Skip to main content
. Author manuscript; available in PMC: 2017 May 1.
Published in final edited form as: J Pain Symptom Manage. 2015 Dec 30;51(5):868–874. doi: 10.1016/j.jpainsymman.2015.12.310

Table 1.

Model Fit Indices for Latent Class Models

Number of Classes
1 2 3 4 5
Pearson χ2 1678.441 1241.109 954.449 649.605 613.916
LR χ2 1112.544 836.825 561.228 474.321 424.913
df 499 490 480 471 462
No. of parameters 9 19 29 39 49
Log likelihood −5793.281 −5649.319 −5511.630 −5462.465 −5432.891
AIC 11604.561 11336.637 11081.327 11002.930 10963.782
BIC 11651.906 11436.587 11233.882 11208.090 11221.548
LMR Testing hypothesis ------ 1 class vs. 2 classes 2 classes vs. 3 classes 3 classes vs. 4 classes 4 classes vs. 5 classes
LMR probability ------ < .001 < .001 < .001 .013
Entropy ------ .669 .757 .758 .692

Note: LR: Log likelihood ratio; AIC: Akaike information criterion; BIC: Bayesian information criterion; LMR: Lo-Mendell Rubin test