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AB  STRACT

SI  RT6 is an important histone modifying protein that 
regulates DNA repair, telomere maintenance, energy me-
tabolism, and target gene expression. Recently SIRT6 
has been identifi ed as a tumor suppressor and is down-
regulated in certain cancer types, but not in other can-
cers. From deposited gene profi ling studies we found that 
SIRT6 was overexpressed in prostate tumors, compared 
with normal or paratumor prostate tissues. Tissue micro-
array studies confi rmed the higher levels of SIRT6 in both 
prostate tumor tissues and prostate cancer cells than in 
their normal counterparts. Knockdown of SIRT6 in human 
prostate cancer cells led to sub-G1 phase arrest of cell cy-
cle, increased apoptosis, elevated DNA damage level and 
decrease in BCL2 gene expression. Moreover, SIRT6-de-
fi ciency reduced cell viability and enhanced chemothera-
peutics sensitivity. Taken together, this study provides the 
fi rst evidence of SIRT6 overexpression in human prostate 
cancer, and SIRT6 regulation could be exploited for pros-
tate cancer therapy. 

KEYWORDS    SI    RT6, overexpression, prostate cancer, 
th  erapy

INTRODUCTION
Prostate cancer, which has the second highest morbidity and 
sixth highest mortality rate among all male cancer types world-
wide, is a serious threat to men’s health (Jemal et al., 2011). 
Treatment options for prostate cancer usually involve active 

surveillance, surgery, radiation therapy, hormonal therapy and 
chemotherapy. Currently, hormone-refractory prostate cancer, 
which has been proved to be of heterogeneous morphology, 
immunophenotype, and genotype, remains a treatment chal-
lenge (Shah et al., 2004).

The sirtuin protein (SIRT1–7) family has been implicated in 
diverse physiological processes, as well as aging-associated 
diseases (Haigis and Sinclair, 2010). SIRT6 is predominantly 
concentrated in heterochromatic regions of the nucleus (Liszt 
et al., 2005; Michishita et al., 2005; Mostoslavsky et al., 2006), 
with conserved NAD-dependent protein deacetylase activity 
and ADP-ribosyltransferase ability (Liszt et al., 2005). SIRT6 
is required for maintaining genomic stability (Xie et al., 2012; 
Cardus et al., 2013) and involved in base excision repair (BER) 
or DNA double-strand break (DSB) repair in response to geno-
toxic and oxidative stress (Kaidi et al., 2010). SIRT6 functions 
as a histone H3K9Ac deacetylase to repress the transcription 
factors HIF1α, NF-κB and c-  Jun and their target genes that are 
involved in apoptosis, inflammation, metabolism and senes-
cence (Kawahara et al., 2009; Zhong et al., 2010; Kawahara 
et al., 2011; Sundaresan et al., 2012; Xiao et al., 2012). SIRT6 
has been found to be therapeutically effective on age-related 
metabolic diseases largely through the infl uence on HIF1α tar-
get gene expression (Zhong et al., 2010) and IGF1R-IR/PI3K/
AKT/mTOR pathway regulation (Kawahara et al., 2011). 

Ca  ncer can be considered as an age-associated disease 
as well, with multiple hallmarks including sustained proliferative 
signaling, reprogramed energy metabolism and the involve-
ment of infl ammation (Hanahan and Weinberg, 2011). SI  RT6 
has been recently claimed to be a tumor suppressor due to 
observations that SIRT6 is downregulated in certain human 
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cancers and SIRT6 deficiency causes increased glycolysis 
and tumor growth (Sebastian et al., 2012). Ac  cordantly, over-
expression of SIRT6 in multiple cancer cells induces apoptosis 
mediated by p53 and p73 signaling pathway (Van Meter et 
al., 2011). At the initiation stage of liver cancer, c-Fos induces 
SIRT6 transcription, which inhibits the activity of survivin and 
impairs cancer development (Min et al., 2012). However, it was 
shown recently that, in pancreatic cancer, SIRT6 promotes pro-
infl ammatory cytokines expression through regulation of Ca2+ 

responses (Bauer et al., 2012). How SIRT6 regulates cancer 
development in different tissue types possibly relates to the 
cellular context and origin of the cancers. For prostate cancer, 
the role of SIRT6 remains undetermined. 

In our study, we have used both prostate tumor tissues and 
prostate cancer cell lines to study the roles of SIRT6. Following 
the detection of a higher level of SIRT6 in prostate tumor tis-
sues and prostate cancer cell lines, we used PC-3 and DU145 
cells as a model to study the effects of SIRT6 knockdown on 
the cancer cells with respect to cell proliferation, cell cycle, 
apoptosis, DNA damage level, BCL2 gene expression and 
resistance to chemotherapeutics. Moreover, Kaplan-Meier 
analysis of the data archived in Oncomine indicated that high 
SIRT6 expression associated with unfavorable overall survival 
and recurrence-free survival (Taylor et al., 2010). Our fi ndings 
uncover some of the functions of SIRT6 that are essential for 
prostate cancer progression, and might provide a new ap-
proach on prostate cancer therapy.

RESULTS
SIRT6 overexpression in both prostate tumor tissues and 
prostate cancer cell lines 

To investigate the role of SIRT6 in prostate cancer progression, 
we queried the NCBI’s GEO datasets. Microarray analysis of 
prostate cancer profi les (GSE6919) revealed that SIRT6 was 
higher expressed in metastatic prostate tumors, compared with 
normal or paratumor prostate tissues or even primary prostate 
tumors (Figs. 1A and S1). In Oncomine database (http://www.
oncone.org), th  e similar results were found (Taylor et al., 2010) 
that SIRT6 mRNA level was higher in prostate carcinoma than 
in prostate gland (Fig. 1B). We examined SIRT6 expression on 
prostate cancer tissue arrays with 25 paired human prostate 
cancer tissues and corresponding prostate tissues. Highest 
level of SIRT6 was detected in the nucleoplasm of prostate 
cancer epithelial cells, with a diffusive pattern that also perme-
ated the cytoplasm of these cells. Lower level of SIRT6 was 
also found to be scattered in the interstitial tissues (Fig. 1C). All 
in all, the immunohistochemical analyses showed there was 
a signifi cantly higher level of SIRT6 in prostate tumor tissues 
compared with paired paratumor tissues in the prostate cancer 
tissue arrays (Fig. 1C and 1D). We then screened the levels 
of SIRT6 protein in different prostate cancer cell lines (PC-3, 
DU145, 22RV1 and LNCaP), together with the human benign 
prostate hyperplasia cell line (BPH-1) and normal prostatic epi-

thelial cell line (RWPE-1) by Western blot analysis. SIRT6 level 
was signifi cantly higher in prostate cancer cells than in benign 
prostate hyperplasia cells and in normal prostatic epithelial 
cells (Fig. 1E). 

To test the correlation of SIRT6 expression with survival of 
postoperative prostate cancer patients, we performed a com-
prehensive analysis of SIRT6 expression from the previously 
published database in Oncomine (Taylor et al., 2010). Survival 
data were available for 138 patients. The average survival time 
for the patient with SIRT6 high expression was 64 months, 
while for the SIRT6 low expression was 104 months. The 
Kaplan-Meier survival analyses showed that patients with high 
SIRT6 expression were likely to have shorter overall survival 
(P < 0.0001) and recurrence-free survivals (P < 0.0001) (Fi  g. 2).

Down-regulation of SIRT6 expression reduces cell growth 
and induces apoptosis in prostate cancer cells

To further investigate the biological role of SIRT6 in the pros-
tate cancer cells, we used RNAi approach to repress SIRT6 
expression in prostate cancer cell lines PC-3 and DU145. Both 
SIRT6 and SIRT1 have been shown to be predominantly lo-
cated in the nucleus (Michishita et al., 2005), attenuate NF  -κB 
signaling pathways (Kawahara et al., 2009) and repress HIF1α 
transcriptional activity (Zhong et al., 2010). In order to confi rm 
that SIRT6 silencing was effective and selective, Western blot 
analysis of SIRT6 and SIRT1 protein levels in SIRT6 knock-
down cells and negative control (NC siRNA) cells was per-
formed. SIRT6 protein level but not SIRT1 was reduced both 
in PC-3 and DU145 cells (Fig. 3A). We   then tested how the re-
duced level of SIRT6 in prostate cancer cells would affect cel-
lular functions. PC-3 and DU145 cells were cultured and trans-
fected with either NC siRNA or SIRT6 siRNA, and cell number 
was counted. SIRT6-knockdown in both cell lines reduced 
cell number by 30%, compared with NC siRNA treated cells 
(Fig. 3B). This suggested that SIRT6 knockdown could ulti-
mately reduce cell growth. Cell cycle analysis showed a reduc-
tion of cell population at G2/M phase and an increase at the 
sub-G1 phase in P  C-3 cells after down-regulation of SIRT6 
(Fig. 3C). This SIRT6 knockdown-induced sub-G1 phase ar-
rest was indicative of apoptosis. The fl    ow cytometric apoptosis 
assay was followed using an Annexin V/7-AAD kit in PC-3 and 
DU145 cells. S  IRT6 defi ciency also increased the cell apop-
tosis rates compared with the negative control cells (~5.6% 
and ~8.9% in NC and SIRT6 siRNA cells of PC-3; ~3.7% and 
~4.8% in NC and SIRT6 siRNA cells of DU145, Fig. 3D). 

In  creased DNA damage and reduced BCL2 expression are 
involved in SIRT6 related cell death

To examine whether increased DNA damage sensitivity is 
associated with the elevated apoptosis, DNA double-strand 
breaks were induced by Pa  raquat and quantifi ed by γ-H2AX 
staining in the NC siRNA or SIRT6 siRNA transfected DU145 
cells (Fig. 4A and 4B). Consistent with the observed increases 
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in apoptosis, we found an increase in γ-H2AX positive foci in 
the SIRT6 k nockdown cells. After Paraquat exposure, SIRT6 
siRNA transfected cells displayed signifi cantly more γ-H2AX 
positive foci (Fig. 4A and 4B), which indicated that SIRT6 de-
fi ciency rendered these cells more sensitive to DNA damage. 
On the other hand, mRNA and protein levels of apoptosis-relat-
ed BCL2 were examined by real-time PCR and Western blot. 
These analyses showed the levels of BCL2 were decreased 
both in PC-3 and DU145 cells after SIRT6 silencing (Fig. 4C 
and 4D).

Down-regulation of SIRT6 expression enhances 
chemotherapeutics sensitivity  

To   test whether SIRT6 inhibition could increase chemotherapy 

sensitivity, CCK-8 assay   was used to examine cell viability, 
which indicated that SIRT6 knockdown induced ~13% and 
~11% decrease in the viability of SIRT6 silenced PC-3 and 
DU145 cells, respectively. However, after 24 h treatment with 
Taxol, SIRT6 defi ciency decreased the cell viability in DU145 
cells (~83% and ~68% in NC siRNA and SIRT6 siRNA treated 
cells, respectively, Fig. 5A, right), even though the decreased 
tendency did not show statistical significance in PC-3 cells 
(~72% and ~67% in NC and SIRT6 siRNA treated cells, re-
spectively, Fig. 5A, left). Using the Annexin V/7-AAD apoptosis 
fl ow cytometirc measurement, it was found that apoptosis was 
increased in PC-3 and DU145 SIRT6 silencing cells treated 
with Taxol for 24 h (Fig. 5B). Taken together, SIRT6 silenc-
ing resulted in chemo drug (Taxol) sensitization in PC-3 and 
DU145 cells. 

Figure 1. Overexpression of SIRT6 in human prostate tumor/paratumor tissues and prostate cancer cells. (A) Dot plot repre-
sented SIRT6 expression value from microarray analysis of prostate cancer profi les retrieved from NCBI database (GSE6919). The sam-
ples were divided into two groups: tumor tissue group (left panel) including primary prostate tumor (n = 66) and metastatic prostate tumor 
(n = 25); paratumor tissue group (right panel) including normal prostate issue (n = 17), normal prostate adjacent to tumor (n = 59). The P-
value = 0.0016 was determined by paired Student’s t test. (B) Microarray expression of the prostate cancer database was downloaded 
from Oncomine (http://www.oncomine.org) to examine the relative expression of SIRT6 between normal (prostate gland, n = 29) and 
cancer (prostate carcinoma, n = 131) samples. The distribution of   log 2 median-centered signal intensities was plotted using boxplots. (C) 
SIRT6 was immunostained in both human prostate tumor (left panel) and paired paratumor (right panel) tissues. Representative pictures 
are shown. The scale bar represents 50 μmol/L. (D) Dot plot represented SIRT6 ratio from each of the tumor and paratumor tissues (n 
= 25 pairs of samples). SIRT6 ratio was evaluated as the percentage of area positively stained versus total area stained (empty space 
was excluded), analyzed independently by two pathology specialist using Leica QWin software. The P value was determined by paired 
Student’s t test with a value < 0.0001. (E) Comparison of SIRT6 protein expressions in prostate cancer cell lines (PC-3, DU145, 22Rv1, 
LNCaP), benign prostate hyperplasia cell line (BPH-1) and normal prostatic epithelial cell line (RWPE-1) were detected by western blot-
ting. SIRT1 protein expression was detected as well; β-actin and α-Tubulin were used as the loading controls.
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Figure 3. Downregulation of SIRT6 in human prostate cancer cell lines and effect of SIRT6 knockdown on cell growth, cell cycle 
progression and apoptosis. (A) PC-3 (left panel) and DU145 (right panel) cells were transfected with SIRT6 (Target sequence 1 and 
2: #1, #2) siRNAs or negative control (NC) siRNA, as described in Materials and Methods. The expression of SIRT6, SIRT1 and β-actin 
was detected by Western blotting, and representative images were shown from three independent experiments. (B) Cell proliferation of 
SIRT6 knockdown cells (▽) and negative control cells (●) was assessed by direct cell counting. PC-3 (left) and DU145 (right) cells were 
seeded at a density of 2 × 105 cells in a 6-well plate, counted on the day of transfection (D1) and 2 days after transfection (D3). (C) SIRT6 
knockdown cells and negative control cells were stained with PI for cell cycle profi le analysis by fl ow cytometry. The percentage of cell 
population in each cell cycle phase was included in the inset of the graph. (D) Quantifi cation of apoptosis analysis using Annexin V/7-AAD 
staining by fl ow cytometry. The apoptotic cells (%) indicated the percentage of cells undergoing early (Annexin V+/7-ADD-) and late (An-
nexin V+/7-AAD+) apoptosis. Values are expressed as the mean ± SEM (*, P < 0.05; **, P < 0.01) of three independent experiments.

Figure 2. Correlation of SIRT6 high expression in prostate cancer tissue with unfavorable overall survival and recurrence-free 
survival from the bioinformatics analysis. Probabilities of overall survival (A) and recurrence-free survival (B) of total 138 prostate can-
cer patients from the database in Oncomine were analyzed by Kaplan-Meier survival analysis (log-rank test) comparing with high ( > 50th 
percentile) versus low (<50th percentile) SIRT6 expression. 
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DISCUSSION

In this study, we have reported for the fi rst time that SIRT6 is 
specifi cally overexpressed in both prostate cancer tissues and 
cell lines (Fig. 1). Down-regulation of SIRT6 in prostate cancer 
cells was shown to affect prostate cancer cells via the follow-
ing effects including increased apoptosis (Fig. 3), reduced cell 
viability (Fig. 5), which could be associated with elevated DNA 
damage level and repressed BCL2 gene expression (Fig. 4). 
And, remarkably, SIRT6 repression enhances chemotherapeu-
tics sensitivity in prostate cancer cells (Fig. 5).

  Regarding the function of SIRT6 in cancer, different points 
of view are held. SIRT6 is claimed to be a tumor repressor 
based on the observations that SIRT6 is downregulated in cer-
tain human cancers and SIRT6 defi ciency causes increased 
glycolysis and tumor growth (Sebastian et al., 2012). Consist-
ently, SIRT6   overexpression stimulates apoptosis in cervical 
carcinoma, fibrosarcoma and breast cancer cells, but not in 

the normal cells, under the hypothesis that SIRT6 was a tumor 
repressor (Van Meter et al., 2011). However,   we observed that 
in prostate cancer, SIRT6 protein expression was signifi cantly 
increased in the malignant prostate tissues and cells. Defi cien-
cy of SIRT6   in PC-3 and DU145 cells suppressed cell   growth 
(Fig. 3B), viability (Fig.   5A) and enhanced apoptosis (Fig. 3D), 
suggesting that SIRT6 may promote   prostate cancer and       
serve as a therapeutic target. In the heart tissue of Sirt6 knock-
out mice, increased expression of apoptotic markers such as 
Caspase-3, Bax, TRAIL, Bim, FasL and p27 was observed 
(Sundaresan et al., 2012). Nevertheless,   the details of mecha-
nisms involved in SIRT6-downregulation-driven apoptosis in 
prostate cancer remain to be unraveled. Chronic infl ammation 
is associated with cancer progression (Hanahan and Wein-
berg, 2011). In the recent study on pancreatic cancer, SIRT6 
promotes pro-infl ammatory cytokines expression (Bauer et al., 
2012). In our prostate cancer cell culture models, repression 
of SIRT6 also reduced pro-infl ammation cytokines expression 

Figure 4. Effects of SIRT6 knockdown on DNA damage and BCL2 expression. (A) Representative images of NC (NC siRNA), SIRT6 
(SIRT6 siRNA)-depleted DU145 cells that were treated with 100 mmol/L Paraquat for 2 h and immunostained with antibodies against 
γ-H2AX (red) and counterstained with DAPI (blue). The scale bar represents 15 μm. (B) Quantifi cation of γ-H2AX foci per cell. (n = 25–30 
cells analyzed per condition with at least two independent experiments). The mRNA expression of BCL2 (C) and its protein level (D) in 
PC-3 and DU145 cells after being transfected with SIRT6 siRNA or NC siRNA for 48 h. Data were normalized to GAPDH and were ex-
pressed as relative expression levels. α-Tubulin was used as the loading control. Values are expressed as mean ± SEM (*, P < 0.05; **, 
P < 0.01; ***, P < 0.001) from three independent experiments. 
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(data not shown). SIRT6 is specifi cally overexpressed in the 
initiation stage of liver cancer, but not in the advanced liver 
cancer (Min et al., 2012). High SIRT6 expression has been 
identifi ed as a poor prognostic factor for both overall survival 
and recurrence-free survival in prostate cancer patients from 
our analysis of SIRT6 expression in the previously published 
data from Oncomine (Taylor et al., 2010). The high SIRT6 ex-
pression was associated with markedly shorter period of clini-
cal recurrence (Fig. 2). Khongkow’s work revealed that high 
SIRT6 nuclear expression was associated with poor survival 
in the breast cancer patients (Khongkow et al., 2013). How-
ever, low SIRT6 expression was reported to connect to poor 
survival in hepatocellular carcinoma (Marquardt et al., 2013). 
The clinical signifi cance of SIRT6 in prostate cancer is worthy 
of further investigation by analyzing a large number of prostate 

tumor samples at different stages to explore the different role 
of SIRT6 in the prostate cancer from that in the hepatocellular 
carcinoma. It is possible that SIRT6’s function in malignancy 
varies with the location, concentration, distribution and the reg-
ulation by upstream and downstream factors, similar to the role 
of SIRT1 in carcinogenesis  (Bosch-Presegue and Vaquero, 
2011; Song and Surh, 2012). The controversy over whether 
SIRT6 serves as a tumor promoter or a tumor suppressor has 
not been completely resolved and the discussion will likely 
continue.

  Radiotherapy is known as a routine treatment for local pros-
tate cancer at the early stage. Downregulation of SIRT6 can 
enhance sensitivity to radiation damage in multiple cells lines 
including MEF and WI-38 (Mostoslavsky et al., 2006; McCord 
et al., 2009). Since SIRT6 is essential for genomic stability, 
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Figure 5. Effect of SIRT6 knockdown on cell viability/apoptosis and chemo sensitivity. (A) SIRT6-knockdown PC-3 and DU145 
cells were seeded into 96-well plates at the density of 5 × 103 cells per well for 24 h, and exposed to 100 nmol/L Taxol or 0.017‰ DMSO 
for another 24 h. Then the cell viability was detected. (B) Cell apoptosis induced by SIRT6 knockdown and/or Taxol treatment was quanti-
fi ed using Flow Cytometric Annexin V/7-AAD analysis. Cells were plated in 6-well plates at the density of 2 × 105 cell per well for 24 h, 
transfected with either SIRT6 siRNA or negative control siRNA for 48 h, and exposed to 100 nmol/L Taxol or 0.017‰ DMSO for another 24 h. 
Then cells were harvested, stained by the Annexin V/7-AAD kit, and analyzed by fl ow cytometry for cell death. Values are expressed as 
the mean ± SEM (*, P < 0.05; **, P < 0.01; ***, P < 0.001) from three   independent experiments.
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(Thermo Scientifi c, Rockford, IL, USA). 

Tissue microarray and immunohistochemical staining

SIRT6 expression levels were examined using prostate adenocar-
cinoma tissue microarray (Shanghai Outdo Biotech Co. Ltd, OD-
CT-UrPrt03), containing 29 pairs of prostate cancer and adjacent 
noncancerous tissues. All of the specimens were formalin-fi xed and 
embedded in paraffi n. Immunohistochemical staining was carried out 
using Histostain-Plus Kit (#95-6143, Invitrogen, Carlsbad, CA, USA). 
In brief, specimen sections were deparaffi nized in xylene, rehydrated 
in alcohol, treated with 3% hydrogen peroxide for 10 min and blocked 
with 10% BSA in PBS for 30 min. Sections were incubated with SIRT6 
antibody (ab62738, 1:150, Abcam) at 4°C overnight, hybridized with bi-
otinylated secondary antibodies for 1 h, and then with HRP-streptavidin 
complex for 15 min. Color was developed using an HRP substrate and 
nuclei were counterstained with hematoxylin. SIRT6 expression in pro-
static tumor and paratumor tissues was evaluated as the percentage 
of positively stained area versus total stained area (empty space was 
excluded), analyzed independently by two pathology specialist using 
Leica QWin software. 

Immunofl uorescence staining

The immunofl uorescence staining for γ-H2AX was performed as previ-
ously described (Xie et al., 2013). Cells were cultured on coverslips 
and washed twice with cold PBS, fi xed with 4% paraformaldehyde for 
30 min, permeabilized with 0.1% Triton X-100 for 15 min, and blocked 
with 5% normal donkey serum for 1 h. Cells were then incubated with 
antibody against γ-H2AX (#05-636, 1:200, Millipore, Billerica, MA, 
USA) for 4 h, washed, and incubated with AlexaFluor 594 secondary 
antibody (Molecular Probes, Eugene, OR, USA). Cells were mounted 
with VectaShield Mounting media with DAPI nuclear stain (Vector 
Labs, Burlingame, CA, USA). Fluorescence images were taken using 
a Leica SP5II Confocal Microscope (Leica Microsystem, Germany).

Cell cycle analysis by fl ow cytometry

Transfected PC-3 cells were harvested, washed twice with PBS and 
fi xed in 70% ethanol at 4°C overnight. After being washed, the cells 
were incubated in PBS containing 40 μg/mL propidium iodide, 100 μg/mL 
RNaseA and 0.1% Triton X-100 at 37°C for 30 min. DNA content was 
measured by Quanta SC Flow Cytometer (Beckman Coulter, Miami, 
FL, USA), and cell cycle analysis was performed using MultiCycle soft-
ware (Phoenix Flow Systems).

Apoptosis analysis by fl ow cytometry

Apoptosis was evaluated using the Annexin V/7-AAD Apoptosis Detec-
tion Kit (Southern Biotechnology, Birmingham, AI, USA). Briefl y, trans-
fected PC-3 and DU145 cells were harvested, washed twice with PBS, 
resuspended in binding buffer, stained with Annexin V and 7-AAD on 
ice for 15 min, and subjected to fl ow cytometer (BD FACSAriaII, San 
Jose, CA, USA). 

Cell proliferation assay

PC-3 and DU145 cells were seeded at a density of 2 × 105 cells in 
a 6-well plate and transfected with siRNA. 24 h later, cells were har-

radiation-induced damage in SIRT6-deficient cancer cells 
might be more pronounced that could lead to greater sensitiv-
ity for radiation therapy. This hypothesis will also require further 
investigation.

 In conclusion, our data suggest that SIRT6 protein is over-
expressed in both prostate tumor tissues and prostate cancer 
cells compared to their normal counterparts. Knockdown of 
SIRT6 in human prostate cancer cells leads to sub-G1 phase 
arrest of cell cycle, increased apoptosis possibly via elevated 
DNA damage and alteration of BCL2 gene expression. Moreo-
ver, SIRT6-defi ciency reduces prostate cancer cell viability and 
enhances chemotherapeutics sensitivity.

MATERIALS AND METHODS

Antibodies and reagents

The primary antibodies were as follows: SIRT6 (ab62738, 1:1000, 
Abcam); BCL2 (#1017-1, 1:500, Epitomics Inc); SIRT1 (sc-15404, 
1:500, Santa Cruz Biotechnology); β-actin (sc-1616, 1:1000, Santa 
Cruz Biotechnology); α-Tubulin (T5168, 1:2000,  Sigma-Aldrich Inc). 
The secondary antibodies were purchased from HuaAn Biotechnol-
ogy (Hangzhou, China). Paclitaxel and Paraquat were purchased from 
Sigma-Aldrich (St. Louis, MO, USA). All other reagents were obtained 
from Sigma-Aldrich (St. Louis, MO, USA). 

Cell culture

Human prostate carcinoma cell lines (PC-3, DU145, 22RV1 and LN-
CaP) were purchased from the Cell Resource Center of Shanghai In-
stitute of Biological Sciences, Chinese Academy of Sciences. Human 
prostatic epithelial cell line (RWPE-1) and benign prostatic hyperplasia 
cell line (BPH-1) was a gift from Dr. Wei-Qiang Gao (Clinical Stem Cell 
Center, Renji Hospital). Cells were maintained in RPMI 1640 medium 
(Hyclone, Logan, UT, USA) supplemented with 10% fetal bovine se-
rum and 1% penicillin/streptomycin (Invitrogen, Carlsbad, CA, USA) at 
37°C in a humidifi ed incubator under 5% CO2. 

RNAi

PC3 and DU145 cells at 60%–70% confl uency were transfected with 
50 nmol/L siRNA using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, 
USA) according to manufacturer’s protocols. Target sequence 1 (#1) 
for SIRT6: 5′-GAAUGUGCCAAGUGUAAGATT-3′; Target sequence 
2 (#2) for SIRT6: 5′-CCGGCUCUGCACCGUGGCUAATT-3′; Target 
sequence for negative control: 5′-CGACAUACUGUACAGGCCUTT-3′. 

Western blot

Whole cell proteins were lysed in RIPA buffer (Millipore, Temecula, 
CA, USA) containing Complete Protease Inhibitor Cocktail, 2 mmol/L 
PMSF, and 0.1% SDS. The protein concentration was measured using 
BCA assay kit (Thermo Scientifi c, Rockford, IL, USA). 30 μg of total 
protein was separated by 8%–10% SDS-PAGE and then transferred 
to 0.45 μm Nitrocellulose Membrane (Millipore, CA, USA). The mem-
brane was blocked with TBST containing 5% non-fat milk, incubated 
with primary antibodies at 4°C overnight and then hybridized with ap-
propriate HRP-conjugated secondary antibody at room temperature 
for 1 h. Protein signals were visualized using ECL detection system 
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vested and counted directly on the day of transfection and 2 days after 
transfection.

CCK-8 cell viability assay

Cell viability was measured by using Cell Counting Kit-8 (Dojindo 
Laboratories, Kumamoto, Japan). In brief, cells were seeded in 96-well 
plates at the density of 5 × 103 per well. After treatment, CCK8 solution 
was added to the medium at a dilution of 1:10 and incubated at 37°C 
for 1–3 h. The absorbance at 450 nm was determined using a micro-
plate reader (Synergy2, BioTek, Winooski, VT, USA). 

Real-time quantitative PCR

Total RNA was isolated from PC-3 and DU145 cells by Trizol Reagent 
and reverse-transcribed to cDNA using PrimeScript RT reagent kit 
(TaKaRa, Japan). Quantitative PCR was performed on ABI 7900HT by 
using SYBR Premix Ex Taq (TaKaRa, Japan) and the following prim-
ers: BCL2 (Forward: 5′-GGGGAGGATTGTGGCCTTC-3′ and reverse: 
5′-CAGGGCGATGTTGTCCACC-3′); GAPDH (Forward: 5′-GCGAC-
CTGGAAGTCCAACTAC-3′ and reverse: 5′-ATCTGCTGCATCT-
GCTTGG-3′). A cycle threshold was determined for each gene of 
interest and normalized to housekeeping gene (GAPDH) determined 
in parallel. 

Statistical analysis

Each experiment was repeated at least three times. All data were pre-
sented as mean ± SEM and assessed by one-way ANOVA, followed 
by  Tukey post hoc test. P values less than 0.05 were considered sta-
tistically signifi cant.
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