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Aging and aging related diseases, 
characterized by gradual deterioration 
of functional capabilities and ultimate 
death, have been a fi eld attracting in-
tense interest over centuries. Epigenet-
ics is the study of hereditable phenotypic 
changes that regulate genetic informa-
tion without DNA sequence alterations 
including DNA methylation, histone 
modifications, chromatin remodeling 
and non-coding RNAs. Interestingly, a 
growing body of evidence supported a 
strong correlation between aging and 
epigenetic regulation. It was suggested 
that epigenetic mechanism played a 
critical role in aging and aging related 
diseases and was even perceived as a 
candidate hallmark of aging (Lopez-Otin 
et al., 2013). In particular, alterations 
in DNA methylation pattern have been 
reported to be linked with chronological 
aging process in human studies. For 
instance, a longitudinal study revealed a 
global loss of DNA methylation particu-
larly in the repetitive elements (such as 
Alu) during aging (Bollati et al., 2009). 
Subsequent study further discovered 

that DNA was hypermethylated located 
near tissue-specifi c CpG islands; where-
as hypomethylation was significantly 
associated with none CpG-island region 
during aging by looking at the methyla-
tion profi les (Christensen et al., 2009). 
A more detailed study on methylome of 
CD4+ T cells in newborns and cente-
narians confi rmed Christensen et al.’s 
fi nding and added that there was a less 
DNA methylation content and a reduced 
correlation of neighboring CpG methyla-
tion status in centenarians relative to 
newborns (Heyn et al., 2012). Moreover, 
Gentilini et al.’s study indicated a delay 
of global methylation decrease in the 
centenarians’ offspring in comparison 
with those of non-lived parents. More 
interestingly, those two groups also 
exhibited different methylation profiles 
in genes involved in RNA/DNA biosyn-
thesis, metabolism, and signal transmis-
sion (Gentilini et al., 2012). The above 
evidence suggests that changes to DNA 
methylation landscape were associated 
with aging. Nevertheless, systematic de-
scription and quantitative measurement 

of DNA methylome as well as how it af-
fects aging are yet-to-be revealed.

Hannum et al. made noteworthy pro-
gress in addressing these questions. In 
order to fi nd methylation markers related 
to aging, the group built a quantitative 
model among 485,577 CpG markers to 
describe the aging rate of individuals. 
They found 15% of these markers were 
related to aging, and then they com-
pared their result with Heyn et al.’s study 
and screened 53,670 sites. To pick out 
more relevant aging-related markers, 
the group applied predictive model of 
Elastic Net (Zou and Hastie, 2005) along 
with bootstrap approaches, and identi-
fi ed 71 methylation markers. Then, the 
group built their aging model with these 
71 markers and employed various tissue 
samples to validate it. The authors spe-
cifi cally noted that nearly all these mark-
ers are located nearby or within genes 
that have known functions in aging or 
aging-related diseases. The group made 
a thorough analysis of these markers on 
both gene and methylation profiles to 
identify the relationship between these 

Hannum and colleagues performed DNA methylation sequencing to examine the relationship between 
DNA methylome and aging rate. Notably, they succeeded in building a quantitative and reproducible 
model based on the epigenetic bio-markers to predict aging rate with high accuracy. This progress en-
lightens us in many aspects particularly in applying this novel set of bio-markers on studying the mech-
anism of aging rate using adult tissue-specifi c stem cells, building up a potential quantitative model to 
explore the mechanism for other epigenetic factors like non-coding RNA, and understanding the princi-
ple and mechanism of 3D chromatin structure in epigenetic modulation.



Pr
ot

ei
n 

   
 C

el
l

&
Ming Li et al.  NEWS AND VIEWS

724 | October 2013 | Volume 4 | Issue 10    © Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

aging-related methylation markers and 
aging-related genes. 

It is worthwhile to highlight that the 
group is the fi rst to succeed in building 
a quantitative, strong and reproducible 
epigenetic model as biomarker irrelevant 
of tissue-specifi city and gender variants 
to predict biological aging rate with high 
accuracy. In addition to aging rate predi-
cation, this model can also be applied 
to identify individuals who do not follow 
the expectation. It is worth noting that 
the technical improvement made in the 
experimental design. The study chose 
a large cohort of individuals (656) with 
a broad age range from 19 to 101 and 
also applied the fi nding to another large 
cohort of individuals. Their key fi nding 
obtained from blood sample was also 
validated in various tissue samples. No-
tably, they were also the fi rst to reveal 
the intertwined relationship between 
genes and aging methylome. They 
confi rmed the previous hypothesis that 
certain genetic variants (such as DNA 
repair related genes) broadly infl uenced 
aging methylome and disclosed that 
age-associated methylome changes 
could be an indicator of change in gene 
expression patterns. The authors also 
provided a well-grounded evidence 
and explanation on epigenetic drift, an 
interesting concept which premises that 
individuals share similar methylome at 
younger age; as accumulating changes 
during aging, the methylomes become 
divergent. 

Though the study did not confirm 
the causal link between DNA methyl-
ome and aging, Hannum et al.’s study 
inspires to explore these questions in 
several aspects. To start with, this quan-
titative model could be perceived as a 
promising aging biomarker to study the 
effect of environmental cues on aging 
and aging-related diseases. Particularly, 
this quantitative model highly correlates 
with functional gene expression pat-
terns. Telomere length has been dem-
onstrated as a successful biomarker of 
aging in human (Harley et al., 1990), 
but it is far from an ideal biomarker due 
to heterogeneity, mosaicism as well as 
difference on proliferating capability, 
especially when it comes to adult stem 

delicate model to predict aging. Similarly, 
such model can also be used as bio-
marker for aging study in model systems 
like human induced pluripotent stem 
cells and adult stem cells etc. and be 
applied to study mechanisms and estab-
lish a potential link between epigenetic 
modulation, genomic instability, and ag-
ing (Liu et al., 2011a, 2011b; Han and 
Brunet, 2012; Liu et al., 2012a, 2012b; 
Inukai and Slack, 2013). By exploring 
these relationships, we can build an 
aging-related epigenetic network so that 
a better understanding and theoretical 
studies of epigenetic factors essential 
for aging can be achieved. With regards 
to regenerative medicine, as corrections 
on alterations of genomic sequences 
have not been proved effi cient so far, we 
hope that epigenetic rejuvenation would 
be a better solution for aging and aging-
related diseases.
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