
to transduce signals upon perception of pathogen-asso-
ciated molecular patterns (PAMPs). Although site-specifi c 
phosphorylation is speculated to mediate the activation 
and function of BIK1, few studies have been devoted to 
complete profiling of BIK1 phosphorylation residues. 
Here, we identified nineteen in vitro autophosphoryla-
tion sites of BIK1 including three phosphotyrosine sites, 
thereby proving BIK1 is a dual-specifi city kinase for the 
fi rst time. The kinase activity of BIK1 substitution mutants 
were explicitly assessed using quantitative mass spec-
trometry (MS). Thr-237, Thr-242 and Tyr-250 were found to 
most signifi cantly affect BIK1 activity in autophosphoryla-
tion and phosphorylation of BAK1 in vitro. A structural 
model of BIK1 was built to further illustrate the molecular 
functions of specifi c phosphorylation residues. We also 
mapped new sites of FLS2 phosphorylation by BIK1, 
which are different from those by BAK1. These in vitro 
results could provide new hypotheses for more in-depth 
in vivo studies leading to deeper understanding of how 
phosphorylation contributes to BIK1 activation and medi-
ates downstream signaling specifi city.  

KEYWORDS    phosphorylation, BIK1, receptor-like cytop-
lasmic kinase, quantitative mass spectrometry 

INTRODUCTION
In plants, innate immunity is triggered by cell-surface pattern-
recognition receptors (PRRs) which usually perceive con-
served pathogen- or microbe-associated molecular patterns 
(PAMP/MAMPs) (Boller and Felix, 2009; Boller and He, 2009; 
Zhang and Zhou, 2010). Receptor-like kinases (RLKs) consti-
tute this major superfamily of PRRs in plant cells and they have 
been identified as critical early determinants of PAMP/MAMP-
triggered immunity (PTI) (Antolin-Llovera et al., 2012; Greeff 
et al., 2012). Compared to RLKs, the biological functions of 
receptor-like cytoplasmic kinases (RLCKs) remain much less 
understood. Although lacking an apparent extracellular do-
main, RLCKs are classifi ed within the RLK superclass due to 
their sequence homology. The Arabidopsis genome contains 
over 600 RLKs and RLCKs that are predicted to function in 
plant responses to microbial infection, hormones, and other 
endogenous and environmental cues (Shiu and Bleecker, 
2001, 2003). Similar to RLK, RLCKs have been implicated to 
function in PTI and ETI (effector-triggered immunity) responses 
(Lu et al., 2010a; Zhang et al., 2010; Kim and Hwang, 2011; 
Laluk et al., 2011). They are speculated more likely to mediate 
intracellular signal transduction rather than ligand perception, 
particularly acting in concert with surface-localized RLKs or 
indirectly as intracellular receptors of microbial effectors (Zhang 
et al., 2010; Laluk et al., 2011).
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BI K1 is a typical RLCK localized to the plasma membrane 
that was found to act early in multiple signaling pathways 
important for plant growth, development as well as immune 
responses against pathogens (Lu et al., 2010a; Zhang et al., 
2010; Laluk et al., 2011). It was originally identified as a com-
ponent in plant defense against necrotrophic fungal pathogens 
(Veronese et al., 2006). More recently, elegant studies by sev-
eral groups have showed BIK1 plays a central role in signal 
integration from multiple PAMP receptors including the flagellin 
receptor FLS2, the chitin receptor CERK1 and the receptor 
for bacterial EF-TU EFR (Lu et al., 2010a; Zhang et al., 2010). 
Specifi cally, BIK1 associated with these PAMP receptors and 
a signaling co-receptor BRI1-associated receptor kinase 1 
(BAK1) in vitro and in vivo, and its phosphorylation was rap-
idly induced upon flagellin treatment in an FLS2- and BAK1-
dependent manner. 

Site-specifi c phosphorylation, either by itself or upstream ki-
nases, is known to be essential for RLK/RLCK functions in vitro 
and in vivo (Wang et al., 2008; Lu et al., 2010b; Schwessinger 

et al., 2011). Auto- and trans-phosphorylation events between 
BIK1 and the receptor complex FLS2/BAK1 in vitro docu-
mented previous work (Lu et al., 2010a, 2010b; Zhang et al., 
2010) are depicted in Fig. 1A. The kinase domain of both BIK1 
and BAK1 can phosphorylate itself as well as the cytoplasmic 
domain of FLS2. In addition, reciprocal phosphorylation occurs 
between BIK1 and BAK1. In contrast to BAK1 on which distinc-
tive phosphorylation sites have been clearly identifi ed (Wang et 
al., 2005, 2008; Yan et al., 2012), few studies have been devot-
ed to complete profi ling of phosphorylation residues of BIK1. 
Biochemical analysis of site-directed mutants suggested Thr-
237 was the major phosphorylation site of BIK1 in response to 
fl agellin (Lu et al., 2010a). Another extensive study on BIK1 in 
vivo functions revealed several other putative phosphorylation 
sites (e.g. Ser-236, Thr-242) contributing to BIK1 kinase activ-
ity as well as its biological roles in PTI and ETI responses (Laluk 
et al., 2011). Little evidence was provided, however, to confi rm 
any of them as a bon  a fi de phosphorylation site except Ser-
236 identifi ed in a previous study (Zhang et al., 2010). 
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Figure 1. The recombinant BIK1 is highly phosphorylated. (A) A model depicts known phosphorylation events within the FLS2/BAK1/
BIK1 complex. KD, kinase domain. A single arrow: phosphorylation of a substrate by its kinase; a double arrow: reciprocal phosphoryla-
tion between the two kinases; a curved arrow: autophosphorylation. Black arrows refer to phosphorylation events studied in this work 
while white arrows indicate those reported elsewhere. (B) Summary of phosphorylation sites identifi ed in different domains of BIK1. KD, 
kinase domain; NT, N-terminus; CT, C-terminus. Shown upper are autophosphorylation sites whereas lower are sites of BIK1 KM phos-
phorylation by BAK1-CD. (C) MS/MS spectrum of a BIK1 di-phosphopeptide with the phosphosites assigned to be S236 and T237.
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tion in vivo (Lu et al., 2010a), we didn’t detect any direct phos-
phorylation of BIK1 KM by FLS2-CD. Therefore, we speculate 
that fl g22-induced BIK1 activation might be enhanced through 
transphosphorylation by BAK1 rather than FLS2, with the latter 
possibly serving more as a scaffold protein contributing to the 
receptor complex assembly. Certainly this hypothesis awaits 
further investigation in vivo.

Phosphorylation residues of BIK1 have distinct impact on 
its autophosphorylation activity

To investigate a potential role of the identifi ed phosphorylation 
sites in mediating BIK1 activity, we need to examine the site-
specific impact on BIK1 activation using a quantitative and 
unbiased approach. Label-free quantitative mass spectrometry 
has emerged as a powerful tool for sensitive and accurate 
measurement of protein PTM dynamics in a site-specifi c man-
ner (Voolstra et al., 2010; Gunawardena et al., 2011). Herein, 
we adapted this approach to the relative quantitation of phos-
phorylation status in BIK1 mutants vs. the wild-type. 

Six phosphorylated Ser/Thr residues including four in AL 
that are highly conserved in BIK1-related kinases from Arabi-
dopsis and other species (Laluk et al., 2011) were selected for 
site-directed mutagenesis (Fig. 2A). Only phosphopeptides 
that were detected in all experimental replicates of the mutant 
and the wild-type were subjected to quantitation. The four 
phosphorylation sites in AL and four other sites in the kinase 
domain met these criteria and were quantified (Fig. 2A and 
Table S5). Notably, for phosphorylated Ser-233, Ser-236 and 
Thr-237, they are all located in the same peptide sequence 
(226–238) and thus comprise multiple regioisomers of the 
singly-phosphorylated peptide that were inseparable by nano-
UPLC. Therefore, these regioisomers had to be quantifi ed to-
gether, though the fragmentation spectra revealed it was more 
likely to be modifi ed on either Ser-233 or Ser-236 (Fig. S2). 
Phosphorylation of Thr-237 was predominantly detected on 
the di-phosphorylated peptide variant with pSer-236 and pThr-
237, thereby it was quantifi ed based on the signal of this di-
phosphopeptide. Phosphorylation on Thr-242, Ser-252 or Ser-
253 had to be quantifi ed together based on the signal of the 
mono-phosphopeptide although MS/MS data suggested T242 
was the major phosphorylation site (Fig. S2). 

Distinct impact of mutating individual phosphorylation sites 
on the autophosphorylation patterns of BIK1 is illustrated 
in Fig. 2A. Detailed quantitation data reported in Table S5 
showed excellent reproducibility, with all experimental varia-
tions below 15%. The six phosphorylation sites can be divided 
into three groups according to their relative importance for the 
kinase activation. Group 1 includes Thr-237 and Thr-242, of 
which substitution to Ala eliminated or substantially suppressed 
(<30% of the wild-type) phosphorylation at all quantifi ed sites. 
Intriguingly, the phosphomimic mutant of Thr-237 (T237D) 
fully or partially restored phosphorylation levels at most sites 
except S233/S236, whereas T242D mutant remained almost 
completely dephosphoryated at all quantifi ed sites (<5% of the 

In general, plant RLKs are classified as serine/threonine ki-
nases whereas most of the animal cell-surface receptor kinas-
es are tyrosine kinases (Oh et al., 2010). However, a couple 
of plant leucine-rich repeat RLKs such as the brassinosteroid-
insensitive 1 (BRI1) and BAK1 were reported to phosphorylate 
on tyrosine residues in addition to serine/threonine residues 
(Oh et al., 2009, 2010, 2012). Importantly, previous studies im-
plicated that tyrosine phosphorylation plays an important role 
in receptor kinase signaling essential for plant growth and in-
nate immunity (Oh et al., 2009, 2010). Whether BIK1 is a dual-
specifi city kinase and how tyrosine phosphorylation mediates 
its activation remain largely unknown.

In the current study, we identifi ed a number of autophospho-
rylation residues in the kinase domain of BIK1 including three 
tyrosine residues, thereby proving BIK1 is a dual-specifi city ki-
nase for the fi rst time. The distinct impact of specifi c phospho-
rylated residues on BIK1 activation and further phosphorylation 
of a natural substrate BAK1 was explicitly defi ned by an estab-
lished quantitative MS approach (Voolstra et al., 2010; Soderb-
lom et al., 2011). A structural model was built to further illustrate 
the molecular functions of specific phosphorylated residues. 
Given that BIK1 serves as both a kinase and a substrate in the 
FLS2 receptor complex (Fig. 1A), we also mapped the sites of 
FLS2 phosphorylation in the kinase domain by BIK1, as well 
as the sites of BIK1 phosphorylation by BAK1. 

RESULTS
Identifi cation of BIK1 autophosphorylation residues and 
residues phosphorylated by BAK1-CD in vivo

We fi rst sought to identify the autophosphorylation residues of 
the recombinant BIK1 by mass spectrometric analysis. Using 
a sensitive workflow combining phosphopeptide enrichment 
and nan  oLC-MS/MS analysis (Yan et al., 2012), we were able 
to unambiguously map 16 Ser/Thr autophosphorylation sites 
on BIK1 (Fig. 1B, see details of MS analysis in Table S3 and 
Fig. S2). A representative fragmentation spectrum for the iden-
tifi cation of phosphorylated Ser-236 and Thr-237 is shown in 
Fig. 1C. Among these phosphorylated residues, S233, S236, 
T237 and T242 are located in the activation loop (AL) of BIK1 
(Fig. 1B). A BIK1 mutant D202A serves as a kinase-dead mu-
tant (KM) as it disrupts the RD domain essential for the kinase 
function (Johnson et al., 1996; Laluk et al., 2011). Notably, no 
phosphopeptides were detected from BIK1 KM using the same 
approach, indicating all the identifi ed phosphorylation events 
were dependent on the kinase activity.  

BIK1 is known to be a substrate of another multi-functional 
plant RLK, BAK1, within the fl agellin receptor complex initiating 
PTI response in plants (Lu et al., 2010a). We then determined 
the sites on BIK1 KM phosphorylated by BAK1 cytoplasmic 
domain (BAK1-CD), and found them all included in the au-
tophosphorylation sites of BIK1 (Fig. 1B). Although BIK1 was 
associated with the cell-surface receptor FLS2 as well as 
BAK1, and both of them were required for BIK1 phosphoryla-
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approach, therefore, provides a means of measuring phospho-
rylation variation complementary to classical methods.

Given that mutants T242A and T242D displayed strong 
phosphorylation in vivo upon specific elicitation (Lu et al., 
2010a; Laluk et al., 2011), yet they showed very weak au-
tophosphorylation in our assays, we performed an in vitro 
kinase assay to see whether the two mutants could be phos-
phorylated by the active BAK1. Western blot demonstrated 
that the active BAK1-CD rather than BAK1-CD KM was able 
to phosphorylate the two BIK1 mutants (Fig. 2C). Further MS 
analysis revealed transphophorylation occurred on different 
sets of residues in the two mutants (Fig. 2D and Table S6).

Phosphorylation residues of BIK1 have differential impact 
on its kinase activity toward BAK1

The reciprocal phosphorylation between BAK1 and BIK1 al-
lows BIK1 to be not only a substrate but also a kinase of BAK1 
(Lu et al., 2010a) (Fig. 1A). We chose BAK1 as the substrate 
to further unveil the roles of BIK1 phosphorylation in mediating 
its kinase activity. Because of the strong autophosphorylation 
activity of BAK1-CD in vitro, the BAK1-CD KM was used as the 
substrate in the kinase assay. 

BIK1 turned out to phosphorylate BAK1-CD KM on most of 
the residues that were autophosphorylated in BAK1-CD in vitro 

wild-type). These results suggested that any change in these 
two critical residues is likely to disrupt the kinase activity. Group 
2 consists of Ser-233 and Ser-236, for which S-to-A substitu-
tion mainly affected phosphorylation on Ser-233, Ser-236, Thr-
237 and Thr-242. Their effect in mediating the kinase activity 
seems to be more restricted within the activation loop. Group 3 
consists of residues Ser-71 and Ser-206, of which the mutation 
didn’t signifi cantly alter autophosphorylation at any site assessed.

Western blots probing the overall phosphorylation levels of 
BIK1 wild-type and various mutants were in general consist-
ent with our MS-based quantitative comparison (Fig. 2B). The 
phosphomimic mutant T237D did rescue the autophosphoryla-
tion activity on both Thr and Ser residues to a certain extent, 
yet the other mutant T242D had no such effect, which agreed 
well with our findings by MS analysis. The phosphorylation 
levels of Group 2 mutants (S233A and S236A) didn’t differ 
much from those of Group 1 mutants (S71A and S206A) in the 
Western blots. We infer that the abundance of phosphorylation 
on AL residues might not contribute signifi cantly to the overall 
phosphorylation state of the kinase, thereby changes at these 
residues were diffi cult to assess by the anti-pSer/pThr antibod-
ies. Alternatively, the antibodies could bias their specifi city to 
the detection of certain residues, resulting in diffi culties in de-
tecting changes at those “overlooked” residues. Our MS-based 

Figure 2. Phosphorylation residues of BIK1 have distinct impact on its autophosphorylation activity. (A) MS-based quantitation 
of specifi c phosphopeptides from BIK1 mutants relative to the wide-type (WT, defi ned as 100%). Peptides with distinct phosphorylation 
sites are indicated by columns of different patterns. The MS responses of phosphopeptides were normalized to the spiked-in casein pep-
tide. Error bars are STD from three independent experiments. (B) Immunoblot probing overall Thr and Ser phosphorylation levels of BIK1 
(upper); the protein loading control was shown by Coomassie Brilliant Blue (CBB) staining (lower). (C) BAK1-CD phosphorylates BIK1 
T242A and T242D. The BIK1 mutant was incubated with BAK1-CD WT or BAK1-CD KM and its phosphorylation was probed by immuno-
blot (upper). (D) MS-based quantitation of site-specifi c phosphorylation in BIK1 T242A and T242D treated by BAK1-CD (WT or KM). The 
phosphorylation level of each peptide from BIK1 mutants was relative to that from BIK1 WT under the same treatment (defi ned as 100%).
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Thr-446, Thr-449 and Thr-450 by this mutant was signifi cantly 
reduced, and phosphorylation on Thr-333 and Ser-339 was 
completely abolished (Fig. 3A). 

BIK1 and BAK1 phosphorylate a bacterial PAMP-receptor 
FLS2 at different sets of residues

BIK1 and BAK1 are   regarded as two signaling partners of the 
fl agellin receptor FLS2 which collectively initiate plant immune 
defenses against bacterial infection (Chinchilla et al., 2007; Lu 
et al., 2010a; Zhang et al., 2010). The cytoplasmic kinase do-
mains of the two RLKs were reported to phosphorylate FLS2 
in vitro (Lu et al., 2010a; Yan et al., 2012) (Fig. 1A). Whether 
they modify the same residues of FLS2 is unknown. Herein 
we identified the residues in FLS2-CD phosphorylated by 
BIK1 and compared with those by BAK1 reported by our previ-
ous study (Yan et al., 2012). It turned out that the two kinases 
showed differential selectivity in substrate sequences, as sum-
marized in Fig. 3C (detailed MS data in Table S8 and Fig. S3). 
Two residues (Ser-906 and Ser-1115) in the kinase domain of 
FLS2 were phosphorylated by both kinases, and other resi-
dues were distinctly targeted by a specifi c kinase. All of these 

(Yan et al., 2012), including the four Ser/Thr residues in its AL 
also phosphorylated in vivo upon brassinolide treatment (Wang 
et al., 2008). Notably, Thr-455 in BAK1 AL phosphorylated by 
BIK1 was shown to be critical for BAK1 kinase activity as well 
as its function in BR and fl agellin signaling (Wang et al., 2008). 
It indicates a potential role of BIK1 in enhancing BAK1 activity 
through transphosphorylation. Site-directed mutagenesis on in-
dividual phosphorylation sites of BIK1 differentially affected its 
kinase activity toward BAK1 substrate, revealed by our quanti-
tative MS analysis (Fig. 3A and Table S7) as well as immuno-
blot (Fig. 3B). The impact of the six selected residues on BIK1 
activity of phosphorylating BAK1 was generally in accord with 
their impact on BIK1 autophosphorylation activity. Mutation on 
Group 1 residues (T237A and T242A) significantly reduced 
phosphorylation on almost all seven quantifi ed sites in BAK1, 
and T237D was able to restore phosphorylation on Ser-290 
and Thr-455 in BAK1 to the wild-type level (Fig. 3A). Mutants 
of Group 2 and Group 3 residues showed intermediate to mini-
mal effect in suppressing phosphorylation of BAK1, with a few 
or no sites affected. Unexpectedly, the activity of mutant S71A 
was disrupted to a larger extent in regard to phosphorylation of 
the substrate than autophosphorylation. Tri-phosphorylation on 
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ent Tyr mutants. BIK1 wild-type strongly cross-reacted with a 
widely-used anti-phosphoTyr antibody (Oh et al., 2009, 2010), 
and both the inactive mutant (D202A) and pre-treatment with a 
protein tyrosine phosphatase (PTP1B) eliminated the recogni-
tion by the anti-phosphoTyr antibody (Fig. 4A). These results 
confirmed tyrosine autophosphorylation occurring in BIK1 
which depended on its kinase activity. Substitution of Y250 with 
Phe strongly inhibited the kinase activity, indicated by complete 
loss of cross-reactivity with anti-phosphoTyr antibodies and 
reduced recognition by anti-phosphoSer and anti-phosphoThr 
antibodies (Fig. 4B). Furthermore, relative quantitation by MS 
analysis revealed that autophosphorylation on the majority of 
Ser or Thr residues were all signifi cantly reduced in this mutant 
except on Thr-242 (Fig. 4C and Table S10). Notably, the bio-
chemical data alone cannot fully address whether this residue 
is an autophosphorylation site because of the suppressed 
kinase activity. Our high-quality MS data, however, provided 
complementary evidence to support the notion that phospho-
rylation on Y250 plays an important role in BIK1 activation. 
Substitution of Y214 with Phe reduced tyrosine autophospho-
rylation but retained a signifi cant portion of kinase activity on 
serine and threonine residues, shown by immunoblot (Fig. 4B). 
MS quantitation suggested the kinase activity of this mutant 
was partially disrupted in that autophosphorylation on Ser-202, 
Ser-233/236 and Thr-242 was signifi cantly reduced or elimi-

phorphorylation sites are located in the intracellular kinase do-
main of FLS2 (out of the AL). 

Identifi cation and functional analysis of BIK1 tyrosine 
phosphorylation 

In our LC-MS/MS analysis of phosphopeptides derived from 
the active BIK1, we were excited to identify three peptides dis-
tinctively phosphorylated on Y168, Y214 and Y250 in multiple 
replicates (Fig. 1B). The high-accuracy mass measurement 
(mass error <10 ppm) as well as high-quality MS/MS spectra 
strengthened our confidence in the assignment of modifica-
tion sites (Table S9 and Fig. S4). Manual inspection of the MS 
spectra further confi rmed the presence of phosphates on Y168 
and Y214, yet phosphorylation on Y250 was not unambiguous-
ly assigned (Fig. S4C). Because the initial analysis was per-
formed on purifi ed peptides mostly carrying Ser/Thr-phospho-
rylation, we then biased the enrichment scheme using an anti-
phosphotyrosine antibody (Boersema et al., 2010) and were 
able to repetitively identify peptides carrying phosphates on 
Y214 and Y250 (data not shown). Therefore, our confi dence in 
identifi cation of tyrosine phosphorylation was increased by the 
specifi city in peptide enrichment.   

To further validate these identified phosphoTyr sites and 
investigate their specifi c roles, we carried out biochemical as-
says and quantitative MS analysis on the wild-type and differ-
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Figure 4. BIK1 is autophosphorylated on Tyr residues. (A) Detection of Tyr phosphorylation in BIK1 by immunoblotting with antiphos-
photyrosine (anti-pY) antibodies. Pretreatment of BIK1 with a phosphotyrosine-specifi c phosphatase (PTP1B) eliminated the immunoblot 
signal, indicating specificity of the detection. BIK1 KM did not autophosphorylate on Tyr as indicated by the lack of anti-pY signals. Protein 
abundance was visualized by CBB staining. (B) Immunoblot probing overall Tyr, Thr and Ser phosphorylation levels of BIK1 (upper). 
(C) MS-based quantitation of specifi c phosphopeptides from BIK1 mutants relative to the wide-type MS-based quantitation of specifi c 
phosphopeptides from BIK1 mutants relative to the WT (defi ned as 100%). Peptides with distinct phosphorylation residues are indicated 
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rectly mediating the kinase activity, particularly for those residues in 
the less conserved N- and C-terminal regions (Laluk et al., 2011).

BIK1 is an RD-kinase and phosphorylation of the activation 
loop often is required for the activation of RD-kinases (Nolen 
et al., 2004). Our study identifi ed autophosphorylation on the 
AL residues Ser-236, Thr-237 and Thr-242 which were found 
to be important for the in vivo kinase activity as well as for BIK1 
functions in a variety of plant immune responses (Laluk et al., 
2011). It merits a note that we found D substitution of Thr-242 
didn’t restore BIK1 auto- or trans-phosphorylation patterns in 
vitro. Furthermore, another mutant (Y214F) with completely 
removed phosphorylation on Thr-242 was still able to phos-
phorylate itself on several residues although the T242A mutant 
completely abolished autophosphorylation on all major sites. 
Based on these results, we speculate that the side chain of 
Thr-242, probably its hydroxyl group, is more likely to play a 
key role in maintaining the kinase activity than its phosphate 
moiety. Interestingly, the phosphomimic mutant T242D was 
shown to retain in vivo kinase activity and enhance plant resist-
ance to microbial infection (Laluk et al., 2011). Furthermore, 
previous results for the induced in vivo kinase activity of T242A 
were controversial, depending on the type of elicitor (Lu et al., 
2010a; Laluk et al., 2011). Because our data suggested both 
mutants T242A and T242D abolished kinase activity in vitro, 
we speculate their phosphorylation observed in vivo might 
be mediated by other RLKs (such as BAK1) involved in the 
signaling complex. Our study demonstrated that active BAK1-
CD was able to transphophorylate BIK1 T242A and T242D 
(Fig. 2C and 2D) on different sets of residues. 

Although the crystal structure of BIK1 remains undeter-
mined, the sequence homology between BIK1 and BAK1 as 
well as their overlapping functions in signal integration from 
multiple receptors enables us to discuss the plausible function 
of these phosphorylation residues based on a modeled three-
dimensional structure of BIK1 (Fig. 6B). Thr-242, which is the 
counterpart of Thr-455 in BAK1, plays an essential role in the 
kinase activity of BIK1. This position is highly conserved in 
plant Ser/Thr kinase family and its phosphorylation is known to 

nated. The remaining signal in the phosphoTyr immunoblot on 
Y214F indicated there is one (or multiple) additional phospho-
tyrosine residue(s) which could include Y250. Substitution of 
Y168 with Phe resulted in little change of either phosphoTyr 
signal or phophoSer/Thr signal by immunoblot (Fig. 4B), con-
sistent with the quantitative MS analysis showing no signifi-
cant suppression of phosphorylation on Ser or Thr residues 
(Fig. 4C). These results suggested this tyrosine residue is not 
essential for the autophosphorylation activity. Although the im-
munoblot data by itself indicated Y168 is not a major site of ty-
rosine phosphorylation, our confi dent identifi cation suggested 
this modifi cation may have evaded detection by the antibody 
due to low stoichiometry. 

The impact of tyrosine phosphorylation on BIK1 activ-
ity toward BAK1-CD KM was less evident than that on BIK1 
autophosphorylation. Both mutants Y214F and Y250F signifi -
cantly reduced phosphorylation of BAK1-CD KM on specifi c 
residues such as Thr-446, Thr-333 and Ser-339 (Fig. 5A and 
Table S11), and the overall inhibitive effect of Y250F was more 
profound than of Y214F (Fig. 5B). The third mutant Y168F 
phosphorylated the substrate on each residue almost as suf-
fi ciently as the wild-type (Fig. 5A).    

DISCUSSION
The phosphorylated Ser/Thr residues of BIK1 selected for 
mutagenesis are highly conserved among RLCK VII subfam-
ily members whereas other Ser/Thr residues identifi ed in our 
study are not (Fig. 6A). As we anticipated, the loss of autophos-
phorylation activity in different mutants generally correlated with 
the loss of their kinase activity toward a natural substrate BAK1 
(Fig. 3A), suggesting the differential impact mostly stems from 
variation in the kinase activity. An exception, however, was the 
mutant S71A which retained autophosphorylation activity on 
all the residues assessed yet lost its capability to phosphoryl-
ate certain residues in the substrate (e.g. Thr-333, Ser-339 in 
BAK1-CD). This finding may support a previous notion that 
phosphorylation of KD residues could confer specifi city in the 
substrate sequence by creating docking sites in addition to di-
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Autophosphorylation on tyrosine residues of BIK1 in vitro 
was directly identifi ed by our MS analysis and verifi ed by bio-
chemical analysis of site-directed mutants. These phosphoTyr 
residues (Tyr-168, Tyr-214 and Tyr-250) are highly conserved 
among RLCK VII subfamily members (Fig. 6A). Tyrosine phos-
phorylation in two other functionally-important plant LRR-RLKs, 
BAK1 and BRI1, have been shown to be critical for regulating 
their functions in multiple signaling pathways for plant growth 
and immune defenses (Oh et al., 2009, 2010). Sequence 
alignment showed Tyr-250 in BIK1 was also conserved in 
BAK1 (Tyr-463) and BRI1 (Tyr-1057). When this tyrosine was 
substituted with Phe, tyrosine phosphorylation was eliminated 
and the overall kinase activity was largely suppressed in BAK1 
and BRI1 (Oh et al., 2009, 2010), agreeing well with our fi nd-
ing on BIK1 Y250F. It remains unclear, however, whether the 
phosphate group or the hydroxyl group of this particular tyros-
ine plays an important role in kinase activation. Substitution of 
another phosphorylated residue Tyr-214 with Phe signifi cantly 
suppressed autophosphorylation on several residues including 
Thr-242, while retaining kinase activity toward most other resi-
dues. According to the structural model, the long distance from 
these tyrosine residues to the catalytic site and the substrate-
binding site indicates that they are less likely to be directly in-
volved in the catalytic reaction. Instead, they might play certain 

be critical for BAK1 kinase activity (Wang et al., 2008; Yan et 
al., 2012). Moreover, the phosphate moiety of Thr-455 makes 
crucial contribution to stabilizing the conformation of the acti-
vation loop as well as potentially mediates substrate binding 
of BAK1 (Yan et al., 2012). By contrast, this highly conserved 
threonine residue in another two Ser/Thr kinases IRAK-4 
(Thr-351) and PHK (Thr-186) is not phosphorylated and still 
interacts with the relevant catalytic residues (Lowe et al., 1997; 
Wang et al., 2006). Taken together, it is a reasonable specula-
tion that Thr-242 in BIK1 contributes to the kinase activation 
in the same way as Thr-455 in BAK1, and its phosphate may 
be responsible for fine-tuning the substrate specificity. Ser-
236 is the counterpart of Thr-450 in BAK1, which also carries a 
phosphate in the BAK1 crystal structure. Our biochemical data 
suggested Ser-236 plays a less important role than Thr-237 
for BIK1 activation in vitro, though their counterparts in BAK1 
are equally essential for the kinase activity (Yan et al., 2012). 
An authentic 3D structure of BIK1 is expected to shed more 
light on the structural relations and functional roles of these two 
phosphorylated residues. In addition, our structural model sug-
gests Ser-71 may be located in the N-lobe and closed to the 
P-loop of BIK1 (Fig. 6B), phosphorylation of this residue could 
possibly affect the conformation of the P-loop as well as the 
substrate specifi city of BIK1.
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Figure 6. Sequence comparison and a modeled structure 
of BIK1. (A) Sequence comparison of residues in BIK1 and 
related kinases. Bold white residues are phosphosites sub-
jected to mutagenesis in this study. (B) The structure of BIK1 is 
modeled based on the reported crystal structure of BAK1-CD. 
N-lobes, C-lobes and the activation loop are indicated as blue, 
green and red, respectively. The key phosphorylation residues, 
together with the phosphates, are shown by color sticks. 
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with ATP (0.1 mmol/L) at 30°C for 3 h to fulfi ll autophosphorylation. 
For the kinase activity assay, BAK1 KM or FLS2-CD (1 μg/μL) were 
incubated with BIK1 wild-type or mutants (0.1 μg/μL) in the kinase 
buffer (20 mmol/L Tris-HCl, pH 7.5, 10 mmol/L MgCl2, 5 mmol/L EDTA, 
100 mmol/L NaCl and 1 mmol/L DTT) supplemented with 0.1 mmol/L ATP 
at 30°C for 3 h with gentle shaking. After the kinase reaction, proteins 
were separated on 12% SDS-PAGE and the overall phosphorylation 
was analyzed using an anti-phosphoSer (Millipore, USA), anti-phos-
phoThr or anti-phosphoTyr antibody (Cell Signaling, USA). For BIK1 
dephosphorylation reaction, it was incubated with a phosphotyrosine 
phosphatase PTP1B in 50 mmol/L HEPES, 10 mmol/L NaCl and 10% 
glycerol (pH 7.2) at 25°C for 2 h, then the mixture was separated on 
SDS-PAGE and immunoblotted using an anti-phosphoTyr antibody. 
PTP1B was prepared according to a published protocol (Hoppe et al., 
1994). 

Sample preparation and nanoUPLC-MS/MS analysis

After the kinase reaction, the protein was treated with DTT (10 mmol/L, at 
30°C for 1 h) followed by iodoacetamide (40 mmol/L, for 30 min in the 
dark) to reduce and alkylate cysteine residues. Heat-denatured protein 
was in-solution digested with sequencing-grade trypsin (Promega, 
USA) at a ratio of 1:50 (E:S) overnight. Beta-casein digest was spiked 
into the BIK1 tryptic digest as the internal standard for MS quantita-
tion. Phosphopeptides in the tryptic digests were enriched with TiO2 
microcolumns (GL Sciences, Japan) according to the manufacturer’s 
instruction. Briefly, the protein digest was mixed with loading buffer 
(25% lactic acid, 80% acetonitrile, 0.3% trifl uoric acid) and loaded into 
the conditioned TiO2 microcolumn through repetitive pipetting and cen-
trifugation (1000 g, 10 min). After washing the microcolumn with buffer B 
once and with buffer A twice, the bound phosphopeptides were fi rst 
eluted with 50 μL elution buffer I (20 μL 28% ammonium hydroxide in 
480 μL ddH2O), followed by elution with 50 μL and 30 μL elution buffer II 
(500 mmol/L NH4OH/60% acetonitrile). Each elution was conducted 
through centrifugation at 1000 g for 5 min. The eluates were dried in 
a speed vacuum and reconstituted in 0.1% formic acid/H2O for MS 
analysis. Typically 5 μg of protein digest was prepared and enriched, 
with 1/3 of the total amount injected for nanoLC-MSE analysis.

Peptide samples were fi rst loaded onto a Waters Symmetry C18 
trapping column (300 μm i.d. × 1 cm length) using Waters NanoAcquity 
UPLC system. After desalting and preconcentration, peptides were 
separated by in-line gradient elution onto a 100 μm i.d. × 10 cm col-
umn packed with 1.7 μm BEH C18 material (Waters, Milford, USA) at a 
fl ow rate of 400 nL/min using a linear gradient from 2% to 35% B over 
30 min (A = 0.1% FA in H2O, B = 0.1% FA in ACN). The Waters Synapt 
Q-IM-ToF G1 mass spectrometer was operated in high-defi nition MSE 
mode (high- and low-collision energy switching every 1.0 s), and the 
data were processed with ProteinLynx Global Server (PLGS version 
2.4, Waters) to reconstruct MS/MS spectra by combining all masses 
with a similar retention time. MS/MS spectra were searched against 
an in-house database consisting of the sequences of BIK1-CD, BAK1-
CD and FLS2-CD and the entire proteome sequences of E. coli using 
PLGS with the following parameters: peak width, 0.3 min; MS and 
MS/MS tolerance, automatic (typical mass error <10 ppm for MS and 
<30 ppm for MS/MS); trypsin missed cleavages, 1; fixed modifica-
tion, carbamidomethylation; variable modifi cations, Met oxidation and 
phosphorylation of Ser, Thr, or Tyr; at least 5 independent product ions 
assigned for a peptide identifi cation. The false positive rate was <1% 

roles in BIK1 interaction with other components in the signaling 
complex.

Our study focusing on the in vitro phosphorylation profi le of 
BIK1 has raised a few interesting questions for future study: 
1) Does the in vitro result refl ect the in vivo phosphorylation of 
BIK1? 2) What is the stoichiometry of phosphorylation of each 
site? 3) Although FLS2 doesn’t show kinase activity by itself, 
would it be possible that the presence of BIK1 or BAK1 acti-
vate FLS2 in the complex? Profi ling BIK1 in vivo phosphoryla-
tion patterns presumably induced by different endogenous or 
environmental cues and solving its actual 3D structure would 
signifi cantly further our understanding of how phosphorylation 
of specifi c sites contributes to BIK1 activation and mediates 
downstream signaling specifi city.  

MATERIALS AND METHODS 

Plasmid constructs and generation of recombinant proteins 

Arabidopsis BIK1, BAK1, and FLS2 genes were amplified by PCR 
from Col-0 cDNA library. The open reading frame of BIK1 (encod-
ing residues 39–372) was cloned into pET-28a vector with an N-
terminal 6× His tag. The DNA sequences that encode the cytoplas-
mic domain of FLS2 (residues 841–1173, FLS2-CD) and BAK1 
(residues 259–583, BAK1-CD) were cloned into a modified pET-
28b, pGEX-6p-1, respectively. BIK1 and BAK1 point mutations were 
generated using a site-specific mutagenesis kit (TransGen Biotech, 
Beijing, China). The primer sequences for BIK1 and BAK1 point 
mutations are listed in Table S1. The plasmid was transformed into 
E. coli strain BL21 (DE3), and the transformed cells were cultured at 
37°C in LB media containing 100 mg/L kanamycin or ampicillin. After 
OD600 reached 0.8, the culture was cooled to 16°C and supplemented 
with 0.2 mmol/L IPTG. After overnight induction, the cells were harvest-
ed through centrifugation at 6000 g and the pellets were resuspended 
in specifi c lysis buffer: 20 mmol/L HEPES (pH 7.0), 300 mmol/L NaCl, 
4 mmol/L MgCl2 and 5% Glycerin for preparing BIK1; 20 mmol/L 
Tris-HCl (pH 8.0), 1 mol/L NaCl, 4 mmol/L MgCl2 and 5% Glycerin 
for preparing FLS2; 20 mmol/L Tris-HCl (pH 8.0), 150 mmol/L NaCl, 
4 mmol/L MgCl2 and 5% Glycerin for preparing BAK1. Cell lysates 
were homogenized at 4°C using an ultra-high-pressure cell disrupter 
(JNBIO, Guangzhou, China) mounted on an ultrasonic cell disrup-
tion system (SCIENTZ, Ningbo, China). The insoluble material was 
removed through centrifugation at 14,000 g. The fusion protein BIK1, 
its kinase-dead mutant (BIK1 KM, D202A) and FLS2-CD were first 
purifi ed by Ni-NTA affi nity chromatography and eluted with imidazole in 
the corresponding lysis buffer. Then the protein was further purifi ed by 
passage through a Heparin column (GE Healthcare, USA) for BIK1 or 
a Superdex-200 column (GE Healthcare) for FLS2 preparation. BAK1-
CD wild-type and kinase-dead mutant (BAK1-CD KM, N421A) were 
fi rst purifi ed with glutathione agarose beads, exchanged to the lysis 
buffer and then further purifi ed using a Mono-Q ion-exchange column 
according to the manufacturer’s instructions (GE Healthcare). All puri-
fi ed proteins were concentrated to 10 mg/mL by ultrafi ltration using 10-KD 
Amicon Ultra (Millipore, USA) and stored at -80°C. 

In vitro kinase reaction, phosphatase treatment and Western blot 
analysis 

The recombinant BIK1 and its mutants (1 μg/μL) were incubated 
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at both the protein and peptide levels.
Phosphosite identifi cation had to meet the following requirements: 

(1) phosphopeptides were identifi ed with a confi dence >95% and a 
PLGS peptide score >6; (2) the mass error of the peptide precursor 
was below 10 ppm; (3) the MS/MS spectrum was manually inspected 
to confi rm neutral loss and specifi c fragment ions critical for assigning 
the modification sites; and (4) phosphorylation sites were assigned 
consistently in at least three experimental replicates.  

Label-free quantitation of relative changes of phosphorylation on 
specifi c sites

The quantitative responses of phosphopeptides were measured based 
on the peak areas of the extracted ion chromatograms (XICs) with de-
fi ned peptide precursor m/z values. Peptide XIC extraction and peak 
area calculation were performed using MassLynx software (Waters), 
with peptide precursor mass tolerance of 0.02 m/z and retention time 
shift less than 0.15 min. We selected the most abundant peptide vari-
ant of a given charge state instead of combining variants of different 
charge states for quantitation as pointed out by Xian and cowork-
ers (Gunawardena et al., 2011). To demonstrate the consistency of 
quantitation between one variant-based and multiple variants-based 
methods, we analyzed phosphorylation levels of a BIK1 mutant (S233A) 
relative to the wild-type using two methods and acquired almost identi-
cal quantitation data for all phosphopeptides (Table S2 and Fig. S1). 
The doubly-charged phosphopeptide FQpSEEQQQTEDELQDK from 
beta-casein (at 1031.415 m/z) was used as the internal standard to 
normalize the XIC peak response of the other phosphopeptides in the 
sample. For BIK1 autophosphorylation analysis, the normalized XIC 
responses of specifi c phosphopeptides from BIK1 mutants were com-
pared with the counterparts from the wild-type in order to calculate per-
centage of changes. For the analysis of BAK1-CD KM phosphorylated 
by BIK1, the normalized XIC responses of specifi c phosphopeptides 
from BAK1-CD KM treated by individual BIK1 mutants were compared 
with the counterparts from BAK1-CD KM treated by the wild-type BIK1 
to calculate percentage of changes. We defined more than 2-fold 
changes of phosphorylation to be signifi cant (i.e. above 200% or below 
50% of the wild-type). Three independent replicates were performed to 
calculate CV% of the relative quantitation.
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