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ABSTRACT

Infl ammasome is a large protein complex activated upon 
cellular stress or microbial infection, which triggers 
maturation of pro-inflammatory cytokines interleukin-1β 
and interleukin-18 through caspase-1 activation. Nod-like 
receptor family protein 3 (NLRP3) is the most character-
ized infl ammasome activated by various stimuli. However, 
the mechanism of its activation is unclear and its exact 
cellular localization is still unknown. We examined the 
potential co-localization of NLRP3 infl ammasome with mi-
tochondria and seven other organelles under adenosine 
triphosphate, nigericin or monosodium urate stimulation 
in mouse peritoneal macrophages using confocal micros-
copy approach. Our results revealed that the activated 
endogenous apoptosis-associated speck-like protein 
containing a CARD (ASC) pyroptosome forms in the cyto-
plasm and co-localizes with NLRP3 and caspase-1, but not 
with any of the organelles screened. This study indicates 
that the ASC pyroptosome universally localizes within the 
cytoplasm rather than with any specifi c organelles.

KEYWORDS     NLRP3, infl ammasome, ASC pyroptosome, 
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INTRODUCTION
Infl ammasome is formed with the participation of certain pat-
tern recognition receptors and senses various danger signals 
(Martinon et al., 2002; Agostini et al., 2004; Mariathasan et 
al., 2004; Poeck et al., 2010). As a large protein complex, in-
fl ammasome controls the activation of the proteolytic enzyme 
caspase-1 through the apoptosis-associated speck-like protein 
containing a CARD (ASC), which subsequently regulates the 
maturation of the pro-inflammatory cytokines interleukin-1β 

(IL-1β) and IL-18 (Agostini et al., 2004). IL-1β and IL-18 are 
secreted into the extracellular space and function as versatile 
cytokines (Dinarello, 2009) that recruit more immune cells, 
educate lymphocytes, and eventually induce infl ammatory ef-
fects.

The Nod-like receptor family protein 3 (NLRP3) is the most 
common and best studied infl ammasome. NLRP3 is activated 
by a wide range of signals that cover both endogenous and 
pathogenic  origins.  Endogenous  danger  signals,  such  as 
adenosine triphosphate (ATP), amyloid-β fi bris, and uric acid 
crystals, together with pathogens such as Listeria monocy-
togenes, Canidida abicans, and infl uenza A virus, can activate 
the NLRP3 infl ammasome (Martinon et al., 2006; Dostert et al., 
2008; Eisenbarth et al., 2008; Allen et al., 2009; Gross et al., 
2009; Thomas et al., 2009). However, the detailed mechanism 
of its activation is still unknown. Three distinct mechanisms 
have been reported, namely, reactive oxidative stress (ROS) 
(Schroder et al., 2010), lysosome damage (Hornung and Latz, 
2010), and potassium leakage (Arlehamn et al., 2010). How-
ever, none of them can explain all the observed phenomena, 
and the relationship between them need to be elucidated.

In addition to caspase-1 activation and IL-1β secretion, 
NLRP3 infl ammasome activation is also characterized by ASC 
pyroptosome formation, which is the aggregation of ASC as 
a pre-step to activate caspase-1 (Fernandes-Alnemri et al., 
2007). Interestingly, only one pyroptosome is found to form 
per cell (Fernandes-Alnemri et al., 2007). Furthermore, to our 
knowledge, the ASC pyroptosome represents the assembled 
NLRP3 infl ammasome. Several studies have investigated the 
localization of ASC in THP-1 human cell line and M1/M2 po-
larized macrophages with different stimuli (Bryan et al., 2009; 
Pelegrin and Surprenant, 2009; Bryan et al., 2010). However, 
no exact localization of the pyroptosome in primary peritoneal 
macrophages has been reported. Detailed localization study 
of the pyroptosome may help us understand the activation 
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ASC pyroptosome was not localized to the mitochondria 
upon nigericin or MSU stimulation in mouse macrophages

Besides ATP, NLRP3 inflammasome is activated by various 
stimuli, including nigericin and MSU (Martinon et al., 2006; 

process and provide evidence on the mechanism of NLRP3 
infl ammasome activation. The objective of this study was to 
determine the potential localization of the NLRP3 infl amma-
some under the activated state in peritoneal macrophages us-
ing confocal microscopy approach. The immunofl uorescence 
results revealed the cytoplasmic localization of endogenous 
pyropotosome, which co-localized with NLRP3 and caspase-1 
rather than to any detected organelles, indicating the organelle-
free cytoplasmic localization of the NLRP3 infl ammasome in 
macrophages upon activation.

RESULTS
ASC pyroptosome was cytoplasmic but not localized to 
the mitochondria upon ATP stimulation in mouse 
macrophages

Mitochondria are the main sources of infl ammasome-activating 
ROS. NLRP3 inflammasome activation is largely impaired 
when the mitochondrial activity is inhibited (Nakahira et al., 
2010; Zhou et al., 2011). Therefore, the mitochondria may be 
signal-integrating organelles, and are probably the organelles 
for NLRP3 infl ammasome activation. We stimulated low-dose 
lipopolysaccharide (LPS)-primed peritoneal macrophages 
with ATP, an NLRP3 infl ammasome activator, and stained the 
mitochondria with MitoTracker to investigate the hypothesis. 
The confocal results showed that the ASC dispersed over the 
nucleus and cytoplasm in the LPS-primed cells. The ASC ag-
gregated across the whole cell and formed in the cytoplasm 
(green foci) upon further stimulation with ATP, but did not local-
ize to the mitochondria (Fig. 1A). The ASC pyroptosome co-
localized with NLRP3 and caspase-1, although most NLRP3 
were not aggregated in the foci (Fig. 1B and 1C), consistent 
with previous studies. The activation state was also confi rmed 
by abundant IL-1β secretion from the same set of cells (Fig. 1D). 
These results suggested that the ASC pyroptosome is normally 
formed in ATP-activated macrophages together with NLRP3 
infl ammasome activation, but localizes in the cytoplasm and 
not in the mitochondria. 

ASC pyroptosome did not co-localize with other detected 
organelles upon ATP stimulation in mouse macrophages

Seven other organelles were detected upon ATP stimulation 
to determine the exact localization of ASC pyroptosome. The 
peritoneal macrophages were primed and stimulated as de-
scribed in MATERIALS AND METHODS. GM-130, calnexin, 
α-tubulin, early endosome antigen 1 (EEA1), vimentin, and 
γ-tubulin were used as markers of Golgi apparatus, endoplas-
mic reticulum, microtubule, endosome, phagosome, and cen-
tromere, respectively (Webb et al., 2001; Latz et al., 2004; Eng 
et al., 2007; David et al., 2010; Wolff et al., 2011; Yuan et al., 
2012). Lysotracker was applied for lysosome detection. The 
confocal results suggested that the ASC pyroptosome not co-
localize with any of the organelles (Fig. 2A–G), but co-localizes 
with NLRP3 and caspase-1 (Fig. 2H and 2I). NLRP3 infl am-
masome is normally activated (Fig. 2J).

Figure 1. ASC pyroptosome localized in the cytoplasm, but 
not in the mitochondria, upon ATP stimulation. (A) Immuno-
fl uorescence microscopy of LPS-primed peritoneal macrophages 
stained with MitoTracker for 40 min and left unstimulated (upper 
panel) or stimulated with 5 mmol/L ATP for 30 min (lower panel). 
Scale bar, 10 μm. (B and C) Immunofl uorescence microscopy of 
LPS-primed peritoneal macrophages stained with MitoTracker 
and left unstimulated (upper panel) or stimulated with ATP (lower 
panel). NLRP3 (B) or caspase-1 (C), ASC, and DNA (with DAPI) 
were separately stained. Scale bar, 10 μm. (D) ELISA results of 
IL-1β production in peritoneal macrophages treated similar to A–C. 
Data represent at least three experiments (mean ± SD in D).
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Figure 2. ASC pyroptosome co-localized with none of the detected organelles in ATP-simulated cells. (A–G) Immunofl uorescence 
microscopy of LPS-primed peritoneal macrophages left unstimulated (upper panel) or stimulated with 5 mmol/L ATP for 30 min (lower 
panel). Anti-GM-130, anti-calnexin, anti-α-tubulin, anti-EEA1, anti-vimentin, and anti-γ-tubulin were used for detection of corresponding 
organelles. LysoTracker was added 40 min before ATP stimulation. Cells were stained of ASC and DNA (with DAPI). Scale bar, 10 μm. 
(H and I) Immunofl uorescence microscopy of LPS-primed peritoneal macrophages stained with LysoTracker and left unstimulated (upper 
panel) or stimulated with ATP (lower panel). NLRP3 (H) or caspase-1 (I), ASC, and DNA (with DAPI) were separately stained. Scale bar, 
10 μm. (J) ELISA results of IL-1β production in peritoneal macrophages treated similar to A–I. Data represent at least three experiments 
(mean ± SD in J).
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Hu et al., 2010). We used nigericin or MSU and detected 
ASC pyroptosome localization to investigate whether the ASC 
pyroptosome location varied upon different stimuli. The distri-
bution of ASC was found to be similar as the ATP-stimulated 
macrophages. No co-localization of ASC pyroptosome with 
mitochondria was found upon nigericin or MSU stimulation (Fig. 
3A), but IL-1β was normally secreted (Fig. 3D). Both NLRP3 
and caspase-1 showed co-localization with ASC pyroptosome 
upon stimulation (Fig. 3B and 3C).

ASC pyroptosome showed no co-localization with other 
screened organelles upon nigericin or MSU stimulation

Seven organelles were also screened in nigericin or MSU stim-
ulation. The confocal results suggested that none of them is the 
organelle for ASC pyroptosome localization (Fig. 4A–G). Enzyme-
linked immunosorbent assay (ELISA) results of IL-1β proved the 
activation of NLRP3 infl ammasome (Fig. 4J). These results again 
confi rmed the co-localization of ASC pyroptosome with NLRP3 
and caspase-1 (Fig. 4H and 4I).

DISCUSSION
The NLRP3 inflammasome is critical for protection against 
pathogens and induction of adaptive immune responses 
(Eisenbarth et al., 2008; Ichinohe et al., 2009). Deregulated 
NLRP3 inflammasome activation is associated with multiple 
diseases such as gout, Crohn’s disease, atherosclerosis, and 
type II diabetes (Martinon et al., 2006; Duewell et al., 2010; 
Zaki et al., 2010; Wen et al., 2011). However, the mechanism 
of NLRP3 infl ammasome activation and its exact localization 
in the cell remain unclear. The determination of the locus of the 
activated infl ammasome will help identify the possible activa-
tion process and the precise activation mechanism.

Mitochondria are potential organelles for NLRP3 inflam-
masome activation because of their vital role in the process. 
Mitochondrial ROS production and mitochondria DNA (mtDNA) 
release are required for NLRP3 inflammasome activation. 
Meanwhile, mitochondrial dysfunctions lead to NLRP3 infl am-
masome activation (Nakahira et al., 2010; Zhou et al., 2011). 
Therefore, the mitochondria were fi rst chosen for the localiza-
tion exploration. ASC aggregation is believed to recruit pro-
caspase-1 for its activation and is supposed to be the locus for 
NLRP3 inflammasome activation. Thus, the ASC focus was 
used as readout for the NLRP3 inflammasome localization 
study. Peritoneal macrophages were used as targeting cells 
because of their sensitivity to infl ammasome induction (Mari-
athasan et al., 2004). We observed that the ASC dispersed 
across the cell, both in the nucleus and in the cytoplasm, in the 
unstimulated LPS-primed macrophages. All of the ASC were 
gathered in the cytoplasm and formed dots upon ATP stimula-
tion, but were not localized to the mitochondria. 

Several organelles are involved in the ASC activation pro-
cess, such as the endoplasmic reticulum, which is believed to 
co-localize with exogenous NLRP3 (Zhou et al., 2011). Thus, 

Figure 3. ASC pyroptosome did not localize in the mito-
chondria upon nigericin or MSU stimulation. (A) Immunofl uo-
rescence microscopy of LPS-primed peritoneal macrophages 
stained with MitoTracker for 40 min and left unstimulated (upper 
panel), stimulated with 20 μmol/L nigericin for 30 min (middle pan-
el) or with 500 μg/mL MSU for 3 h (lower panel), followed by stain-
ing for ASC and DNA (with DAPI). (B and C) Immunofl uorescence 
microscopy of LPS-primed peritoneal macrophages stained with 
MitoTracker, left unstimulated (upper panel), stimulated with 
nigericin (middle panel) or with MSU (lower panel), followed by 
staining for NLRP3 (B) or caspase-1 (C), ASC and DNA(with 
DAPI). Scale bar, 10 μm. (D) ELISA results of IL-1β production in 
peritoneal macrophages treated similar to A–C. Data represent at 
least three experiments (mean ± SD in D).
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Figure 4. ASC pyroptosome did not 
show co-localization with any of the 
screened organelles in nigericin 
or MSU-stimulated cells. (A–G) Im-
munofl uorescence microscopy of LPS-
primed peritoneal macrophages, left 
unstimulated (upper panel), stimulated 
with 20 μmol/L nigericin for 30 min (mid-
dle panel) or with 500 μg/mL MSU for 
3 h (lower panel). LysoTracker staining 
lysosome was added 40 min before 
nigericin stimulation or 2 h after MSU 
stimulation. Anti-GM-130, anti-calnexin, 
anti-α-tubulin, anti-EEA1, anti-vimentin, 
and anti-γ-tubulin were used for detec-
tion of corresponding organelles. Cells 
were then stained of ASC and DNA 
(with DAPI). Scale bar, 10 μm. (H and 
I) Immunofl uorescence microscopy of 
LPS-primed peritoneal macrophages 
left unstimulated (upper panel) and 
stimulated with nigericin (middle panel) 
or with MSU (lower panel). LysoTracker 
staining lysosome was added 40 min 
before nigericin stimulation or 2 h after 
MSU stimulation. NLRP3 (H) or cas-
pase-1 (I), ASC, and DNA (with DAPI) 
were separately stained. Scale bar, 10 μm. 
(J) ELISA results of IL-1β production in 
peritoneal macrophages treated similar 
to A–I. Data represent at least three 
experiments (mean ± SD in J). 
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ASC antibody for 1.5 h, and rinsed with PBS. 
Mitochondrial and lysosome detection was performed by staining 

cells with MitoTracker (Molecular Probes) or LysoTracker (Molecular 
Probes) for 40 min before ATP or nigericin stimulation and incubation 
with FITC-conjugated anti-ASC antibody for 1.5 h. NLRP3 and cas-
pase-1 detection was performed by incubating cells with anti-NLRP3 
(Enzo Life Sciences) or anti-caspase-1 (Santa Cruz) antibodies for 2 h 
before incubation with anti-ASC antibody. Finally, all cells were stained 
with 4′,6-diamidino-2-phenylindole (DAPI). Confocal microscopic anal-
yses were performed using Leica TCS SP2. Anti-vimentin and anti-γ-
tubulin were provided by Xueliang Zhu’s laboratory.

ELISA

Mouse IL-1β in culture supernatants were measured using an ELISA 
kit (R&D Systems) according to the manufacturer’s protocol. 

Statistical analysis

Data were presented as mean ± standard deviation of three independ-
ent experiments. Statistical comparisons between different treatments 
were performed using an unpaired Student’s t-test. P < 0.01 was con-
sidered signifi cant and P < 0.001 was highly signifi cant.
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