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Abstract

The fibroblast growth factors (FGFs) are a family of cell intrinsic regulatory peptides that control a 

broad spectrum of cellular activities. The family includes canonic FGFs that elicit their activities 

by activating the FGF receptor (FGFR) tyrosine kinase and non-canonic members that elicit their 

activities intracellularly and via FGFR-independent mechanisms. The FGF signaling axis is highly 

complex due to the existence of multiple isoforms of both ligands and receptors, as well as 

cofactors that include the chemically heterogeneous heparan sulfate (HS) cofactors, and in the case 

of endocrine FGFs, the Klotho coreceptors. Resident FGF signaling controls embryonic 

development, maintains tissue homeostasis, promotes wound healing and tissue regeneration, and 

regulates functions of multiple organs. However, ectopic or aberrant FGF signaling is a culprit for 

various diseases, including congenital birth defects, metabolic disorder, and cancer. The molecular 

mechanisms by which the specificity of FGF signaling is achieved remain incompletely 

understood. Since its application as a druggable target has been gradually recognized by 

pharmaceutical companies and translational researchers, understanding the determinants of FGF 

signaling specificity has become even more important in order to get into the position to 

selectively suppress a particular pathway without affecting others to minimize side effects.

It has been gratifying for early basic researchers on fibroblast growth factors (FGF) that their 

Cinderella in the growth factor arena is now drawing so much attention as a druggable target 

by pharmaceutical companies and translational researchers. The first two prototype FGFs, 

FGF1 and FGF2, discovered in the early seventies, were designated acidic and basic FGF 

(aFGF and bFGF) based on their activity to stimulate fibroblast proliferation and their 

isoelectric point (1, 2). Subsequently 20 more FGF homologues have been identified as the 

family members in mammals (3–20). Genes coding for a large number of FGFs were cloned 

based on homology in the amino acid sequence. It was soon found that the name “fibroblast 

growth factor” was not the best name to describe the diverse functions of the family 

members and their receptors since many FGFs do not even have receptors expressed in 
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fibroblasts and elicit no activity in fibroblasts. In addition, many FGFs induce diverse 

cellular responses beyond growth promoting signals in different target cells. Despite being 

misleading to some degrees, the name “fibroblast growth factor” followed by a number 

(FGF1, 2, 3, 4, etc.) has been preserved and replaced numerous other names used to describe 

either tissue origin, target, function, or properties of the FGF molecule. FGF signaling has 

long not been a favorite of pharmaceutical companies largely because of the diversity of 

both ligands and receptors in the family, its wide range of target cell types, diverse functions, 

and complexity of FGF signals that intersect either directly or indirectly with multiple 

pathways. The complexity of the multi-subunit transmembrane FGF signaling complex in 

both the extracellular and the intracellular portions has also been a major factor. Several 

cofactors are integral regulatory components of the FGF signaling complex. These include 

the chemically heterogeneous heparan sulfate (HS) cofactors, and in the case of endocrine 

FGFs, the Klotho coreceptors. These cofactors and coreceptors not only participate in FGF 

receptor-binding specificity and affinity, but also in specifying signaling activities. 

Therefore, a full understanding of the molecular mechanisms underlying the specificity of 

FGF signaling is important for therapeutic usage of FGFs.

1. FGF signaling axis

FGFs

The FGFs are single chain polypeptides that are tissue regulatory molecules controlling a 

broad spectrum of cellular processes in both embryonic and adult tissues. The polypeptides 

have one conserved domain flanked by non-conserved extensions (Fig. 1A). Most FGFs 

have an N-terminal signal peptide that facilitates secretion through classical mechanisms. 

However, several FGFs, including FGF1 and FGF2, do not have a cleavable signal peptide 

and are secreted in a non-conventional manner. Seven FGF subfamilies have been defined 

based on their sequence homology and function (Fig. 1B). These FGF subfamilies can also 

be divided into two general groups, the canonical FGFs comprising paracrine or autocrine-

acting FGF1–10, FGF16–18, FGF20, and FGF22 and the endocrine-acting FGFs, FGF15 

(mouse)/FGF19 (human), FGF21, and FGF23; and the non-canonical FGFs comprising 

FGF11–14. The canonical FGFs elicit regulatory functions through high affinity binding to 

and activating FGF receptors (FGFR). An autocrine canonical FGF acts on the cells of origin 

as a self-stimulator, and a paracrine FGF is secreted by one cell and acts on another locally 

within tissues. In contrast, the endocrine FGF originates at a distal organ site and reaches the 

target through the blood circulation in a classical endocrine mode of action. The non-

canonical FGFs do not bind to the FGFR but elicit their activities intracellularly, such as 

through interaction with voltage-gated sodium channels and calcium channels (21–23).

FGFRs

The FGFR is a single chain transmembrane tyrosine kinase that consists of a ligand binding 

extracellular domain, a single transmembrane domain, and an intracellular tyrosine kinase 

domain that is separated into two parts by an insertion domain (Fig. 2). The mammalian 

FGFR is encoded by four highly homologous genes (24–27). Except for the Fgfr4 gene for 

which only one splice isoform occurs naturally (28), other three Fgfrs have been found to 

encode multiple splice variants. These splice variants generate diversity of sequence and 
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function in the ligand-binding extracellular domain and the intracellular substrate-binding 

and kinase domains (29). It has been speculated that the combination of FGFR1 splice 

variation sequences can potentially encode up to 256 splice isoforms (29). FGFR3 and 

FGFR4 have 3 immunoglobin (Ig)-like domains in the extracellular domains. As a 

consequence of alternative splicing, the extracellular domain of both FGFR1 and FGFR2 can 

contain either 2 or 3 Ig-like loops. The presence of the first Ig-loop modulates the affinity for 

both FGF and FGFR-binding heparin/heparan sulfate (30–32). Two major isoforms 

generated by alternative splicing in the second half of Ig-loop III, namely IIIb and IIIc in 

FGFR1, FGFR2, and FGFR3 have been reported. This variation defines ligand-binding 

affinity and specificity of FGFR1–3 (33, 34). Several other splice variations at the 

extracellular domain have been found in FGFR2, although the functional significance of 

these variants remains unknown (35). The role of the alternatively spliced dipeptide VT 

(valine-threonine) in the intracellular juxtamembrane domain of FGFR is controversial. It 

has been shown that the presence of VT is required for FGFR to bind FRS2α and FRS2β and 

therefore contributes to signaling specificity (36, 37). However, other reports show that the 

dipeptide is dispensable for the binding of FRS2α and FRS2β to FGFR1 even though it 

enhances the binding affinity between substrate and the receptor kinase (38). The variations 

in the kinase domain and C-terminal tail following the kinase domain of FGFRs have only 

been found in cancer cells (29, 39). Although the kinase domains of the four FGFR isotypes 

are highly homologous (>80%) in the primary amino acid sequence and share common 

tyrosine phosphorylation sites (Fig.2), the four FGFRs elicit receptor-, cofactor-, 

coreceptor-, and cell type-specific activities in cells (40–43). Seven major tyrosine 

autophosphorylation sites have been identified in the FGFR1 kinase domain (44–47). Y 

(tyrosine) 653 is predominant in activation (derepression) of the receptor kinase activity (44–

47) while Y654 contributes to maximal activation (48). Phosphorylation of Y766 is required 

for recruiting phospholipase Cγ (PLCγ) via its SH2 domains to the FGFR1 kinase (49–51). 

Y463 is a binding site for the adapter proteins CRK and CRK-like (52–54) and 

phosphorylated Y730 is a binding site for the 85 kDa regulatory subunit alpha of 

phosphatidylinositol 3-kinase (PI3K) (45, 49, 55). The function of other phosphorylation 

sites, including Y583, and Y585 has not been clearly established, despite some evidence that 

they contribute to the intensity and extent of FGFR signaling (48). An FGFR2 splice variant 

that lacks exon 16 has been reported in prostate epithelial cells, which does not have the 

PLCγ-binding site (56). The significance of this splice variant remains to be elucidated.

Heparan sulfate (HS) cofactors

HS is the glycan component of proteoglycans in the pericellular matrix and on the cell 

surface. It is a highly heterogeneous glycosaminoglycan (46, 57–59). Variations in degrees 

and patterns of sulfation on HS motifs affect their interaction with FGFs and FGFRs and 

have been shown to play a role in determination of ligand-binding and downstream signaling 

specificity of FGFR complexes (60–65). Although HS motifs with high affinity for FGFs 

and FGFRs are normally sulfated, emerging evidence shows that the affinity is not simply 

proportional to total charge density and degree of sulfation. Instead, these high-affinity 

motifs are often less than fully sulfated and have unique sulfation patterns (66, 67). Because 

of affinity for both FGF and FGFR, HS in the tissue environment largely plays two general 

roles that impact overall FGFR signaling. Tissue matrix HS acts as an FGFR-independent 
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depot and stabilizes influence for canonical paracrine/autocrine FGFs (68, 69). It limits 

access of FGF that are generally long-lived and at considerable concentrations in the matrix 

to cell membrane FGFR except when needed (46). The second role is as an integral part of 

the FGF signaling complex through a distinct HS-binding domain in the extracellular 

domain of FGFR. Motifs within this class of HS are thought to be less abundant and 

potentially more specific than matrix HS (66, 67). FGFR-bound HS interacts concurrently 

with both FGFR and FGF within the FGF-FGFR-HS signaling complex.

Both our early models based on protein mutagenesis and in silico modeling (70, 71) and the 

crystal structure (72) of the FGF2-FGFR1c-HS complex show a 2-2-2 complex of FGF-

FGFR-HS, in which one single heparan sulfate chain may contact Ig-loop II of one FGFR, 

the inter-Ig-loop connector sequence and Ig-loop III of the same FGFR, and extend to Ig-

loop III of the adjacent FGFR in the FGFR dimer. Ig loops II and III cooperate both within 

monomers and across dimers with cellular HS to confer cell type-dependent specificity of 

the FGFR complex for FGF ligands (73). It is unclear whether FGF stabilizes proximity of 

random interactions of monomeric units or activates a pre-existing inactive oligomeric 

complex of HS-FGFR via conformation changes (46, 61, 66, 67). However, emerging data 

pose that together with HS, the FGFR forms a dimer constitutively in the absence of FGF 

(70, 71, 74). Interaction with HS restrains FGFR dimers in an inactive conformation and 

FGF binding converts the HS-FGFR complex from the inactive repressed conformation to an 

active arrangement that allows an initial trans-phosphorylation between the kinase domains 

of FGFR dimers. Structural studies indicate that trans-phosphorylation of tyrosine 653 and 

then 654 (in FGFR1) changes conformation of an autoinhibitory loop within the kinase 

domain that normally restricts access of substrates to the active site of the FGFR kinases (48, 

75).

Klothos

Unlike paracrine/autocrine FGFs, the endocrine FGFs, FGF15/FGF19, FGF21, and FGF23 

have little or no affinity for HS (76). This property permits their endocrine circulation and 

movement through tissue matrices without being trapped and stored prior to reaching distal 

target cells. The specificity of endocrine FGF signaling at the cellular level is directed by a 

family of membrane-anchored proteins that include αKlotho (αKL) and βKlotho (KLB). 

Although endocrine FGFs signal through the same FGFR as canonical FGFs, they have little 

affinity for FGFR in the absence of Klothos. KLB interacts with FGFR independent of FGF 

and with FGF independent of FGFR (77–79). Although αKL binds the extracellular domain 

of FGFR1, it poorly interacts with FGF23. Instead, binding of αKL with FGFR1 forms a de 

novo site generated at the composite FGFR1c-αKL interface, which binds the C-terminal 

domain of FGF23 (80). Thus, the major role of αKL and KLB is to facilitate high affinity 

binding and subsequent activation of FGFRs by endocrine FGFs. αKL specifically facilitates 

binding of FGF23 to its receptor and controls mineral metabolism via a vitamin D controlled 

bone to kidney axis where αKL is expressed (81). Inactivation of αKL induces 

hyperphosphatemia in mice that highly express FGF23 (82). The cofactor KLB facilitates 

high affinity binding and signaling of FGF19 (mouse FGF15) and FGF21 and controls 

cholesterol/bile acid, lipid, and glucose metabolism in the liver and adipocytes (83).
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Expression of neither KLB nor FGFR4 alone affects cell population dynamics in KLB- and 

FGFR4-deficient cells. However, co-expression of KLB and FGFR4 restricts cell population 

growth via apoptosis in an endocrine FGF19 or FGF1 dependent manner (84). This indicates 

that the KLB interaction with the FGFR4 tyrosine kinase complex not only serves to confer 

high affinity for endocrine FGF19, but also plays a role in directing signaling of the FGFR4 

complex independent of the activating FGF (84, 85).

The FGF signaling pathways

The signaling cascade downstream of the transmembrane receptor, including PLC-γ, MAP 

kinase, and PI3K pathways have been implicated in all four FGFR kinases (Fig. 3). Among 

them, PLC-γ binds to a specific phosphorylated tyrosine residue at the C-terminal tail of the 

FGFR kinases (50, 51). However, the MAP kinase and PI3K pathways need to be recruited 

to the FGFR by a membrane-anchored adaptor protein, FRS2α (FGF receptor substrate 2α), 

which undergoes an extensive pattern of tyrosine and serine/ threonine phosphorylation upon 

FGFR activation (86–93). In addition, CRK has also been proposed to serve as a functional 

adaptor that binds to the FGFR (52), which has been reported to further link the ERK 

pathway to FGFR1. The activation of the ERK pathway by the FGFR tyrosine kinase is 

tightly regulated by both positive and negative feedback loops at both transcriptional and 

post translational levels (Fig. 3). Sprouty (SPRY) proteins, which comprise four conserved 

members, SPRY1–4, present a feedback regulator of the FGF pathway at the 

posttranslational level (94). Tyrosine phosphorylation of SPRY creates a decoy site that 

binds the docking molecule GRB2 and prevents translocation of SOS to the plasma 

membrane to activate RAS. SEF (similar expression of FGF) inhibits binding of FRS2α to 

the FGFR and prevents activation of ERK, and, therefore, negatively regulates the RAS-

MAPK pathway (95, 96). Activation of the ERK and PI3K/AKT pathways has been 

implicated in most FGFR regulatory functions. Deletion of the PLCγ binding site on FGFR1 

does not affect FGFR1-elicited cellular responses, which include mitogenesis, neuronal 

differentiation, mesoderm induction, induction of urokinase-type plasminogen activator, and 

chemotaxis. However, the PLC-γ binding site is required for FGFR1 to induce benign 

prostate cancer cells to acquire the proliferative response to FGFR1, although it appears not 

to be required for the mitogenic response (97). This suggests that pathways linked to FGFR1 

Y766 contribute to prostate cancer progression rather than playing a direct role in cell cycle 

and mitogenesis. Experiments with purified recombinant FGFRs in vitro or when 

overexpressed at high levels in cell lines, such as Sf9 insect cells or COS7 mammalian cells, 

indicate that the four FGFR isotypes exhibit similar if not identical substrate 

phosphorylation patterns (Wang, unpublished results). However, in the experiments with 

moderate expression levels in cells, the results are not consistent. In some experimental 

systems, the four FGFR isotypes elicit similar and redundant effects on cell phenotypes, and 

in others, exert different effects (40). Overexpression of the FGFR kinase at levels far 

beyond the minute normal cellular levels likely homogenizes and masks receptor and cell 

type specific effects of the different FGFR kinases. More sensitive analytical approaches in 
situ as well as robust and controlled experimental systems that hold promise of revealing and 

dissecting such differences are needed for developing FGFR isotype- and cell type-specific 

inhibitors or activators.
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The FRS2 family is composed of two highly homologous members, FRS2α and FRS2β, 

which belong to a category of adaptor proteins that have binding sites for molecules both 

upstream and downstream of it in signaling networks. It physically presents downstream 

molecules to the upstream molecules. Depletion of FRS2α abrogates the ability of FGFR 

kinases to activate the MAP kinase and PI3K/AKT pathways (Wang, unpublished data). 

Ablation of Frs2α in mice causes severe defects in embryonic development and results in 

early embryonic lethality at E7.0–7.5 (98). Although it is not clear whether the two FRS2 

members are functionally redundant, expression of FRS2β in FRS2α-deficient cells restores 

the ability of FGFR1 to activate both the MAPK and PI3K/AKT pathways (99). In addition, 

FRS2α is also engaged in the feedback regulation of the FGF signaling pathway (100, 101). 

As illustrated in Fig. 3, FRS2 appears to be the key adaptor protein in the FGFR signaling 

cascade that mediates multiple downstream pathways of the FGFR, as well as control of the 

amplitude of the signaling intensity. However, whether FRS2 is also involved in the receptor 

and cell type specificity of signaling elicited by the FGFR kinases remains to be elucidated.

2. Translational application of the FGFs and their signaling pathways

Aberrant FGF signaling in diseases

In embryos, the FGF, FGFR kinase, and heparan sulfate components of the FGF signaling 

complex are expressed in a spatiotemporally- and cell-specific pattern that changes 

constantly as development proceeds. In adult organs, components of the FGF signaling axis 

are expressed in a cell type-specific mode and are important in the mediation of external 

signals and communication within compartments that maintain tissue homeostasis and 

function. Abnormal expression of FGF and FGFR and aberrant activation of the FGF 

signaling axis are frequently found associated with various adult tissue-specific pathologies 

and cause developmental disorders (40, 46, 53, 102"–110). The subversion of the 

homeostasis-promoting activity of resident epithelial FGFR2 in a variety of tissues (40, 41, 

46, 111) and concurrent ectopic expression of normally mesenchymal FGFR1IIIc in 

epithelial cells (40, 112–115) is often found associated with tumor progression. Changes in 

core protein expression of HS proteoglycans as well as sulfation patterns have been reported 

to contribute to progression of premalignant tumor cells to malignancy (46). Currently, 

extensive efforts have been taken to explore the translational application of manipulation of 

the FGF signaling activities, both using the FGF directly and chemical agonists or 

antagonists as in the areas summarized hereafter. As a heparin-binding protein, delivery of 

heparin-binding FGF through the circulation and the tissue matrix remains a challenging 

issue. Treating large traumatic tympanic membrane perforation with FGF2 improved closure 

rates compared with the control group (116). Recently, new technologies, including multi-

walled carbon nanotubes, have been used to deliver FGF2, which improves bone 

regeneration in animal models (117, 118).

Wound healing

As potent mitogenic factors, both FGF1 and FGF2 have been extensively explored for their 

potential in wound healing. FGF1 induces cell proliferation in the wounded area and 

promotes the cells to produce cytokines and other growth factors that induce migration of 

macrophages and monocytes towards the wounded area to remove damaged or dead cells 
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(119, 120). FGF1 also induces epithelial cells and vessel endothelial cells to migrate toward 

the healing tissues. True to its original name, FGF promotes growth and differentiation of 

fibroblasts, and induces cells to release collagenase and plasminogen activators to promote 

angiogenesis in the wounded tissues (121, 122). In addition, FGF1 also down regulates αI 

procollagen expression and suppresses collagen production and deposit in fibroblasts and 

therefore prevents scar formation (123, 124).

Recombinant FGF1 and 2 (rFGF1 and rFGF2) have been developed for clinical trials in 

several countries. Since 1992, recombinant FGF2 has been used in several hospitals in 

China, and the results show that recombinant FGF2 improves healing in burn trauma, skin 

flap grafts, intractable cerebrospinal fluid rhinorrhea, intractable skin ulcer, postoperative 

mastoid cavity problems, pressure ulcers, chronically ischaemic tissue and traumatic ulcers, 

bone fracture, periodontitis-induced damage of human periodontal tissue, diabetic gangrene, 

diabetes-related chronic ulcers, peripheral artery disease, and gastric ulcers (124–149). The 

outcomes of the clinical trials demonstrate that FGF2 can be used as an agent to accelerate 

the healing of fresh and chronic wounds and improve the quality of healing of wounds of 

diverse types. In addition, FGF1 has been shown to elicit modest nerve regeneration after 

spinal cord injury (150). FGF7 acts exclusively through a subset of FGF receptor isoforms 

(FGFR2b) and has been developed by Amgen (palifermin) to prevent and speed up the 

healing of severe sores in the mouth and throat caused by chemotherapy and radiation 

therapy, which are used to treat cancers of the blood or bone marrow (151–156).

Cardiac protection

Heart failure also called congestive heart failure or congestive cardiac failure occurs when 

the heart fails to pump sufficient blood to meet the needs of the body. It remains a major 

cause of morbidity and mortality and causes critical health problems especially in Western 

societies. Reduction in the efficiency of the myocardium through overloading or damage 

leads to cardiac hypertrophy and fibrosis, which subsequently progresses to heart failure. 

Several members of the FGF family, including FGF1, FGF2, FGF5, FGF16, FGF21, and 

FGF23 have been shown to play roles in the heart. FGF signaling is essential for 

cardiomyocyte homeostasis through phosphorylating connexin 43 (Cx43), which is required 

for the maintenance of gap junctions (157). FGF1 is released from the myocardial tissue into 

pericardial fluid during severe myocardial ischemia (158).

Treatment with biodegradable hydrogel microspheres containing FGF2 improved left 

ventricle function and inhibited left ventricle remodeling by angiogenesis in pigs with 

chronic myocardial infarction (159). Intramyocardial injection of FGF-2 plus heparin 

suppresses the progression of cardiac failure in rat models (160). Similarly, treating pigs 

with adenovirus carrying FGF5 cDNA improves wall-thickening and cardiac function (161). 

In humans, FGF treatment has likewise shown cardioprotective effects: a single 

intracoronary infusion of rFGF2 shows trends toward symptomatic improvement of angina 

and myocardial function in patients with advanced coronary artery disease (162). Treatment 

of patients with a bicistronic VEGF/FGF2 plasmid improves cardiac function with respect to 

exercise tolerance and clinical symptoms (163). Intracoronary administration FGF-2 in 

patients with severe ischemic heart disease increases regional wall thickening and reduces 
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the extent of the ischemic area (164). Treatment with Ad5-FGF4 results in favorable anti-

ischemic effects (165). All these initial small and unblinded studies with FGF proteins or 

encoding cDNAs were encouraging and demonstrated both clinical improvement and 

evidence of angiogenesis. However, subsequent double-blind placebo-controlled trials did 

not confirm the initial high efficacy observed in the small trials (166). Future larger trials are 

needed to confirm whether FGF treatment is efficacious, safe, and practical for the heart 

failure patients.

Metabolic disorders

The FGFs are best known for their diverse roles in mediating cellular homeostasis through 

short-range cell-to-cell communication within tissues (167). However, FGF19 (or mouse 

FGF15), FGF21, and FGF23, have been identified as endocrine hormones since they 

originate in tissues distal to the metabolic organs they target and are transported through the 

circulation (17, 168–171). A diurnal physiologic role of the ileal FGF19-hepatocyte FGFR4 

axis in bile acid metabolism during normal feeding has been established (169, 172). FGF21 

regulates energy homeostasis mainly through activating the FGFR1/KLB complex in 

adipocytes (173), and represents a novel target for the development of therapies for the 

treatment of obesity, diabetes, and cardiovascular diseases.

Expression of FGF21 is controlled by a complex network of transcriptional regulators, 

which modulate FGF21 expression in response to a wide array of physiological stimuli or 

pharmacologic agents (174). The function of FGF21, if any, in normally fed mice is not 

clear. Generally, the liver FGF21-adipocyte FGFR1 signaling axis appears to come into 

effect only after prolonged starvation, when it uncouples lipid metabolism between the 

adipocytes and hepatocytes, prolonging the supply of lipid fuels to maintain lifesaving 

glucose levels as long as possible until a feeding opportunity arises (175). When 

administered, both FGF19 and FGF21 dramatically reverse obesity and its associated 

symptoms, including type 2 diabetes (176–178). Studies with tissue-specific Fgfr1-knockout 

animals have revealed that the adipocyte, via FGFR1, is the specific target of FGF19 and 

FGF21 that alleviates obesity and allied symptoms (173, 175, 179). Although several reports 

show that FGF21 controls ketogenic and triglyceride clearance in the liver (180–183), unlike 

FGF19, FGF21 is unable to bind FGFR4-KLB complex with affinity comparable to FGFR1-

KLB (83, 170, 184", 185). Therefore, at physiological concentrations, FGF21 is unlikely to 

signal in the liver where FGFR4-KLB predominantly resides. It has been shown that the 

metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity are mediated in 

part by controlling adiponectin production and release in adipocytes (186, 187). More 

recently, it has been shown that FGF21 is produced by a variety of tissues other than liver 

under other than extreme metabolic conditions as starvation or obesity (188). The common 

features of the conditions that elicit FGF21 in organisms cause diverse tissue and cellular 

stress. Thus it has been proposed that FGF21 is largely a stress hormone that calls on 

adipocytes and its metabolic and hormonal secretory products (adipokines) to alleviate 

diverse tissue stresses (188). Although numerous reports (189) suggest FGF21, which 

requires FGFR1-KLB, may directly target other tissues than adipocytes that are very low in 

KLB, the significance relative to adipocytes on overall FGF21 action remains to be 

determined.
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Endocrine FGF19 and FGF21 act on the same FGFR1 that also mediates the effects of 

paracrine/autocrine FGFs on cellular homeostasis in developing and mature organs as well 

as driving numerous proliferative pathologies, such as cancer. However, the canonical 

cellular activities of FGF19 and FGF21, most prominently their mitogenicity, are prevented 

by the transmembrane co-factor KLB, which participates directly in the FGFR signaling 

complex and redirects its output to metabolic signaling (79, 84, 176). Co-expression of KLB 

directs FGFR4 signaling from growth-controlling to apoptosis-promoting, which may 

explain why FGFR4 elicits specific cellular context control of cell population expansion and 

tumor suppression rather than tumor promotion (84). Breast tumor progression in Fgfr4 null 

mice is delayed rather than accelerated (190). This correlates with a fortuitous chronic 

compensatory elevation of ileal FGF19 and an unexpected chronic elevation of circulating 

FGF21 in the FGFR4-knockout model (191), indicating that persistently elevated FGF19 

and FGF21 has a tumor suppressive effect. The persistent elevation of FGF21 in cancer is 

consistent with its overall role as a stress hormone since cancer is a major source of stress on 

the organism affecting many tissues.

Obesity and its associated aspects of metabolic syndrome are strong promoters for several 

cancers, which include breast and prostate cancer. Normally, FGF19/FGF21 serves to 

maintain normal metabolic homeostasis between adipocytes and other tissues, primarily 

hepatocytes. Antitumorigenic effects of FGF21 may occur systemically through fat tissues 

and locally distributed adipocytes, via regulating release of their metabolites and adipokines, 

which affect tumor cells directly or indirectly by changing the tumor microenvironment (Fig. 

4). Although FGF19 directly regulates specific aspects of hepatic contribution to metabolic 

homeostasis, FGF21 has exquisite specificity for adipocytes via FGFR1/KLB without direct 

effects on hepatic FGFR signaling. This very narrow physiologic role of FGF21 and 

adipocyte target specificity makes it especially attractive as a pharmacologic antiobesity, 

antidiabetic, and now antitumor agent for which few side effects are predicted.

Aberrant FGF signaling in cancer

Ectopic expression of FGF ligand or receptor, as well as mutations in the FGFR that cause 

activation of the FGF/FGFR signaling axis is common in many epithelial cancers including 

hepatocellular carcinoma, melanoma, lung, breast, bladder, endometrial, head and neck, and 

prostate cancers (192). Point mutations causing constitutive activation of FGFR3 have been 

detected in more than 60% of non-muscle invasive urothelial carcinomas (193), and a point 

mutation in the transmembrane domain of Fgfr4 has been reported in human prostate 

carcinoma (194). Gene amplification and mutations in the intronic sequence leading to 

overexpression of FGFR tyrosine kinases is also a mechanism underlying excessive FGF 

signaling in cancer. For example, amplification of chromosomal region 8p11–12, which 

encompasses Fgfr1, is frequently found in human prostate carcinoma (195) and 

approximately 10% of breast carcinomas (192), a point mutation in intron 2 of the Fgfr2 

alleles has been found associated with breast cancer (196). Alternative splicing of FGFR 

resulting in variants with altered ligand specificities constitutes the third mechanism leading 

to aberrant FGF signaling in cancer (192). In addition, downregulation of feed-back 

controllers of FGF signaling, such as Spry or SEF can also contribute to oncogenic activity 

of FGF signaling (197).
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Aberrant FGF signaling has been implicated in prostate carcinoma development and 

progression (40, 112, 198", 199). Elevated production of FGF ligands by prostatic secretory 

epithelial cells creates an autocrine signaling loop stimulating aberrant epithelial growth and 

cellular dysplasia and promoting independence from stromal regulation. Upregulation of 

FGF family members in primary prostate cancer correlates with higher grades of cancer and 

clinical stage (197, 200). FGF8 is expressed at low levels in normal prostate. However, 

FGF8 and its cognate receptors are overexpressed in human samples of prostatic 

intraepithelial neoplasia (PIN) and prostate carcinoma (201–204). Furthermore, 

overexpression of FGF8 is associated with decreased patient survival (205). Exogenous 

FGF1 induces expression of matrix metalloproteinases and promotes tumor metastasis in 

prostate carcinoma cells (206). Overexpression of FGF9 augments reactive stroma formation 

and promotes cancer progression in mouse models of prostate carcinoma (207). Attenuating 

FGF2 activity inhibits cell proliferation, migration, and invasion in cell culture (208, 209). 

Consistent with this, ablation of FGF2 inhibits prostate tumor progression in the TRAMP 

transgenic mouse model of prostate cancer (210). In addition, hyperactivation of the FRS2α-

mediated pathway increases tumor angiogenesis and predicts poor outcomes of prostate 

carcinoma patients (211).

FGFs also have a role in the development of bone metastases, which occur in approximately 

80% of patients with advanced prostate cancer (212). These metastases often abnormally 

express FGF8 and/or FGF9, which promote osteoblast proliferation/differentiation in culture 

(213, 214). Forced expression of FGF8 promotes bone growth of prostate carcinoma in a 

mouse model (215). Advanced prostate cancer is frequently resistant to castration. Multiple 

FGFs have been reported to be aberrantly expressed in castration-resistant (205, 216, 217) or 

chemotherapy resistant prostate cancer (218, 219). Inhibition of FGF8 and FGF9 signaling 

has an antitumor effect in mouse models of castrate-resistant prostate cancer (213, 220).

Dysregulated expression of FGFRs has also been associated with prostate cancer. 

Overexpression of FGFR1 has been found in human prostate cancer and accelerates tumor 

progression of rat premalignant prostate epithelial cells (40, 115). Exposure to aberrant 

FGFR1 signaling leads to dosage- and time-dependent lesions of prostate, ranging from low-

grade PIN to carcinoma in situ of the prostate, invasive carcinoma, and metastasis. Forced 

expression of constitutively active mutants of FGFR1 leads to development of high-grade 

PIN lesions (221, 222). JOCK-1 is a transgenic mouse model overexpressing an FGFR1 

kinase construct, iFGFR1, which contains the membrane anchored FGFR1 intracellular 

kinase domain in frame fused with a 12 kDa FK506 binding protein (FKBP12) at the C-

terminus. Treating the mice with FK506, a dimer inducer to activate the FGFR1 kinase, 

causes the mice to develop invasive prostate carcinoma and metastasis (223). On the other 

hand, deletion of Frs2α or Fgfr1 in prostate epithelial cells inhibits the initiation and 

progression of prostate cancer in the transgenic adenocarcinoma of the mouse prostate 

(TRAMP) model (224, 225). Tissue recombination experiments in vitro also show that 

ectopic FGFR1 is required for prostate cancer initiation and progression (226). Epithelial-

mesenchymal transition (EMT) is a process whereby polarized epithelial cells lose epithelial 

characteristics and acquire mesenchymal features, including enhanced migratory capacity, 

invasiveness, and elevated resistance to apoptosis (227). Shifts in alternative splicing of 

FGFR1 and FGFR2 from IIIb (epithelial) to IIIc (mesenchymal) isoforms are associated 
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with EMT in prostate and other types of cancer (228). In contrast, downregulation of 

epithelial cell resident FGFR2 is associated with prostate cancer progression (40, 114). 

Together, these data suggest that aberrant activation of FGFR1 signaling is sufficient to 

disrupt prostate tissue homeostasis leading to over-proliferation of prostate cells, and 

contribute to initiation and progression of the lesion to malignancy in mouse models of 

prostate cancer.

In contrast to ectopic FGFR isoforms, however, resident FGFR signaling in prostate cells 

maintains tissue homeostasis, communication with stromal cells, and mediates androgen 

signaling. The stromal FGF7/FGF10 to epithelial FGFR2 signaling axis maintains prostate 

tissue homeostasis and mediates androgen signaling in the epithelial cells. Therefore, both 

FGF7 and FGF10 have been called andromedins (112, 199). Although ablation of Fgfr2 was 

insufficient to cause full progression to carcinoma, it leads to development of low-grade PIN 

(Wang and McKeehan, unpublished data). The epithelial FGF9 to stromal FGFR3 signaling 

axis is engaged in communication between epithelial and stromal cells in the prostate and is 

lost in advanced prostate cancer. Reinstatement of this signaling axis in advanced rat 

prostate cancer cells restores the interactions between cancer cells and stromal cells and 

induces prostate cancer cell differentiation in the Dunning R3327 rat prostate cancer model 

(216).

FGF pathway inhibitions in cancer treatment

A number of targeted agents that inhibit FGF/FGFR signaling have been developed, which 

include tyrosine kinase inhibitors (TKIs), monoclonal antibodies, and FGF ligand traps. The 

TKIs include both ATP binding site and non ATP binding site molecules. With the exception 

of AZD4547 that is relatively FGFR specific (229, 230), most ATP binding site inhibitors, 

including dovitinib (TKI258), nintedanib (BIBF 1120), lenvatinib, brivanib, orantinib, and 

PD173074, cross-inhibit multiple receptor tyrosine kinases (231–237). Non-ATP binding 

site inhibitors of FGFR kinase may exhibit a better specificity than the ATP-binding site 

inhibitors. Several non-ATP binding site inhibitors have been developed, which include 

L6123, Aea4, Aea25, A114, and A117 (238–240). All these non-ATP binding site inhibitors 

exhibit highly FGFR kinase specific inhibitory activities and suppress cancer cell 

proliferation, migration, and induce cell apoptosis. It remains to be determined, however, 

whether these non-ATP binding site inhibitors are safe and efficacious for use on cancer 

patients.

In addition to kinase inhibitors, several strategies have also been developed to block ligand-

receptor binding, which includes antibodies against FGF or FGFR, ligand traps, and small 

peptides that compete with FGF for binding to the receptors. MFGR1877S is a monoclonal 

antibody against FGFR3 that is currently undergoing phase 1 testing for patients with 

advanced solid tumors (241). Both the GP369 antibody that specifically blocks FGFR2 IIIb 

isoform and the 1A6 antibody that neutralizes FGF19 activities are currently in preclinical 

development (242, 243). The fusion protein HGS1036 (FP-1039) comprises the extracellular 

domain of FGFR1c fused with the Fc portion of IgG1, is expected to trap FGF ligands for 

the FGFR1IIIc isoform and functions as a decoy receptor. It inhibits tumor cell proliferation 

and blocks angiogenesis and suppresses growth of patient-derived xenograft tumor models 
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of various tissue origins (244). It has been shown to cause shrinkage of prostate cancer in a 

phase 1 clinical trial (245). Two short peptides, P8 (PLLQATAGGGS) that binds to FGF2 

and P7 (LSPPRYP) that binds to FGFR1 were identified by screening a phage display 

library using FGF2 and FGFR1 as the bait, respectively (246, 247). Both peptides exhibit 

activities to suppress FGF2–FGFR1 binding and block FGF2-induced cell proliferation 

activity without cytotoxic effect in multiple cell lines. The clinical application of these two 

peptides in cancer treatment is currently being explored.

3. Perspective

Soon after its discovery in the early seventies, the FGF family was recognized to elicit a 

broad spectrum of regulatory activities. There are few tissues where no members of this 

large family are expressed or have an impact on some tissue response marker. Often multiple 

members of the family, both ligands and receptor isotypes, are co-expressed although they 

are most commonly cell-specific and compartmented when examined more closely. Cell 

culture analyses in the absence of physiological restrictions often indicate a considerable 

redundancy among the family members. However, as FGF family member expression and 

associated activities have been more closely dissected under physiological conditions, results 

have indicated an increasing degree of receptor isoform- tissue and cell type contextual 

specificity. Aberrant and ectopic expression of FGF signaling has been reported as a causal 

factor for multiple diseases, including cancer. Yet, the determinants of FGF isotype and cell 

type signaling specificity are poorly understood. It is particularly challenging to understand 

how the same FGFR isotype can have diverse and often opposing biological endpoints. 

Sometimes the endpoints are temporally dependent on the point at which activation begins 

and how long it is sustained. Little is known with respect to kinase-substrate specificity of 

the FGFR tyrosine kinases, although emerging evidence shows that FGFR elicits isoform-

specific activities. The role of co-factors and co-receptors, such as heparan sulfate 

proteoglycans and Klothos, in FGF signaling specificity should not be ignored. In fact, it has 

been reported that with or without co-expression of KLB, FGFR4 elicits different activities 

in 293 cells (84). In addition, heparan sulfates affect ligand binding specificity of the FGFR, 

and it remains to be investigated whether heparan sulfates also contribute to signaling 

specificity at the substrate level. Understanding the signaling specificity of the FGF 

signaling axis will provide new strategies for developing drugs that will selectively suppress 

a particular pathway to minimize side effects. As new technologies emerge, unraveling the 

“gaitou” of FGF signaling specificity is no longer a dream. Therefore, future applications of 

FGF, the new focus in the pharmaceutical arena, for improving wound healing, alleviating 

damages of cardiovascular diseases, controlling obesity and diabetes, and suppressing cancer 

progression and metastasis are visible on the horizon.
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Fig. 1. The FGF family
A. Schematic of the FGF. Red box, signal peptide; open boxes, non-conserved, N- and C-

terminal domains; solid box, conserved core domain. B. FGF sub-families. The 22 FGFs are 

grouped into 7 subfamilies based on sequence homology and function.
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Fig. 2. Topology of a prototypical FGF receptor tyrosine kinase
S, signal peptide; I, II, III, immunoglobulin-like domain 1, 2, and 3; TM, transmembrane 

domain. Red box, tyrosine kinase domain that is separated by a kinase insertion sequence; 

green arrows, alternative splice sites; triangles, tyrosine phosphorylation sites.
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Fig. 3. Signaling pathways downstream of FGFR tyrosine kinase
Shown is a wiring diagram with blue lines indicating positive effects, and red lines 

indicating negative effects.
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Fig. 4. Endocrine FGFs suppress prostate tumor progression and metastasis by regulating 
adipokine secretion
FGF21 produced by hepatocyte affects prostate cancer progression via controlling adipokine 

productions in both adipose tissues and local adipocytes in the tumor microenvironment.
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