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Abstract

The aberrant activity of Ras homologous (Rho) family small GTPases (20 human members) has 

been implicated in cancer and other human diseases. However, in contrast to the direct mutational 

activation of Ras found in cancer and developmental disorders, Rho GTPases are activated most 

commonly by indirect mechanisms in disease. One prevalent mechanism involves aberrant Rho 

activation via the deregulated expression and/or activity of Rho family guanine nucleotide 

exchange factors (RhoGEFs). RhoGEFs promote formation of the active GTP-bound state of Rho 

GTPases. The largest family of RhoGEFs is comprised of the Dbl family RhoGEFs with 70 human 

members. The multitude of RhoGEFs that activate a single Rho GTPase reflect the very specific 

role of each RhoGEF in controlling distinct signaling mechanisms involved in Rho activation. In 

this review, we summarize the role of Dbl RhoGEFs in development and disease, with a focus on 

Ect2, Tiam1, Vav and P-Rex1/2.
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Introduction

Ras homologous (Rho) family proteins (20 human members) comprise a major branch of the 

Ras superfamily of small GTPases,1 with RhoA, Rac1 and Cdc42 the most extensively 

studied and characterized.2 Rho GTPases specifically regulate actin organization, cell 

motility, polarity, growth, survival and gene transcription.3 Rho GTPases are binary switches 

that cycle between an active GTP-bound and an inactive GDP-bound state (Figure 1).4 Rho 

guanine nucleotide exchange factors (RhoGEFs) accelerate the intrinsic exchange activity of 

Rho GTPases to stimulate formation of Rho-GTP.5 Rho GTPase activating proteins 
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(RhoGAPs) stimulate the intrinsic GTP hydrolysis activity of Rho GTPases, resulting in the 

inactive GDP-bound state. Rho guanine nucleotide-dissociation inhibitors (GDIs) comprise a 

third class of regulatory proteins.6 RhoGDIs bind Rho GTPases in a GDP-bound state and 

also extract and sequester Rho GTPases from the cell membrane where Rho GTPases can be 

activated. Once activated, the GTP-bound GTPase then associates with effector targets that 

number over 100.7–9 In this review, we focus on the classical Dbl family RhoGEFs and their 

role in development and disease. In particular, we focus on the RhoGEFs with the best 

validated roles in cancer (Vav1/2/3, Ect2, Tiam1/2, P-Rex1/2) and their analyses in cell 

culture, mouse models and human cancers.

The discovery of RhoGEFs: diverse in numbers and structure

The first RhoGEF was identified initially as an oncogene in mammalian cells (Table 1 and 

Figure 2). Using the same NIH 3T3 mouse fibroblast focus formation assay that led to the 

discovery of mutant Ras in human cancer,10 analysis of genomic DNA isolated from a 

human diffuse B-cell lymphoma resulted in the discovery of the DBL oncogene that encoded 

an N-terminally truncated and activated protein.11 Dbl was also detected earlier as an 

oncogene that caused the tumorigenic growth of NIH 3T3 cells after transfection with 

genomic DNA from the MCF-7 human breast carcinoma cell line (designated mcf2)12, and 

only later was it determined to be identical to Dbl.13 Dbl was subsequently shown to 

catalyze the GTP/GDP exchange activity of Cdc42.14 Additional NIH 3T3 focus formation 

and related biological assays identified Dbl-related proteins, in particular Vav, Tiam1 and 

Ect2 (Table 1 and Figure 2). That RhoGEFs were discovered initially as oncoproteins 

provided the first suggestion that Rho GTPases may also have a function in oncogenesis.

Dbl and the Dbl-related proteins share a ~200 amino acid catalytic Dbl homology (DH; also 

called RhoGEF) domain and an immediately adjacent regulatory ~100 amino acid pleckstrin 

homology (PH) domain5 (Figure 3). Additional RhoGEFs with this tandem DH-PH domain 

structure were identified by genetic and biochemical approaches and by in silico database 

searches. There are 70 human Dbl family RhoGEFs, many of which have conserved 

orthologs found in all vertebrate species and in invertebrates, including Drosophila, C. 
elegans, S. cerevisiae and S. pombe. The nomenclature for many Dbl RhoGEFs is 

complicated by the different names used in independent discoveries, by different names for 

orthologs of different species, by the existence of different gene products due to alternative 

RNA splicing and by establishment of the ARHGEF gene family nomenclature by the 

HUGO Gene Nomenclature Committee (http://www.genenames.org/genefamilies/

ARHGEF). We have compiled a summary of Dbl RhoGEF nomenclature, based on the 

names most commonly used in the literature together with the additional names used for 

each RhoGEF (Supplementary Table 1).

In addition to their common structural elements that define them as RhoGEFs, there are 

some distinctive features that mark individual RhoGEF proteins. Two RhoGEFs possess 

tandem sets of DH-PH domains (Trio and Kalirin) and four RhoGEFs (Tuba1, 2, 3 and 

ARHGEF33) lack an apparent PH domain (Figure 3).5 Dbl RhoGEFs also diverge 

significantly in the N- and C-terminal sequences flanking the DH/PH domains. These 

flanking sequences commonly contain a diversity of protein-protein or protein-lipid 
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interaction domains and motifs whose functions are to regulate intrinsic RhoGEF catalytic 

activity, determine subcellular localization and/or facilitate complex formation with other 

proteins (Figure 3).

This diversity in flanking non-RhoGEF sequences distinguishes the regulation and role of 

RhoGEFs that otherwise activate the same set of Rho GTPases. For example, extracellular 

stimuli that first activate RhoGEFs downstream of G-protein coupled receptors (GPCRs) and 

subsequently cause activation of G protein beta-gamma subunits (P-Rex), of Ras (Tiam1), or 

of Src family tyrosine kinases (Vav) can all converge on downstream Rac1 activation 

through distinct RhoGEFs (Figure 4). These flanking sequences may also regulate 

subcellular localization and activation of spatially distinct cellular pools of Rho GTPases, 

leading to their utilization of distinct effectors. Finally, these flanking sequences may 

facilitate scaffolding functions for RhoGEFs that can further influence the effectors 

activated. For example, Tiam1 possesses a PH-CC-Ex globular domain15 that acts as a 

membrane targeting and protein-protein interaction domain.16–19 This scaffolding function 

can then influence the effector utilization of the activated Rho GTPase.20,21

Humans also possess a second structurally and mechanistically distinct22 class of RhoGEFs, 

the dedicator of cytokinesis or DOCK family (11 human members) that act as GEFs for Rac 

and/or Cdc42, but not RhoA.23–25 DOCK RhoGEFs lack primary sequence homology with 

the DH domain and instead are characterized by a conserved Dock-homology region-2 

(DHR-2; also called DOCKER, CZH2) that serves as the RhoGEF catalytic domain. DHR-2 

domains exhibit no primary sequence homology to DH domains. Although plant species 

possess Rho-like GTPases (Rho of plants; Rop)26, and are regulated by DOCK RhoGEFs, 

RhoGAPs and RhoGDIs homologous to mammalian RhoGAPs27, they lack Dbl RhoGEFs. 

Instead, RopGEFs possess a structurally distinct plant-specific Rop nucleotide exchanger 

(PRONE) catalytic domain.28,29 Finally, although there are no Rho orthologs in prokaryotes, 

pathogenic bacteria possess effector proteins that can regulate their mammalian host Rho 

GTPases in part by mimicking the function of mammalian RhoGEFs.30,31

RhoGEFs and development

The combined number of human Dbl and DOCK RhoGEFs greatly exceeds the number of 

Rho GTPases, suggesting apparent redundancy in RhoGEF function. This is particularly 

striking for RhoA, where at least 28 Dbl RhoGEFs can activate this single GTPase (Figure 

3). With six Rho GTPases constitutively GTP-bound and active, and not believed to be 

regulated by RhoGEFs (Rnd1-3, RhoH/TTF, RhoBTB1/2)32, the apparent redundancy in 

RhoGEFs is even more striking.

One approach to evaluate this apparent functional redundancy has been the generation of 

mice deficient in one or more RhoGEFs, which additionally addresses their involvement in 

development. The role of at least 26 Dbl family RhoGEFs in mouse development has been 

evaluated (Table 2), with only four (Sos1, Trio, AKAP13 and Ect2) found to be 

essential.33–36 However, these proteins all possess other functions independent of their 

RhoGEF catalytic activities, and embryonic lethality may not be due specifically to loss of 

the RhoGEF function. For example, when only the AKAP13 RhoGEF domain was 
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disrupted, no lethality was seen, indicating that AKAP13 RhoGEF activity is not required 

for mouse development.37 AKAP13 is also a scaffolding protein that associates with the 

regulatory subunit of protein kinase A to spatially regulate its substrate utilization. AKAP13 

additionally interacts with protein kinase C and D isoforms and with heterotrimeric Gα 

subunits; whether any of these interactions are specifically required during development 

remains to be determined. Sos1 is also a RasGEF activated downstream of receptor tyrosine 

kinases. Trio contains a serine/threonine kinase domain in addition to its two distinct DH-PH 

RhoGEF domains. Although Ect2 has no other known catalytic function aside from its 

RhoGEF activity, there are Ect2 non-RhoGEF sequences shown to be important for 

regulation of cytokinesis in vitro.38 Below we provide a summary of the developmental roles 

of RhoGEFs that have additional roles in cancer.

Ect2

Ect2 (Epithelial Cell Transforming Sequence 2) was originally discovered as an oncogene 

that transformed NIH 3T3 cells.39 However, the Ect2 protein found to transform these 

fibroblasts was a truncated version of the full-length protein, formed during DNA 

manipulation in vitro (Figure 4). The N-terminus of Ect2 contains two regions that are 

homologous to XCCR1 and Clb6 domains that have functions in the DNA damage response 

and cell cycle regulation, respectively. However, while required for Ect2 support of 

cytokinesis,38 no specific functions have been ascribed to these sequences. The N-terminus 

also contains two tandem BRCA1 C-terminal (BRCT) domains that have auto-

inhibitory40,41 and phosphoprotein binding functions42,43 and two nuclear localization 

sequences (NLSs).44 The central catalytic portion of Ect2 consists of the tandem DH-PH 

domains. Finally, the C-terminal sequence of full-length Ect2 has no known domains or 

motifs but is required for the transforming activity of N-terminally truncated Ect2, and was 

recently implicated in modulating the stability of full length Ect2 protein.41,45,46 BRCT 

domains are not found in any other RhoGEFs and instead are found primarily in proteins 

involved in the DNA damage response network associated with cell cycle checkpoint 

functions.47,48 Although analyses of full length recombinant Ect2 protein indicate that it is 

selective for RhoA and its related isoforms (RhoB and RhoC) in vitro, cell-based studies 

suggest that Ect2 can also regulate Rac and Cdc42 activity.45

Recently we showed that Ect2-deficient mice are not viable.36 Whereas heterozygous 

Ect2+/− mice displayed normal development and lifespan, no Ect2−/− embryos were found at 

birth or as early as embryonic day 8.5. Our subsequent characterization of the defect in vitro 

demonstrated that isolated homozygous Ect2−/− blastocysts displayed abnormal outgrowth at 

day E3.5, indicating that Ect2 is required for peri-implantation development. The 

requirement for Ect2 at such an early stage of development suggests that it may play a key 

role in nearly all cells. Unlike a majority of Dbl RhoGEFs, there are no Ect2-related 

isoforms, which perhaps is a basis for its essential requirement in development.

The best-characterized normal function of Ect2 is its role in cytokinesis.40 Ect2 has been 

shown to regulate RhoA during cytokinesis49, the final step in both meiosis and mitosis. 

Therefore, it is likely that Ect2 is required for development because of its key role in normal 

cell division. Consistent with this possibility, a deficiency in MgcRacGAP (RacGAP1), a 
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RhoGAP that facilitates Ect2 localization to the central spindle during cytokinesis, also 

produced a similar embryonic lethality phenotype.50 Thus, despite the existence of at least 

27 other RhoGEFs that can activate RhoA (Figure 3), an Ect2 deficiency cannot be 

compensated for by other RhoGEFs to promote cytokinesis. However, since the Ect2 

sequences flanking the DH-PH module can serve scaffolding functions and facilitate protein 

interactions, it is possible that non-GEF functions contribute to the critical role of Ect2 in 

development. A definitive resolution of this issue will require analyses of mice that harbor a 

RhoGEF-dead Ect2 allele.

Tiam1

Tiam1 (T-cell Lymphoma Invasion and Metastasis 1) was found by retroviral insertional 

mutagenesis of T lymphoma cells and then screened for invasiveness.51 Tiam1 contains a 

PH domain followed by a coiled-coil motif and extra region (Ex) that together comprise a 

protein- and membrane-binding domain,15 a Ras-binding domain (RBD),52 a PSD-95/DlgA/

ZO-1 (PDZ) domain, then the tandem DH-PH domains (Figure 4). Although the exact 

mechanism(s) of Tiam1 activation is not clear, it is apparent that it can be regulated through 

intramolecular inhibition (coiled-coil motif with the DH domain), protein-protein 

interactions (Ras binding), and cellular localization (phospholipids with the PH domain) 

(Figure 4). Tiam1 is a Rac-selective GEF and was also shown to function as an effector of 

Ras.52 Although Rac1 deficiency causes severe embryonic lethality,53 Tiam1 is non-essential 

for mouse development.54 Thus, other GEFs that activate Rac can compensate for Tiam1 

loss-of-function, for example the related Tiam2 protein (37% overall identity, 71% DH 

domain identity).55,56

P-Rex1/2

P-Rex1 (PtdIns(3,4,5)P3-dependent Rac Exchanger) was discovered by purifying proteins 

from the cytosol of neutrophils and assaying for proteins that activate Rac1 in the presence 

of phosphatidylinositol (3,4,5)-triphosphate (PtdIns(3,4,5)P3/PIP3).57 Two different groups 

of researchers identified P-Rex2 by searching for proteins with sequence identity to P-

Rex1.58,59 P-Rex1 and P-Rex2 are very similar proteins (58% identity) that share amino-

terminal DH-PH domains, followed by two Dishevelled/Egl-10/Pleckstrin (DEP) and two 

PDZ domains, and then a C-terminal sequence that displays homology to inositol 

polyphosphate-4-phosphatase (IP4P) (Figure 4). P-Rex1 and likely P-Rex2 are both 

regulated through GPCR activation and Gβγ activation and phosphoinositol 3-kinase (PI3K)-

stimulated formation of PIP3. P-Rex1 function is attributed primarily to Rac activation, 

although P-Rex1 can also activate Cdc42 and other Rho family GTPases in biochemical 

assays.57

P-Rex1-deficient mice are healthy and viable but weigh less, with significantly smaller 

livers, than P-Rex1+/+ mice60. It was also shown that P-Rex1−/− mice on a pure C57BL6 

background displayed a “white belly”, white feet and tail, a phenotype with 100% 

penetrance.61 This phenotype was caused by a defect in melanoblast migration. The belly, 

feet, and tail are the most distal points of melanoblast migration from the neural crest during 

mouse embryogenesis, leading to the anatomical pattern of this pigmentation defect.
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P-Rex2 has two splice variants: a larger product that is very similar to P-Rex1 (P-Rex2a) and 

a smaller product (P-Rex2b) that does not contain the IP4P homology region. Whereas P-

Rex1 is expressed in peripheral blood leukocytes, neither of the P-Rex2 variants is present 

there. Instead P-Rex2a is found predominantly in skeletal muscle, intestine, and brain, 

whereas P-Rex2b is found only in heart.59

P-Rex2-deficient mice are viable and fertile with normal appearance and weight. However, 

P-Rex2−/− mice displayed a mild defect with motor coordination that worsens with age.62 

Furthermore, the P-Rex1−/− P-Rex2−/− double knockout mice exhibited defects in motor 

activity, posture, and gait consistent with cerebellar dysfunction that are stronger compared 

to the P-Rex1−/− or P-Rex2−/− single knockout mice.62

Vav1/2/3

Vav1 (named after the sixth letter in the Hebrew alphabet) was also discovered initially as an 

oncogene that caused growth transformation of NIH 3T3 cells. 63,64 Vav1-containing DNA 

was isolated from a human esophageal carcinoma, and the transforming variant also 

contained an N-terminal truncation of sequences upstream of the DH-PH domains. Two 

highly related isoforms, Vav2 and Vav3, share significant sequence identity (51 and 58% 

identity, respectively) and domain structure with Vav1 (Figure 4).65–68 Vav1/2/3 all contain 

the following domains: calponin homology (CH), an acidic (Ac) region, DH-PH, and a 

cysteine-rich zinc finger domain (C1) followed by a Src homology-2 and -3 (SH3-SH2-SH3) 

adaptor cassette69 (Figure 4). The active site of the DH domain is autoinhibited by a helix in 

the Ac region of Vav. Src and Syk kinases relieve the autoinhibition by phosphorylation of 

tyrosine 174 within the helix. Furthermore, the inhibitory conformation of the Ac region is 

stabilized through interactions of the CH domain with the Ac region and the DH-PH 

domains. Thus, maximal GEF activity of Vav is achieved in a multi-step process wherein the 

initial Src-dependent phosphorylation events that disrupt CH domain interactions are 

followed by phosphorylation on tyrosine 174.70,71 Although Vav function is attributed 

mainly to its ability to activate Rac, Vav proteins can also activate RhoA, Cdc42 and RhoG 

(Figure 4).

Vav2 and Vav3 are broadly expressed, whereas Vav1 is largely restricted to hematopoietic 

cells under normal conditions.72 Vav proteins are critical for the regulation of hematopoietic 

cell signaling by linking intracellular signaling to multi-subunit immune-recognition 

receptors (MIRRs).73 Vav1-deficient mice are viable but display a range of defects in the 

immune system, with the most severe defects found in T cell development and activation. By 

comparison, Vav2 deficiency did not perturb T cell development, and double knockout 

Vav1/2−/− mice exhibited similar T cell defects as seen in Vav1-deficient mice, indicating 

that Vav2 has no major function in T cell development in the absence of Vav1. In contrast, 

although Vav3-deficient mice also showed normal T cell development, combined deficiency 

of both Vav1/3 significantly exacerbated the T cell defect seen with Vav1 deficiency alone, 

indicating partially redundant roles for these two isoforms in T cell function. Finally, while 

combined Vav2/3 deficiency also showed no T cell abnormalities, the combined Vav1/2/3 

deficiency (viable, no gross organ abnormalities) showed a severe impairment in T cell 
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development, with no functional T cells, demonstrating that Vav2 can have a compensatory 

function in the absence of both Vav1 and Vav3.

Nonoverlapping B cell defects were observed in mice deficient in either Vav1 (B1 cell 

reduction, partial decrease in B cell proliferation upon B cell receptor (BCR) cross-linking) 

or Vav2 (reduced BCR responses). In contrast, combined Vav1/2 deficiency showed severe B 

cell maturation and response defects, demonstrating their nonredundant roles in B cell 

biology.74,75 Finally, mice deficient in all three Vav genes displayed additional B cell 

developmental defects absent in Vav2/3−/− double knockout mice.76 Thus, the Vav isoforms 

support both distinct and redundant functions in T and B cell development and activities, 

several of which cannot be compensated by other RhoGEFs.

RhoGEFs and cancer

The three Ras proteins (H-Ras, K-Ras4A/B, and N-Ras) are the founding members of the 

Ras superfamily of small GTPases1 and together they comprise the most frequently mutated 

oncoprotein family in human cancer (33%; http://cancer.sanger.ac.uk/cancergenome/

projects/cosmic/).10,77 However, with the exception of the recently described mutational 

activation of Rac1 in melanoma78,79, Rho family GTPases have not been reported to be 

mutated frequently in human cancer. Nevertheless, there is substantial experimental evidence 

that aberrant Rho GTPase function can contribute to cancer cell proliferation, invasion and 

metastasis.80 Instead, Rho GTPases are aberrantly activated more commonly by indirect 

mechanisms in cancer. These mechanisms include altered Rho localization mediated by 

GDIs; increased RhoGEF and/or decreased RhoGAP activity; altered gene expression of 

Rho GTPases, RhoGEFs, RhoGAPs, and RhoGDIs (Figure 1), and alternative splicing to 

generate constitutively active Rho GTPase isoforms (e.g., Rac1b).81,82

As mentioned above, although Dbl, Ect2 and Vav were identified originally as oncoproteins 

due to activation by N-terminal truncation, these altered RhoGEFs arose as an artifact of the 

DNA isolation/transfection procedure.83 Surprisingly, despite their potent transforming 

activities when assayed in NIH 3T3 mouse fibroblasts, such truncated, activated Dbl 

RhoGEFs have not been identified in human cancers. Instead, other mechanisms that lead to 

the deregulated expression and/or activation of full length RhoGEFs have been identified. 

Recent reviews have provided more comprehensive overviews of RhoGEF activation in 

cancer.4,84,85 Therefore, we have focused on the four Dbl RhoGEFs with the strongest 

evidence for their involvement in cancer growth (Supplementary Table 2) and have 

summarized representative studies for each below.

Ect2

Ect2 gene and/or protein overexpression has been described in glioblastoma,86–88 non-small 

cell lung cancer (NSCLC),89,90 esophageal,90 pancreatic,91 oral squamous cell,92 colorectal 

carcinomas,93 and other cancers (Supplementary Table 2).

The ECT2 gene is located in a region of chromosome 3q26 that is frequently altered in 

human tumors.94 Ect2 overexpression was associated with gene amplification in NSCLC, 

and this also correlated with an increase in the copy number of the gene encoding protein 
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kinase C iota, PKCi (PRKCI).89 Ect2 knockdown was associated with decreased Rac1 

activation, and constitutively activated Rac1 could compensate for the loss of Ect2, 

implicating this Rho GTPase in Ect2-dependent NSCLC anchorage-independent growth and 

invasion in vitro. Interestingly, the role of Ect2 in NSCLC was independent of Ect2 normal 

function in cytokinesis. Depletion of Ect2 expression in NSCLC did not result in any 

proliferation or multi-nucleation defects, phenotypes associated with Ect2 loss in normal 

cells.36

One mechanism that may account for a non-cytokinesis role for Ect2 in driving cancer 

growth under some conditions involves altered subcellular localization. Ect2 is one of two 

Dbl RhoGEFs (the other is Net1) with a nuclear-restricted localization in interphase cells. 

Fields and colleagues described regulation of NSCLC tumor growth and invasion through 

mislocalization of Ect2 to the cytoplasm, where it binds to a PKCi-Par6 complex to activate 

Rac1.89 They found that PKCi phosphorylated Ect2 at residue T328 adjacent to the Ect2 

nuclear localization sequences (NLSs), and this was associated with Ect2 cytosolic 

mislocalization. Furthermore, a T328D phosphomimetic but not a T328A phosphodeficient 

Ect2 mutant could rescue loss of endogenous Ect2 to restore lung tumor cell growth and 

invasion in vitro. That cytoplasmic mislocalization is an important mechanism of Ect2 

activation in cancer is consistent with the earlier observation that disruption of the Ect2 NLS 

motifs activated the transforming activity of full length Ect2 when evaluated in NIH 3T3 

fibroblasts.44 Cytoplasmic Ect2 may then cause spatially inappropriate Rho GTPase 

activation to drive cancer growth.

Two studies showed that Ect2 expression correlated with poor prognosis in glioma patients 

and that Ect2 was important for glioma cell proliferation, migration, and invasion in 

vitro.87,88 However, acute depletion of Ect2 expression by siRNA in giloma tumor cell lines 

showed an increase in multinucleation, characteristic of a defect in cytokinesis. Therefore, 

the acute decrease in proliferation, migration and invasion may have been caused by the 

inability of cells to complete mitosis. In contrast, sustained shRNA depletion of Ect2 did not 

suppress proliferation in vitro, but orthotopic xenograft tumor growth was impaired and 

associated with increased mouse survival.95 Thus, tumor cells may adapt to acute Ect2 loss, 

such that Ect2-dependent long-term tumor growth is independent of the role of Ect2 in 

cytokinesis.

In summary, future studies to determine whether conditional loss of Ect2 ablates tumor 

growth in mouse models will provide further assessment of the driver function of Ect2 

overexpression in cancer. Also, whether the mislocalization of Ect2 to the cytoplasm seen in 

NSCLC is the basis for a non-cytokinesis function that supports cancer cell growth will be 

important to evaluate in other human cancers. The potent oncogenic activities of the 

originally discovered N-terminally truncated Ect2, lacking the nuclear localization 

sequences, provides strong evidence that simple mislocalization may be an important driver 

of Ect2 activation in cancer. However, despite the implication of Ect2 as a driver in a variety 

of human cancers, the absence of any detection of N-terminally truncated Ect2 in human 

cancers argues that this cytoplasmic mislocalization mechanism may not hold true in the 

patient. In support of this possibility, in our own studies where we have established driver 

functions of full length Ect2 in ovarian and colorectal cancers, we have not found evidence 

Cook et al. Page 8

Oncogene. Author manuscript; available in PMC 2016 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for cytoplasmic mislocalization as the basis for the aberrant Ect2 function in these cancers 

(unpublished observations).

P-Rex

The first cancer-driving role of P-Rex1 was described in prostate cancer.96 P-Rex1 protein 

expression was elevated in metastatic but not primary prostate tumor cell lines and tumor 

tissue. RNAi silencing of P-Rex1 expression reduced Rac activity, and migration and 

invasion in vitro.

PREX1 mRNA overexpression has also been associated with breast cancer, in particular the 

estrogen receptor-positive luminal subtype and, to a lesser degree, HER2-positive tumors.97 

Suppression of P-Rex1 expression was found to reduce HER2-stimulated Rac1 activation, 

motility, invasion, and tumorigenic growth.97,98

Increased P-Rex1 protein expression has also been seen in human melanoma tissue and cell 

lines relative to normal melanocytes,61 and RNAi suppression reduced Matrigel invasion of 

human melanoma cell lines. High P-Rex1 protein expression was associated with increased 

metastatic potential in immunocompromised mice. To assess a role for P-Rex1 in melanoma 

progression, P-Rex1-deficient mice were crossed to a mouse model of primary and 

metastatic melanoma (Tyr:NRasQ61K/INK4a−/−). Surprisingly, in contrast to the breast 

tumor studies, P-Rex1 deficiency did not reduce the incidence or latency of primary tumor 

formation. However, a significant reduction in metastasis was seen. While a mechanistic 

basis for these distinct roles for P-Rex1 in breast versus skin cancer progression has not been 

determined, one logical speculation is that this may reflect tissue type or genetic context 

differences in P-Rex1 function. More provocatively, it may reflect the differential activation 

of other Rho GTPases, aside from Rac1 (e.g., Cdc42), that then contribute to aberrant P-

Rex1-dependent functions in breast versus melanoma growth and tumor progression.

Recently, in a whole-genome sequence analysis of melanoma, non-synonymous mutations in 

PREX2 were found with a 14% frequency in a cohort of 107 human melanomas.99 The 

mutations occurred throughout the gene, including interchromosomal translocations and 

nonsense mutations, with some encoding C-terminally truncated protein products due to 

premature termination codons. To assess the biological relevance of these mutations, P-Rex2 

truncation or missense mutants were ectopically expressed in TERT-immortalized, mutant 

NRAS-expressing human melanocytes and shown to accelerate tumor formation in nude 

mice.

At least one P-Rex2 splice variant can promote cancer growth through a mechanism 

independent of its RhoGEF function.100 P-Rex2a can directly bind and inhibit the lipid 

phosphatase activity of the PTEN tumor suppressor, thereby causing activation of PI3K and 

Akt and subsequent stimulation of pro-growth and survival pathways. P-REX2A mRNA is 

preferentially overexpressed in PTEN-wildtype, PIK3CA-mutant breast tumors. Depleting 

P-Rex2a in PTEN-wildtype and PIK3CA-mutant MCF-7 breast cancer cells reduced 

phosphorylated AKT and cell growth in vitro.
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The aberrant activation of both P-Rex1 and P-Rex2 in melanoma, together with the frequent 

mutational activation of their key substrate Rac1 in melanoma,78,79 provides perhaps the 

most compelling evidence for a critical driver function of a Rho small GTPase in cancer. 

Determining which effector(s) may then drive Rac1-dependent melanoma growth will be an 

important next step in these studies.

Tiam1

Tiam1 mRNA and/or protein overexpression has been described in many cancers that 

include melanoma,101 breast,102,103 colon,104,105 prostate,106 and renal cell carcinoma107 

(Supplementary Table 2).

A role for Tiam1 in tumorigenesis has been evaluated in several mouse models of cancer. 

First, the consequence of Tiam1 deficiency was evaluated using the classical two-stage 

chemical carcinogenesis model for the initiation and promotion of cutaneous tumors.54 

Tumor formation is induced using a single application of the mutagen 7,12-

dimethylbenz[a]anthracene (DMBA), which is then followed by repeated applications of 

phorbol 12-myristate 13-acetate (PMA) tumor promoter. This treatment results in mutational 

activation of HRAS(Q61L) and the formation of benign papillomas that can progress to 

squamous cell carcinomas (SCC). Both the incidence of SCC formation and growth of SCC 

tumors were reduced in Tiam1−/− mice. Thus, TIam1 is an important contributor to H-Ras-

induced SCC tumor growth. These results, together with the identification of Tiam1 as an 

effector of Ras52 and findings that Rac1 deficiency reduced mutant K-Ras-induced lung and 

pancreatic tumor formation56,108, all support Tiam1 as an important effector of Ras-driven 

cancer growth. Conversely, for those tumors that did arise, Tiam1 deficiency enhanced 

metastatic growth. Thus, while Tiam1 was required for tumor initiation and progression, it 

was antagonistic for malignant progression in these models.

The role of Tiam1 has also been evaluated in a mouse model of colon cancer, the Apc Min 

(multiple intestinal neoplasia) mice that harbor a truncated and loss-of-function mutant of 

the Apc tumor suppressor. Absence of Tiam1 resulted in significantly reduced formation and 

growth of polyps, but in enhanced invasion of malignant intestinal tumors.109

Finally, Tiam1 deficiency reduced mammary tumor initiation and reduced metastasis in 

transgenic mice whose tumors are driven by mouse mammary tumor virus (MMTV) 

promoter-regulated mutant ErbB2/Neu. However, it had no effect on the growth of 

mammary tumors in MMTV-Myc transgenic mice.110 Interestingly, although Tiam1 was 

originally discovered for its ability to promote T cell invasion in vitro51, in some tissues it 

has also been shown to inhibit progression to malignant growth.

In patients, increased Tiam1 protein expression was found in a subset of colon tumors104, 

and RNAi suppression reduced the growth of colon cancer cell lines in vitro and in 

vivo.109,111 Tiam1 overexpression was found to be inversely proportional to the degree of 

promoter methylation.105 In a small panel of breast cancer patient samples, Tiam1 protein 

expression levels were higher in grade III compared with grade II tumors102 and Tiam1 

mRNA levels were significantly higher in tumour tissue from breast cancer patients who 

died from their disease compared with those who survived.112 However, in another study, 
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Tiam1 protein expression levels decreased with the progression of breast carcinomas.103 The 

reasons for these opposing findings remain unclear but may be related to different patient 

populations whose diseases are driven by distinct mechanisms.

Much less is known regarding the involvement of Tiam2 in cancer. TIAM2 encodes two 

isoforms, one similar in structure to Tiam1 (designated long; Tiam2L), and another lacking 

N-terminal sequences upstream of the DH domain (designated short; Tiam2S).56 

Interestingly, whereas mRNA for both isoforms could be detected in hepatocellular 

carcinoma (HCC), only the short isoform of Tiam2 protein was detected.113 Finally, 

although neither Tiam2S mRNA nor protein was detected in normal liver, HCC tumors and 

cell lines expressed elevated levels of Tiam2S protein, and further ectopic expression of 

Tiam2S enhanced the tumorigenic growth of an HCC cell line.

In summary, while altered Tiam1/2 expression has been observed in a variety of human 

cancers, the most compelling evidence for a driver function in cancer comes largely from 

model studies, where Tiam1 can either promote tumor progression or conversely antagonize 

invasion. The basis for these seemingly opposing roles for Tiam1 is unclear, especially since, 

as described above, it is the gain-of-function of another Rac-selective GEF (P-Rex1) that is 

essential for metastatic but not primary melanoma tumor growth.61 However, another 

possible explanation comes from the observation that Tiam1-Rac signaling restored E-

cadherin-mediated adhesion in MDCK canine kidney epithelial cells, thereby reducing cell 

migration.114 Further, since remodeling of cell-cell junctions is critical for tumor cell 

invasion, Tiam1 activity may have opposing consequences in cells invading individually 

versus collectively. Whether these in vitro findings provide the explanation for the 

antagonistic role of Tiam1 in tumor cell invasion and metastasis remains to be determined.

Vav1

Although the Vav1 isoform originally identified by its ability to transform NIH 3T3 cells 

was activated by N-terminal truncation, and equivalent truncations of Vav2 and Vav3 also 

convert them to transforming proteins (Figure 4),67,115,116 no N-terminally truncated Vav 

proteins have been identified in cancer. Instead, Vav1 overexpression has been described in a 

spectrum of cancers, including neuroblastoma,117 lung,118 pancreatic,119 metastatic 

melanoma120 and B-cell chronic lymphocytic leukemia.121 Additionally, persistent 

phosphorylation has also been seen in some cancers, consistent with the observation that N-

terminal phosphorylation can reversibly disrupt the N-terminal autoinhibitory function to 

activate Vav1.

Although Vav1 expression is normally restricted to hematopoietic cells, overexpression in 

several non-hematologic cancers has been described (Supplementary Table 2). For example, 

Vav1 overexpression was found in pancreatic tumor tissue and cell lines compared to normal 

pancreatic epithelial cells.119 Vav1 expression was inversely correlated with patient survival. 

RNAi silencing analyses found that Vav1 was necessary to support tumor growth in vivo and 

in vitro, and these pro-growth phenotypes were dependent on Vav1 RhoGEF activity. Vav1 

support of tumor growth was associated with Rac1 activation of the PAK1 serine/threonine 

kinase, the NF-kappaB transcription factor, and the cyclin D1 regulator of G1 cell cycle 

Cook et al. Page 11

Oncogene. Author manuscript; available in PMC 2016 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



progression.119 Similar expression of Vav1 has also been described in lung cancer and also 

shown to be required for tumor growth in vitro and in vivo.118

Vav1 is not the only family member to have a role in cancer: both Vav2 and Vav3 have been 

implicated. Vav2 is activated in metastatic melanoma through the chemokine receptor-ligand 

pair CXCR4-CXCL12 and promotes expression of metalloproteinases that lead to 

invasion.120 Recently, VAV3 gene transcription was found elevated primarily in estrogen and 

progesterone receptor-positive breast cancers.122 RNAi suppression analyses demonstrated 

that Vav3 was required for mouse mammary tumorigenesis and metastasis and that Vav2 

showed a synergistic role with Vav3 in breast cancer growth and metastasis. Vav2/3 

controlled a transcriptional program that involved upregulation of gene targets important for 

lung-specific metastasis. Interestingly, the abundance of Vav2/3 transcripts was modulated 

through both Rac1-dependent and -independent pathways.

The development of androgen resistance in prostate cancer cells limits the effectiveness of 

androgen-deprivation therapy. Vav3 was found to be overexpressed in prostate tumors and its 

overexpression was associated with cell line progression to androgen-independence both in 

vitro and in vivo.123–125 Vav3-driven androgen independence was RhoGEF-dependent, 

required nuclear localization,126 and was promoted in part through activation of PI3K-Akt 

signaling.127 Constitutively activated Rac1 alone could also drive androgen-independent 

growth in vitro and in vivo.125 High Vav3 protein expression was associated with disease 

progression and reduced survival, whereas RNAi depletion reduced the tumorigenic and 

metastatic growth of androgen-independent prostate tumor cells.128 Finally, suppression of 

Vav3 expression enhanced docetaxel-induced apoptosis in prostate cancer cells, further 

supporting a therapeutic value in blocking Vav3 function in prostate cancer.129

In summary, consistent with the mouse studies suggesting that the Vav isoforms exhibit both 

redundant and distinct functions in development, there appear to be Vav isoform-distinct 

functions in cancer. For example, Vav1 suppression alone was sufficient to impair growth of 

pancreatic cancer cells despite continued expression of Vav2, and Vav2 depletion did not 

alter growth.119 Thus, Vav2 cannot substitute for Vav1 in pancreatic cancer. Similarly, 

suppression of either Vav2 or Vav3 alone greatly reduced the metastatic growth of mouse 

mammary tumor cells, and concurrent ablation of both isoforms further abolished metastatic 

growth.122 The basis for why Vav2 and Vav3 may have distinct roles is not clear, since both 

activate RhoA, Rac1 and Cdc42. One possibility is that each activates spatially distinct 

subcellular pools of the Rho GTPases, leading to activation of distinct effector signaling 

networks. Another possibility is that the Vav isoforms activate an incompletely overlapping 

extended set of Rho GTPases. Analyses of RhoGEF specificity are often restricted to RhoA, 

Rac1 and Cdc42 but do not examine other family members. This tendency towards limited 

analysis of potential substrates remains an issue that needs to be addressed if the functions of 

specific RhoGEFs are to be fully understood.

RhoGEFs and other human diseases

FGD1, which encodes a Cdc42-specific RhoGEF, was originally identified as a mutated 

gene responsible for Aarskog-Scott Syndrome (ASS; also known as faciogenital 
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dysplasia).130 ASS is an X-linked recessive developmental disorder characterized by short 

stature, by facial, skeletal, and urogenital anomalies, and by mild mental retardation. The 

ASS-associated FGD1 mutations cause loss-of-function (deletion, nonsense mutations 

causing expression of truncated proteins, missense mutations in DH-PH domains) and 

account for ~20% of individuals with ASS.130,131

Loss-of-function mutations in the related FGD4 gene are associated with one type (CMT4) 

of the Charcot-Marie-Tooth (CMT) disease group.132,133 Like FGD1, FGD4 encodes a 

Cdc42-specific GEF (Fgd4/Frabin). This heterogeneous disease group is characterized by 

damage to peripheral nerves that can result in loss of sensation and atrophy of muscles in the 

feet, legs, and hands. It is one of nine genes with causal association with CMT4, an 

autosomal recessive demyelinating form of CMT.

Mutations in OBSCN, the gene encoding the RhoGEF Obscurin, have been identified in 

melanoma and glioblastoma134 and may predispose towards these cancers and towards 

hereditary myopathies.135 OBSCN mutations have also been identified by exome 

sequencing of breast and colon cancers, supporting a possible driver function in these two 

cancers.136 Obscurin is a very large protein with GEF activity for both RhoA and TC10.

Alsin, a GEF for Rac and for the Rab5 small GTPase involved in vesicular transport, is 

encoded by the gene ALS2.137–139 Loss-of-function mutations in ALS2 have been found in 

a subset of individuals with amyotrophic lateral sclerosis (ALS),140–143 a disease 

characterized by progressive movement problems and muscle wasting caused by motor 

neuron death. Accordingly, Alsin expression is highest in motor neurons of the brain. ALS2 
mutations have been associated with autosomal recessive juvenile onset ALS and the related 

conditions of infantile-onset ascending hereditary spastic paraplegia and of juvenile-onset 

primary lateral sclerosis. The exact contribution of Alsin, Rac1 and/or Rab5 to ALS diseases 

remains to be determined.

Germline gain-of-function mutations in SOS1 have been found in ~20% of individuals with 

Noonan syndrome.144,145 This syndrome is characterized by a range of distinctive facial 

characteristics, short stature, cardiac defects, bleeding disorders, skeletal malformations, and 

a diversity of other signs and symptoms. Sos1 has dual functions and can act as either a 

RacGEF or a RasGEF. However, the frequent findings in this disorder of gain-of-function 

mutations in RAS and in genes encoding its Raf effectors (BRAF and RAF1) argue that 

enhanced activity of Sos1 on Ras rather than on Rac contributes to the role of SOS1 
mutations in Noonan syndrome.143,146,147

Loss-of-function mutations in Collybistin/ARHGEF9/hPEM2, a Cdc42-specific Dbl 

RhoGEF, have been identified in patients with X-linked mental retardation associated with 

epilepsy.148–152 Collybistin expression is neuronally restricted; Collybistin is found in 

neurons throughout the adult brain and spinal cord.

Additional Dbl RhoGEFs have also been associated with biology and disease.153 Altered 

expression and mouse model knockout studies implicate Kalirin, with an N- and C-terminal 

DH domain that activate Rac1 and RhoA respectively (Figure 3), in a number of 
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neurological and cardiovascular diseases.154 These include Huntington’s Disease, 

Alzheimer’s, schizophrenia, depression, cocaine addiction and ischemic stroke.

Finally, many pathogenic bacteria employ a virulence strategy to subvert and hijack the 

function of Rho GTPases in their eukaryotic hosts. This strategy is mediated by a type III 

secretion system to inject virulence factors, or effectors, to facilitate cell invasion, 

intracellular survival, and modulation of the host immune responses.155 Among the effectors 

that target Rho GTPases are those that either mimic or antagonize the function of eukaryotic 

RhoGEFs.31 The first discovered was the Salmonella enterica serovar typhimurium protein 

SopE,156 with related RhoGEFs (SopE2, BopE2, CopE) later identified in other bacteria. 

Members of a second class of bacterial proteins that share a WxxxE sequence were first 

thought to act as straightforward Rho GTPase mimics,157 but were later found to also mimic 

RhoGEF activity. Examples include the Map protein from enteropathogenic E. coli, and 

IpgB1 and IpgB2 from Shigella flexneri, that mimic Cdc42, Rac1 and RhoA, respectively. 

These bacterial RhoGEFs lack sequence homology to the DH domain but nevertheless 

utilize a biochemical mechanism similar to that of Dbl family RhoGEFs.158 In contrast, 

another class of type III effectors antagonizes eukaryotic RhoGEF function.159 For example, 

it was determined that EspH binds directly to the DH-PH domain of multiple RhoGEFs, 

preventing their binding to Rho substrates. While the full impact of these bacterial Rho 

GTPase regulators remains to be determined, they provide yet another example of how 

aberrant RhoGEF function may contribute to human disease. Understanding the pressures 

that led to their convergent evolution may help to further define the roles of RhoGEFs in 

cancer and other diseases.

Perspectives

Given the essential involvement of Rho GTPases in virtually every aspect of normal cell 

physiology, it is not surprising that the aberrant activities of Rho GTPases are associated 

with cancer and other diseases. Since RhoGEFs are key mediators of Rho GTPase 

activation, it is also not surprising that aberrant RhoGEF activation is a major mechanism 

driving aberrant activation of their Rho GTPase targets. Finally, given the very divergent 

sequence and domain structures beyond their shared DH-PH domains, the diversity of 

mechanisms deregulating RhoGEF functions is also to be expected. Large challenges remain 

in unraveling the precise mechanisms and contributions of RhoGEFs to specific cancers and 

other diseases, but certainly improved understanding will help to promote therapeutic 

interference in their activities.

The possibility that RhoGEFs may be directly targeted is supported by the mechanism of the 

natural product brefeldin A, an ArfGEF inhibitor that binds to the interface between the Arf 

small GTPase and the catalytic domain of ArfGEF, freezing the complex in an abortive 

conformation that cannot complete nucleotide exchange.160–162 However, the significant 

conformational change seen in Arf upon association with its GEF and upon switching from 

the GDP- to GTP-bound states makes this interaction distinct from that of Rho GTPases. To 

date, there has been very limited success in developing pharmacologic inhibitors of RhoGEF 

function.4 Thus, whether potent and selective RhoGEF inhibitors can be developed remains 

to be determined. An alternative strategy for blocking RhoGEF activity has been the 
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identification of small molecules that bind the GTPase and prevent GEF stimulation. 

Antagonists of GEF activation of Rho 163–165 and Ras 166–168 have been described. Whether 

such small molecule inhibitors of protein-protein interactions can achieve the potency and 

selectivity needed for clinical efficacy remains to be determined, but it is clear that we are at 

last on the way to finding out.

Finally, with the recent successful clinical development of numerous protein kinase 

inhibitors for cancer treatment (e.g., imatinib, erlotinib, vemurafenib), perhaps the most 

promising avenues for short term success in developing RhoGEF inhibitors may be blockade 

of the protein kinases that drive RhoGEF activation or that are activated by their Rho 

GTPase substrates. These may include inhibitors of the Src family protein tyrosine 

kinases169 that activate Vav family proteins; of the PKCi serine/threonine kinase170 

responsible for Ect2 mislocalization to the cytoplasm; of PI3K171 to impair PIP3 production 

and activation of P-Rex; or of the PAK172 or ROCK173 serine/threonine kinases activated 

downstream of Rac1 or RhoA, respectively. Whether RhoGEFs themselves turn out to be 

druggable or not, their key roles in cancer warrant continued close attention to this large and 

interesting family of Rho GTPase regulators.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Rho GTPase regulation
The human Rho GTPase family is comprised of 20 members. The majority cycle between 

GDP-bound inactive and GTP-bound active states. Unlike RhoGEFs and RhoGAPs that 

possess shared domains and sequence identity, allowing precise determination of the number 

encoded in the human genome, the majority of Rho GTPase effectors lack a common well-

defined recognition domain/motif. The information here applies mainly to RhoA, Rac1, 

Cdc42 and related isoforms. Not all Rho GTPases are regulated by GEFs, GAPs and/or 

GDIs, not all are posttranslationally modified by a geranylgeranyl isoprenoid lipid, and some 

do not have known membrane targeting elements.
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Figure 2. Key discoveries linking Dbl RhoGEFs to human disease
We highlight representative discoveries in the study of RhoGEFs that link their aberrant 

function to human disease. Gain-of-function, GOF; loss-of-function, LOF.
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Figure 3. The human Dbl RhoGEF family
The 72 DH domains found within the 70 members of human Dbl family RhoGEFs were 

aligned using ClustalX174 and a phylogenetic tree was subsequently drawn using the 

program FigTree (http://tree.bio.ed.ac.uk/software/figtree/). The protein domain architecture 

for each full-length Dbl protein is shown as annotated by SMART (http://smart.embl.de/) or 

described in the published literature. Black arrowheads indicate sites of genetic truncation 

known to activate RhoGEF function, while bracketed arrowheads designate biologically or 

catalytically active fragments of a GEF. Numbers within braces next to a Dbl protein 

indicate the reported Rho GTPase specificity of the DH domain. Please refer to 

Supplementary Table 1 for other names utilized for these RhoGEFs.
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Figure 4. Mechanisms of RhoGEF activation
Shown here are the “canonical” isoforms as identified in UniProt (http://www.uniprot.org/). 

Domain structures were determined, in part, by SMART (http://smart.embl-heidelberg.de/). 

Additional domains not identified in SMART were added based on previous sequence 

analyses of Ect238, Tiam116, P-Rex57 and Vav proteins.175 The number at the right end of 

each protein indicates the number of amino acids in the full length protein. Solid triangles 

indicate the position of N-terminal truncations that result in the formation of constitutively 

activated and transforming variants of Ect2, Tiam1, and Vav1-3. The arrow indicates the site 

of initiation of the shorter Tiam2S splice variant. The % values refer to amino acid sequence 

identity for the full length protein (overall) or the isolated DH domain, when compared to 

the first isoform shown. Gain-of-function P-Rex2a truncation (Δ) or missense (*) 

transforming mutations.99 Abbreviations: Ac, acidic domain; CC, coiled-coil; CH, calponin 

homology; Clb6 region, homology to yeast Clb6 B-type cyclin; Ex, extra region; NLS, 
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nuclear localization sequence; PIP3, phosphatidylinositol (3,4,5)-triphosphate; XRCC1, 

homology to human repair protein XRCC1.
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