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Abstract

A dynamic treatment regime (DTR) is a sequence of decision rules, each of which recommends a 

treatment based on a patient’s past and current health status. Sequential, multiple assignment, 

randomized trials (SMARTs) are multi-stage trial designs that yield data specifically for building 

effective DTRs. Modeling the marginal mean trajectories of a repeated-measures outcome arising 

from a SMART presents challenges, because traditional longitudinal models used for randomized 

clinical trials do not take into account the unique design features of SMART. We discuss modeling 

considerations for various forms of SMART designs, emphasizing the importance of considering 

the timing of repeated measures in relation to the treatment stages in a SMART. For illustration, 

we use data from three SMART case studies with increasing level of complexity, in autism, child 

attention deficit hyperactivity disorder (ADHD), and adult alcoholism. In all three SMARTs we 

illustrate how to accommodate the design features along with the timing of the repeated measures 

when comparing DTRs based on mean trajectories of the repeated-measures outcome.
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1. Introduction

A dynamic treatment regime (DTR) [1–5] is a sequence of decision rules, each taking the 

current characteristics and past treatments of a patient as input, and outputting a 

recommended treatment. Also known as adaptive treatment strategies [6–10], treatment 

policies [11–13] or adaptive interventions [14], dynamic treatment regimes aim to provide 

treatments when patients need them; to do this, DTRs adapt the type or dosage of treatments 

to patients’ changing needs. DTRs are particularly useful for the treatment of chronic 

diseases, where the status of the individual is often waxing and waning, or in settings in 

which no one treatment is effective for most individuals, and thus a sequence of treatments 

that are adapted to the patients’ needs and conditions are often needed to achieve an 

improvement in health. An example DTR for improving spoken communication in children 

with autism spectrum disorder [15,16] is “Begin with a therapist-delivered behavioral 

language intervention (BLI) for 12 weeks. At the end of week 12, if a child is a slow 

responder, augment BLI with an augmentative or alternative communication (AAC) 

approach, most often a speech-generating device; otherwise, if the child shows early signs of 

response, continue with the first stage BLI for an additional 12 weeks.”

A vast literature is available on the methodology that can be used to inform the construction 

of effective DTRs with both observational data and experimental data. These methods 

include marginal structural models [17–21], inverse probability weighting [22], structural 

nested mean models [5, 23], likelihood-based methods [24], and statistical learning-based 

methods [25].

This manuscript focuses on statistical methods for comparing DTRs on the basis of a 

repeated-measures outcome observed across the multiple stages of treatment in a sequential, 

multiple assignment, randomized trial (SMART; [6,8,26]). In the context of the autism 

example, a researcher may be interested in comparing two DTRs, say, based on the 

trajectory of the number of socially communicative utterances collected at baseline and 

weeks 12, 24 and 36. Study features that are unique to SMARTs make repeated-measures 

modeling a challenge. In this setting, repeated-measures models must account appropriately 

for (i) the temporal ordering of treatments relative to outcome measurement occasions and 

(ii) the fact that participants may transition from one stage of treatment to the next at 

different time points. In this manuscript we discuss how to accommodate the features of 

various forms of SMART designs in modeling repeated-measures outcomes. For illustration, 

we use data from three SMART case studies in autism, child attention deficit hyperactivity 

disorder (ADHD), and adult alcohol dependence. We do this because each case study 

presents a progressively more complex SMART design. We generalize the weighted-and-

replicated methods of Orellana and colleagues [17,19,21] to estimate the parameters in our 

repeated-measures models.

This paper is organized as follows. In Section 2, we describe SMART studies in more detail. 

In Section 3, we present and discuss general principles for modeling repeated-measures 

outcomes in SMART and illustrate these principles with the three SMART studies. A 

weighted-and-replicated estimator for the parameters in the repeated-measures marginal 

model is proposed in Section 4. In Section 5 we present the data analysis results for the three 
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SMART studies. In Section 6 we report results of simulation studies illustrating the 

importance of modeling considerations. Finally, a discussion, including other possible ideas 

for modeling repeated-measures outcomes from a SMART, is presented in Section 7.

2. Sequential, Multiple Assignment, Randomized Trials

In a SMART participants proceed through multiple treatment stages, and at each treatment 

stage the participant may be randomized to one of several treatment options available at that 

stage. Each randomization is designed to address a scientific question concerning the type, 

dosage or intensity of the treatment at that decision point. Often, subsequent randomized 

treatment options in a SMART are restricted depending on the participant’s response to prior 

treatment. A variety of these trials have been conducted, with some of the earliest taking 

place in cancer research, for the purpose of developing medication algorithms for leukemia 

[10], or to develop adaptive treatments of prostate cancer [9]. A selection of SMART studies 

may be found at http://methodology.psu.edu/ra/adap-inter/projects.

In this section we present the three SMART studies that we use for illustration in this paper: 

the autism, ADHD and ExTENd studies. The review paper by Lei et al. [27] describes the 

design of each of the three studies in greater detail, including each study’s rationale, the 

interventions examined, and the primary and secondary aims. These designs vary in 

complexity, with the autism study being the least complex and the ExTENd study being the 

most complex of the three. The complexity in study design is in terms of the number of 

DTRs that are embedded in the design and the number of time points at which participants 

can transition from one treatment stage to another. In Section 3, we will discuss how these 

varying design features have implications on the choices of models for repeated measures 

arising from the SMART studies.

Figure 1 provides the design of the autism SMART (C. Kasari, P.I.; [16]), for the treatment 

of minimally verbal children with autism, aged 5 to 8 years. In this SMART, at the first stage 

children were randomized to BLI or BLI+AAC. Both BLI and BLI+AAC involves two one-

hour long sessions per week with a language therapist. This stage lasted for 12 weeks for all 

children. After 12 weeks, children were classified as either early responders or slow 

responders to the initial treatment, according to pre-specified criterion, and made the 

transition to the second stage. In the second stage, early responders continued with the 

treatments that were assigned in the first stage. Slow responders to initial BLI+AAC 

received intensified BLI+AAC (increasing sessions from two to three per week). Slow 

responders to initial BLI were randomly assigned to either intensified BLI (increasing 

sessions from two to three per week) or to augmenting BLI with AAC (i.e., BLI+AAC). The 

second stage treatment lasted for 12 weeks.

SMARTs, such as the one shown in Figure 1, have a set of DTRs embedded within them. 

The variables that tailor the treatment assignment in these DTRs can only be the variables 

that are used to restrict (re-)randomization in the design of the SMARTs (e.g., the early 

response status in the autism SMART). In this SMART there are three embedded two-stage 

DTRs; they are listed in Table 1. These three embedded DTRs correspond to three different 

strategies of using AAC in the context of the BLI treatment: deferring the use of AAC (DTR 
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(BLI, BLI+AAC)), withholding the use of AAC (DTR (BLI, INT)) and using AAC from the 

beginning (DTR (BLI+AAC, ·)). Note that some participants in SMART have treatment 

sequences that are consistent with more than one DTR. For example, early responders to 

BLI have a treatment sequence that is consistent with both (BLI, INT) and (BLI, BLI

+AAC).

Figure 2 shows the design of the ADHD SMART for the treatment of children (aged 5 to 13 

years with mean of 8 years) with ADHD (W. Pelham, P.I.). In this SMART, at the first stage 

children were randomly assigned to begin with low-intensity behavioral modification 

(BMOD) or with low-dose medication (MED; methylphenidate). Starting at the end of 

month two, children were assessed monthly for response/non-response to the initial 

treatment. See [27] and [28] for more details concerning the definition of response/non-

response. Children who met the criteria for non-response were immediately re-randomized 

to either an intensified version of the initial treatment (INT) or to augmenting the initial 

treatment with the alternative treatment (MED+BMOD). Children who continued to respond 

remained on their initial treatment. Treatment duration was eight months in total for all 

children in the study.

The ADHD SMART differs from the autism SMART in that the duration of stage one varied 

among participants. Those who met the non-response criteria at later time points transitioned 

to the second treatment stage later during the study, and the duration of the first treatment 

stage was an outcome of the initial treatment. Those who continued to respond to the initial 

treatment did not transition to the second stage. The ADHD SMART has four embedded 

DTRs, as a result of the initial randomization and re-randomization of non-responders.

Figure 3 shows the design of a third SMART study, the ExTENd SMART aiming to develop 

a DTR for individuals with alcohol dependence. At study entry, patients were randomized to 

either a stringent criterion for early non-response (two or more heavy drinking days within 

the first eight weeks) or a lenient criterion for early non-response (five or more heavy 

drinking days within the first eight weeks). All patients received open-label Naltrexone 

(NTX; medication, an opiate antagonist) as the initial treatment. Starting at the end of week 

two, patients’ early response status was assessed weekly; those who met their assigned 

criterion for early non-response immediately transitioned to the second stage and were re-

randomized to either NTX+CBI+MM or Placebo+CBI+MM, where CBI stands for 

combined behavioral interventions and MM stands for medical management. Patients who 

did not meet their assigned non-response criterion by week eight were classified as 

responders and were re-randomized to either usual care (UC)+NTX prescription or 

telephone disease management (TDM)+NTX prescription. The second-stage treatment 

lasted four months.

The ExTENd SMART design is more complex than the autism and ADHD studies. Similar 

to the ADHD study, in ExTENd the duration of stage one varied among participants. 

Specifically, non-responders transitioned to stage two at any of a variety of weeks prior to 

week eight whereas all responders transitioned to stage two at week eight. However, in 

ExTENd both responders and non-responders to the initial treatment were re-randomized to 

subsequent treatment options. As a result, the ExTENd SMART has eight embedded DTRs.
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Both responders and non-responders to the initial treatment were re-randomized to 

subsequent treatment options. The duration of stage one varied among participants: non-

responders transitioned to stage two at any of a variety of weeks prior to week eight whereas 

all responders transitioned to stage two at week eight. The ExTENd SMART has eight 

embedded DTRs, as a result of the initial randomization and re-randomization of both 

responders and non-responders.

3. Repeated-Measures Marginal Model

In this section we develop marginal models for comparing the embedded DTRs in a SMART 

based on repeated measures. For simplicity, we focus on two-stage SMARTs; all ideas can 

be extended readily to SMARTs with more than two stages. By examining the three SMART 

studies introduced above, we will illustrate modeling considerations by varying degrees of 

complexity in SMART design. There has been work that compares DTRs by focusing on 

repeated measures that occur only after all the re-randomizations [29]; in this paper we will 

allow the repeated measures to span across multiple treatment stages.

For modeling and estimation purposes, we label each embedded DTR in a two-stage 

SMART by the pair (a1, a2), where aj is used to denote a treatment option at stage j. We use 

contrast coding (i.e., {−1, 1}) for aj [28, 30, 31]. For example, in the autism SMART, we let 

a1 = 1 denote BLI and let a1 = −1 denote BLI+AAC. We let a2 = 1 denote assigning 

intensified BLI to slow responders to first stage BLI and let a2 = −1 denote assigning BLI

+AAC to slow responders to first stage BLI. Note that in the autism SMART, a2 is nested 

within a1 = 1 because only slow responders to BLI were re-randomized. See Table 1 for the 

labels of all three embedded DTRs in the autism study.

X denotes baseline, pre-randomization covariates, such as age, gender and ethnicity. In all 

models below, the variables in X are mean-centered to facilitate model interpretations. Yt 

denotes the repeated-measures primary outcome that is of scientific interest, observed at 

time t, . In the autism study, Yt is the number of socially communicative utterances at 

week t = 0 (baseline), 12, 24, 36. For this outcome, higher values of Yt are more favorable.

 is the marginal mean of the repeated-measures outcome Yt under the 

embedded DTR defined by (a1, a2), conditional on the baseline variable X. Note that under 

the potential outcome framework [32, 33], this is the mean of the repeated-measures 

outcomes had all participants been assigned DTR (a1, a2) at the outset. Thus a model μt(X, 

a1, a2; β) for  is a repeated-measures marginal structural mean model [21, 

34]; in this paper for conciseness we will call μt(X, a1, a2; β) a marginal mean model. The 

primary focus of this manuscript is on developing parametric models μt(X, a1, a2; β) for 

 under various forms of SMART designs. Because it is important to make the 

distinction between modeling and estimation, in this section we discuss modeling and in 

Section 4 we discuss the estimation of the unknown parameter β using data from SMART 

studies.
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3.1. A Traditional yet Naïve Approach to Modeling Repeated Measures in a SMART

To appreciate the need to accommodate the specific features of a SMART design in 

repeated-measures modeling, we first consider using a traditional approach to comparing the 

mean trajectories between two DTRs in the autism SMART. For simplicity, suppose we are 

interested in comparing DTR (BLI, BLI+AAC) (labeled (1, −1) in Table 1) versus DTR 

(BLI, INT) (labeled (1, 1) in Table 1) using only data from children who began with BLI (a1 

= 1). A traditional model in this case might be

This is a traditional approach in that it is often used in the analysis of 2-arm RCTs. In this 

model, the trajectories associated with the two DTRs are modeled as two straight lines that 

start with the same intercept at t = 0: averaging over the baseline covariate X, the marginal 

mean of Yt under DTR (1, −1) is (β0 + β1t), whereas the marginal mean of Yt under DTR (1, 

1) is (β0 + (β1 + β2)t). In this example of a traditional approach, therefore, the difference 

between the marginal mean trajectories is given by the single parameter β2. This model will 

incur bias if either one of the two DTRs does not have a linear mean trajectory. However, in 

a study such as the autism SMART, it may be important to accommodate a possible 

deflection at week 12 in the mean trajectory because this is the point at which the treatment 

is modified for slow responders. Further, since neither participants nor staff were aware of 

the randomly assigned second-stage treatment during the first stage of treatment (this is a 

typical feature of SMART designs), these two DTRs should not differ, on average, from t = 0 

to t = 12. In Section 6 we investigate, via simulations, the bias that occurs when adopting a 

traditional slope or quadratic model to analyze repeated measures from a SMART. An 

example of an improved model is presented in the next section.

In addition, when it is no longer reasonable to adopt simple models such as the slope model 

above, the comparison between DTRs based on a repeated-measures outcome would require 

alternative estimands. In the following subsections, we discuss (a) modeling considerations 

for μt(X, a1, a2; β) for various forms of SMART designs, and (b) options for estimands in the 

comparison of the embedded DTRs in a SMART.

3.2. Repeated-Measures Modeling Considerations: The Autism Example

As noted earlier, modeling of a repeated-measures outcome arising from a SMART should 

be guided by two key principles: (a) properly accommodate the timing of repeated measures 

in relation to the treatment stages in a SMART; and (b) properly accommodate the 

restrictions applied on the randomizations by design. The autism SMART provides a 

relatively simple example to illustrate these modeling principles.

In the autism SMART, all participants had the same duration of stage one treatment (12 

weeks) and stage two treatment (12 weeks), and they all advanced to stage two after week 

12. Additionally, only slow responders to BLI were re-randomized.

The primary outcome, the number of socially communicative utterances, was measured on 

four occasions. Baseline measurement Y0 was pre-treatment; Y12 was measured right before 
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the second treatment stage (re-randomization, if applicable, happened right after Y12); Y24 

was measured at the end of treatment; Y36 was measured post treatment and treatment ended 

at the end of week 24. Since all participants transitioned at t = 12, one approach to modeling 

the repeated measures in the autism SMART is using a continuous, piecewise marginal 

model with a knot at week 12. For example, consider the following marginal model for Yt:

(1)

where the unknown parameters β = (β0, β1, β2, β3, β4, β5) model the effect of the three 

embedded DTRs over time. An advantage of using contrast coding (−1/1, as opposed to 0/1 

coding) is that certain coefficients in the marginal mean model have an interpretation as 

“main effect”. For example, as a result of a1 being coded as {−1, 1}, β1 in (1) can be 

interpreted as the average slope for all participants (averaging all stage-one and stage-two 

treatment options) from baseline to t = 12. η captures the association between the time-

varying outcome and baseline covariates X. β are of primary interest.

This example model entails two restrictions. The first restriction is that Y0 is modeled to 

have the same marginal mean for all three embedded DTRs. This is a common restriction 

used in the analysis of longitudinal randomized trials [35] since, by design, treatment groups 

are not expected to differ at baseline (prior to randomization). The second restriction is that 

the marginal mean trajectory is assumed to be the same between embedded DTRs (BLI, 

INT) (labeled (1, 1)) and (BLI, BLI+AAC) (labeled (1, −1)) until week 12. This restriction is 

unique to SMARTs. It is consistent with the study design, in that (1) these two DTRs are 

identical up to week 12 and (2) re-randomization to second stage treatment does not occur 

until week 12 (i.e., there can be no expectancy or anticipatory effects due to knowledge of 

second stage treatments during stage one).

For simplicity, the example model above assumes a piecewise linear trend. In practice, a 

quadratic mean trajectory (or some other trend) may be more appropriate.

3.3. Repeated-Measures Modeling Considerations: The ADHD Example

In analyzing the ADHD SMART, we focus on comparing the four embedded DTRs based on 

the repeated measures of school performance measured on eight occasions – at the end of 

each month of the study (i.e., Y1, …, Y8). Note that unlike in the autism SMART, the 

repeated-measures outcome is unavailable at baseline. This outcome is coded so that higher 

values are more favorable. Each of the four embedded DTRs is labeled by a pair (a1, a2). Let 

a1 = 1 denote starting with low-intensity BMOD and let a1 = −1 denote starting with low-

dose MED. Let a2 = 1 denote intensifying the initial treatment for non-responders and let a2 

= −1 denote augmenting the initial treatment with the alternative treatment for non-

responders.

As discussed previously, the SMART design in the ADHD study is more complex relative to 

the autism study. While the duration of the entire study was the same for all participants (i.e., 

eight months), the duration of the first and the second treatment stages varied across 

participants. More specifically, the duration of the first treatment stage could be as short as 
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two months (for the children who became non-responders at the end of month two), or as 

long as eight months (for the children who continued to respond throughout the entire 

study). This has implications for modeling the marginal mean under a DTR in that, for a 

fixed t > 2, the marginal mean of Yt is a weighted average of the mean for participants who 

have transitioned and the mean for participants who have yet to transition; as a result, there 

may be deflections in the marginal mean at any given month, starting at month 2 (t = 2) and 

ending at month 7 (t = 7).

Additionally, the initial treatment (BMOD versus MED) had an impact on participants’ 

performance, which determined whether or when the participants transitioned to the second 

stage as non-responders. For example, among the 75 participants who were assigned to 

MED initially, only 19 transitioned to stage two (as non-responders) at month two; whereas 

among the 75 participants who were assigned to BMOD initially, 36 transitioned to stage 

two (as non-responders) at month two. Therefore, we may allow the pattern of deflection in 

the mean trajectory to differ between DTRs that start with BMOD and those starting with 

MED (see the exploratory plot in the Web Appendix).

Based on the discussions above, as well as exploratory analysis aimed at refining the 

modeling assumptions, we propose to model the repeated measures from the ADHD study 

as shown below:

(2)

Here, the DTR (BMOD, BMOD+MED) (i.e., (a1, a2) = (1, −1)) is assumed to have a 

piecewise linear trajectory with a knot at t = 2, whereas (BMOD, INT) (i.e., (a1, a2) = (1, 1)) 

has the same mean trajectory as (BMOD, BMOD+MED) until t = 2 and then develops a 

quadratic trajectory. The two DTRs that begin with MED are assumed to have piecewise 

linear trajectories with a knot at t = 3 and they share the same mean trajectory until t = 3.

3.4. Repeated-Measures Modeling Considerations: The ExTENd Example

The greater complexity in the ExTENd SMART necessitates more careful modeling 

considerations. In analyzing the ExTENd SMART, we focus on comparing the eight 

embedded DTRs based on a repeated-measures outcome of alcohol craving. Alcohol craving 

was collected on 17 occasions: at baseline (Y0) and the end of each week for 16 weeks (Y1, 

…, Y16). This outcome is re-coded so that higher values are more favorable. The eight DTRs 

are denoted by (a1, a2R, a2NR), where a1 is used to denote whether the stringent definition or 

the lenient definition of early non-response is adopted, a2R is used to denote a treatment 

option for responders at stage two, and a2NR is used to denote a treatment option for non-

responders at stage two.

The transition time to the second treatment stage ranged from the end of week two to the end 

of week eight. As a result, similar to the ADHD study, for a fixed t, Yt may come from 

different treatment stages for different participants. In addition, note that DTRs that begin 
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with the same a1 might differ only in a2R (how responders are treated in the second stage), 

only in a2NR (how non-responders are treated in the second stage), or both. The impact of 

differing a2NR can take place from the end of week two (non-responders could start to 

transition to stage two as early as the end of week two); however the impact of differing a2R 

can only take place from the end of week eight (responders could only transition to stage 

two at the end of week eight).

Because of the features illustrated above, and given the relatively frequent repeated 

measures, we do not model each of the mean trajectories by simple parametric form; instead, 

we adopt flexible spline-based models with constraints that are consistent with the SMART 

study design. First, we allow two DTRs that differ only in a2NR to start to differ in the mean 

trajectories after t = 2, because participants could become non-responders and, therefore, 

receive salvage treatment options specified by a2NR on or after week two. Second, we allow 

two DTRs that differ only in a2R to start to differ in the mean trajectories after t = 8, because 

on week eight participants could become responders and, therefore, receive the maintenance 

treatment options specified by a2R. Aside from forcing all DTRs to have the same mean of 

Y0 and these two constraints, we allow the trajectories of the DTRs to be regression splines. 

In the appendix we provide additional details about incorporating these design features into 

the regression splines model.

3.5. Estimands

In repeated-measures analysis of SMARTs, a variety of interesting estimands are possible 

for the comparisons among embedded DTRs. Here, we present two that are clinically 

important and easy to communicate: change score comparisons and area under curve (AUC). 

The first approach, change score comparisons, measures the differences among embedded 

DTRs in terms of change in response from t1 to t2. A change score estimand is 

, where (a1, a2) and  are two 

embedded DTRs. In the autism example, a change score comparison from week 0 to week 

36 compares the embedded DTRs in terms of the mean increase from baseline to the end of 

follow-up in the number of socially communicative utterances.

The second approach, AUC, summarizes the cumulative amount of Yt within a time range 

(t1, t2) [36, 37]; it provides an alternative single number summary of the overall mean 

trajectory under each embedded DTR. In the autism study, the AUC of Yt from t = 0 to t = 

36 for a specific embedded DTR has a clinically relevant interpretation as the average total 

number of socially communicative utterances from t = 0 to t = 36 under this DTR.

Both of these two metrics are linear in the coefficients in the marginal model (in Web 

Appendix we represent each estimand, in the autism study, as a function of coefficients in 

(1)). The AUC is a more informative summary of the marginal mean trajectory than the 

change score, because it captures not only change from the start to the end point, but also 

captures characteristics of the progression in the mean outcome during the period. In the 

data analysis, we report the AUC for the embedded DTRs.
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4. Estimator for Repeated-Measures Marginal Model

4.1. Observed Data

For simplicity, we present the proposed estimator for the repeated-measures marginal model 

with the autism example. Details about how this estimator is implemented to analyze the 

ADHD and ExTENd SMARTs can be found in the appendix.

The structure of the data is as follows. For individual i (i = 1, …, N), we observe Xi, A1,i, Ri, 

A2,i and . X includes a set of mean-centered baseline covariates; A1 denotes the 

first-stage treatment to which an individual is randomized; R is the indicator of early 

response; A2 denotes the second-stage treatment to which the individual is re-randomized. 

Yt is the observed value of the repeated-measures outcome at time t.

For example, in the autism SMART, we have (Xi, Y0,i, A1,i, Y12,i, Ri, A2,i, Y24,i, Y36,i). A1 

denotes whether the child was randomized to BLI (A1 = 1) or BLI+AAC (A1 = −1) during 

the first 12 weeks. For slow responders to BLI (A1 = 1, R = 0), A2 denotes whether the child 

was re-randomized to intensified BLI (A2 = 1) or BLI+AAC (A2 = −1).

4.2. A Review of the Weighted-and-Replicated Estimator with an End-of-study Outcome

This section is a review of a weighted-and-replicated (WR) estimator for comparing the 

DTRs with respect to an end-of-study outcome [17–19, 21, 28], illustrated with the autism 

example. In the following section, we extend this estimator to repeated-measures outcomes.

Suppose that one is interested in comparing the mean of Y36 among the embedded DTRs, 

and assume that μ36(X, a1, a2; β) is a parametric model for the marginal mean of Y36 under 

embedded DTR (a1, a2), which takes a linear form in β and has derivative d(X, a1, a2) with 

respect to β. The WR estimator for β is obtained by solving the following estimating 

equation:

where I{treatment sequence of individual i consistent with DTR (a1, a2)} is a binary 

indicator that the individual i was assigned to treatment sequence that would be observed 

under the DTR (a1, a2); and Wi is the product of stage-specific weights, each being the 

inverse probability of receiving the observed treatment, conditional on the observed 

covariate and treatment history. In a SMART, W is known, by design. For example in the 

autism study, W = 1/(Pr(A1|X, Y0) · Pr(A2|X, Y0, A1, Y12, R)). Slow responders to BLI 

receive a weight equal to 4; all the other participants receive a weight equal to 2.

To appreciate why weighting is necessary, note that by design, BLI slow responders are 

randomized twice, whereas other participants are randomized only once; thus, slow 

responders to BLI would have a 1/4 chance of following the sequence of treatments they 

were offered, whereas other participants would have a 1/2 chance of following the 

treatments they were offered. Therefore, slow responders to BLI are under-represented in the 
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data. To account for this imbalance, weights inversely proportional to the probability of 

being assigned to a particular treatment sequence are employed in the estimating equation.

Next, note that this estimating equation is an aggregate of estimating equations for each of 

the embedded DTRs. In a SMART, each individual may be consistent with one or more 

embedded DTRs depending on the study design. For example, in the autism SMART, 

responders to initial BLI are consistent with DTRs (BLI, INT) and (BLI, BLI+AAC); that is, 

their treatment sequences are identical to the treatment sequences that would be 

recommended if embedded DTRs (BLI, INT) or (BLI, BLI+AAC) are followed. To account 

for this “sharing” of observations, those observations contribute to the estimating equations 

for multiple DTRs.

4.3. An Extension for Repeated Measures

For the estimation of the repeated-measures marginal model, we use a longitudinal version 

of the WR estimator reviewed above. This estimator builds on previous work by Robins and 

colleagues concerning the estimation of the effect of time-varying treatment on a repeated-

measures outcome [38–42].

Let Yi = (Y0,i, Y1,i, …, YT,i)T denote the vector of repeated-measures outcome for individual 

i. Denote the vector of the model for the marginal mean as μ(Xi, a1, a2; β, η), where μ = (μ0, 
μ1, …, μT)T. Recall μt(x, a1, a2; β, η) is a parametric model for the marginal mean of Yt 

among participants that have pre-treatment baseline covariates equal to x, under the 

embedded DTR labeled (a1, a2). Denote the derivative of μ(Xi, a1, a2; β, η) with respect to 

(η, β) as D(Xi, a1, a2). D(Xi, a1, a2) is a (T + 1)-by-p matrix, where p is the dimension of (η, 
β).

An estimator for (η, β) for a general SMART design is

(3)

V (a1, a2) is a working variance-covariance matrix of (Y0, Y1, …, YT)T conditional on the 

baseline X, under the embedded DTR labeled (a1, a2). The weight W is used to account for 

the fact that participants received the observed treatment sequences with different 

probabilities. In the autism example, W = 1/(Pr(A1|X, Y0) · Pr(A2|X, Y0, A1, Y12, R)). The 

choice of the working variance-covariance matrix V (a1, a2) does not have an impact on the 

unbiasedness of the estimating equation above, assuming that the marginal model μ(X, a1, 
a2; β, η) and the weight W are correctly specified. In the analysis of SMART studies, the 

weight W can be correctly specified because the treatments are assigned according to known 

probabilities.

The estimator in (3) is an extension of the WR estimator that accommodates a repeated-

measures outcome; the observations of a participant contribute to the estimation of all the 

embedded DTRs that the treatment sequence of this participant is consistent with. Each 
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patient now has a vector-valued outcome. Moreover, this estimator uses a working variance-

covariance matrix for the vector of repeated measures, which is a strategy that is usually 

taken when performing longitudinal analysis, for the purpose of improving statistical 

efficiency [43]. Asymptotics of this estimator is provided in the Web Appendix; this includes 

the formula for the asymptotic standard error of . In particular, calculation of the standard 

error accounts for the fact that some patients contribute to the estimation of multiple DTRs.

Pepe [44] and Lai and Small [45] note that the use of a non-independent working correlation 

structure in the analysis of longitudinal data may lead to bias when the estimated marginal 

regression model is conditional on time-dependent covariates. However, in the estimator 

described in Equation (3), the weights have the effect of creating a pseudo-population [38] 

where it is as if all participants had been assigned a specific DTR at the outset. Another way 

to think about this is that the marginal model being estimated is one that only conditions on 

pre-treatment baseline covariates X, not time-dependent covariates. Thus, in our estimator, 

using a non-independent working correlation does not create bias.

Furthermore, known weights Wi in (3) can be estimated, for example, using covariates 

thought to be correlated with the repeated-measures outcome [39, 46, 47]. This approach can 

asymptotically improve efficiency of the estimator. We take this approach in our analyses of 

the data arising from three SMART studies. In the Web Appendix, we describe the usage of 

R package geepack to implement the estimator (3) and to obtain valid standard errors.

5. Data Analysis

Here, we present the results of the data analysis of the three SMART studies. For all three 

SMARTs, prior to analysis, a sequential type of multiple imputation algorithm was used to 

replace missing values in the data set [48]. This was implemented using the mice package in 

R [49]. All estimates and standard errors reported are calculated using standard rules for 

combining identical analyses performed on each of the imputed data sets [50]. Data are 

analyzed using the approach outlined in Section 4.3, with an auto-regressive working 

correlation structure.

5.1. Analysis of the Autism SMART Data

We first present the analysis of data arising from the autism SMART (N = 61). The weight at 

the first stage is estimated using age, gender, indicator of African American, indicator of 

Caucasian, number of socially communicative utterances at baseline; the weight (for slow 

responders to the first-stage BLI) at the second stage is estimated using number of socially 

communicative utterances at baseline and number of socially communicative utterances at 

week 12. Figure 4 displays a plot of the estimated marginal mean trajectories of the number 

of socially communicative utterances for each of the three embedded DTRs. Estimates and 

standard errors for the parameters in the repeated-measures model and pairwise comparisons 

among the three embedded DTRs based on the AUCs are given in Table 3. To enhance 

interpretation we report estimates of AUC/36, which can be interpreted as the average 

number of socially communicative utterances over the entire course of the 36-week study.
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The DTR (BLI+AAC, ·) (labeled (−1, ·)) appears to outperform the other two embedded 

DTRs, in terms of the AUC (e.g., 95% CI of the contrast of (BLI+AAC, ·) versus (BLI, INT) 

is (3.50, 23.19)). Under this DTR, the average number of socially communicative utterances 

during the 36-week study is estimated to be 50.84 (95% CI (42.47, 59.20)), whereas it is 

smaller than 40 for the other two DTRs.

5.2. Analysis of the ADHD SMART Data

Analysis of the ADHD SMART data (N = 150) is based on the repeated-measures model 

proposed in (2). The repeated-measures outcome is the classroom performance rated by 

teachers; higher values indicate better classroom performance. The weight at the first stage 

is estimated using age, indicator of being previously medicated at home, indicator of being 

diagnosed with oppositional defiant disorder (ODD), baseline ADHD severity of symptoms, 

classroom performance rating at baseline; the weight (for non-responders) at the second 

stage is estimated using age, stage one treatment, time to re-randomization, classroom 

performance rating at baseline and immediately prior to re-randomization.

Table 4 presents the estimated AUCs for the four embedded DTRs and their comparisons. 

AUC/7 can now be interpreted as the average classroom performance rating from the end of 

month one until the end of month eight. The estimated mean trajectories of the classroom 

performance under the four embedded DTRs are shown in Figure 5.

The DTR (BMOD, BMOD+MED) is estimated to have the smallest AUC among the four 

embedded DTRs, and it differs significantly from the two DTRs that start with MED. The 

two MED DTRs are identical in terms of AUC. However, the two DTRs starting with 

BMOD seem to differ. Specifically, as suggested by the estimated coefficients, the slope of 

DTR (BMOD, BMOD+MED) after t = 2 is significantly positive (0.09; 95%CI (0.03, 0.15)); 

on the other hand, (BMOD, INT) has a quadratic trajectory with the second-order coefficient 

significantly negative (−0.04; 95%CI (−0.08, 0)), and the two MED DTRs both have a slope 

not significantly different from zero after t = 3. The data suggest that (BMOD, BMOD

+MED) is the only embedded DTR that maintains a trend of improvement after t = 2. In 

summary, assigning MED initially seems to yield a more positive outcome than assigning 

BMOD initially in the short term, but the performance of children who initially receive 

BMOD improves within a wider range of time. In addition, there is no evidence that the two 

DTRs starting with MED differ in terms of their second-stage trajectories, but the two DTRs 

beginning with BMOD differ markedly in terms of their second-stage trajectories.

5.3. Analysis of the ExTENd SMART Data

Our analysis of the ExTENd SMART data (N = 250) is based on the flexible regression 

splines model discussed in Section 3.4 (details are presented in the appendix). The repeated-

measures outcome is alcohol craving, assessed using the Penn Alcohol Craving Scale 

(PACS; [51]); values of this variable are reverse coded (ranging from 0 to 30), such that 

higher values indicate less alcohol craving, which is more favorable. Recall that in this study 

there were two definitions of non-response: stringent and lenient definitions. The weight at 

the first stage is estimated using age, gender, pre-study percent days heavy drinking, alcohol 

craving at the screening visit and the first stage one visit; the weight at the second stage is 
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estimated using age, alcohol craving at the first and the last stage one visits, the assigned 

non-response definition, indicator of response to the first stage treatment, duration of stage 

one.

The estimated mean trajectories for alcohol craving under the eight embedded DTRs are 

shown in Figure 6. The estimated AUCs for the eight embedded DTRs are reported in Table 

5. AUC/16 can be interpreted as the average alcohol craving from entry to study to the end 

of week 16. The estimated trajectories imply that outcomes improve over time, on average 

across all eight embedded DTRs. DTRs that utilize the lenient definition for non-response 

were estimated to lead to less alcohol craving than DTRs that use the stringent definition. In 

particular, the DTR with the highest AUC (21.19; 95%CI (20.16, 22.23)) utilizes the lenient 

definition and assigns UC to responders and Placebo+CBI to non-responders. There were no 

significant differences between the eight DTRs in terms of the AUCs.

6. Simulations

A small set of simulation experiments were conducted to investigate the importance of 

incorporating the unique features of a SMART in repeated-measures models comparing 

embedded DTRs. In particular, we compared the bias and relative efficiency of estimators 

from a repeated-measures model that incorporates the features of a SMART versus 

traditional repeated-measures models that ignore these features. Data (X, Y0, A1, Y12, R, 
A2, Y24, Y36) were generated to mimic the autism SMART study. Notation is the same as 

described in Section 4. In particular, X is a 4-dimensional pre-treatment covariate for age, 

gender, indicator of African American, indicator of Caucasian.

It is well known that bias in the estimated comparison between the DTRs is expected to 

occur under misspecified models [21]. Here we focus on a type of model misspecification 

that is specific to the analysis of repeated-measures data in a SMART. We adopt a series of 

data-generative models under which the mean trajectory of DTR (−1, ·) is maintained to be 

linear, and the average of the two mean trajectories of DTRs (1, 1) and (1, −1) is maintained 

to be linear. Recall that DTRs (1, 1) and (1, −1) ought to share trajectories up to t = 12. We 

create a series of models by varying the extent to which the trajectories of (1, 1) and (1, −1) 

deviate from the average between them, thus deviating from being linear. More specifically, 

we let the mean trajectories of (1, 1) and (1, −1) be two piecewise linear curves that share 

the path from t = 0 to t = 12. To quantify the magnitude of the deviation from linear, we 

conceptualize an effect size in terms of the comparison of AUCs between DTRs (1, 1) and 

(1, −1); this is operationalized as the true difference between the two AUCs divided by the 

pooled standard deviation in person-specific AUCs in each DTR group. Data sets with effect 

sizes equal to 0, 0.2, 0.5 and 0.8 and with sample sizes N = 100 and N = 300 are generated 

(details provided in the appendix). Note that a zero effect size corresponds to the case where 

the two DTRs (1, 1) and (1, −1) do not differ over the entire course of the study; thus in this 

case both DTRs have a linear mean trajectory.

For each data-generative scenario, we fit three models: (a) the model shown in Equation (1); 

(b) a linear slope model, in which the mean trajectory of each embedded DTR is assumed to 

be linear; (c) a quadratic model, in which the mean trajectory of each embedded DTR is 
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assumed to be quadratic. The slope and quadratic models do not impose the constraint that 

DTRs (1, 1) and (1, −1) share the same trajectory until the end of the first treatment stage; in 

other words, the treatment stage transition is not explicitly accounted for in those two 

models. In all cases, the estimator for the repeated-measures models utilizes an 

independence working correlation.

We present results for two pairwise comparisons:  (the difference in AUC between 

DTRs (1, 1) and (1, −1)) and  (the difference in AUC between DTRs (−1, ·) and (1, 

−1)). We report the bias in the estimates when using the slope model and quadratic model, 

and the ratio of MSE of estimators arising from the slope and quadratic models over the 

MSE of estimators arising from the model (a). As the slope and quadratic models are 

correctly specified models only in the scenario with zero effect size, we expect to see bias in 

all scenarios except zero effect size. On the other hand, model (a) is a correctly specified 

model across all simulation scenarios. However, since the slope model is more parsimonious 

than model (a), for small effect sizes we expect the slope model to have smaller MSE than 

model (a).

Results are shown in Table 6. We notice that, as expected, the slope and quadratic models 

produce biased estimates when they are not correctly specified (i.e., effect size not equal to 

zero). However, the slope model has smaller MSE than model (a) in some non-zero effect 

size cases; in particular, when the sample size is small (N = 100), the slope model has 

smaller MSE than model (a) for the estimation of  unless the effect size is large (this is 

when there is severe mis-specification when assuming the slope model). This is due to the 

bias-variance tradeoff; the slope model is more parsimonious thus may have smaller MSE 

when the induced bias is larger than model (a). This tradeoff can also be appreciated by 

noticing that, as the sample size increases, model (a) starts to outperform the slope model 

under conditions with small effect sizes. Interestingly, for the estimation of , model (a) 

is better than the slope model uniformly under all simulation scenarios. This can be 

intuitively explained by the fact that, the information that DTRs (1, 1) and (1, −1) share 

trajectory from t = 0 to t = 12 is particularly useful for the estimation of the AUC contrast 

between these two DTRs; this information is explicitly imposed in model (a) but not in the 

slope model. We also notice that the quadratic model always leads to a larger MSE than 

model (a), for estimation of both contrasts and across sample sizes.

These results suggest that it is important to account for the unique features of a SMART in 

the analysis of repeated-measures data. More traditional models such as the slope or 

quadratic model (these are the types of models often used in the analysis of three-arm RCTs) 

do not effectively utilize known information about the SMART study design and may result 

in bias and efficiency loss. The efficiency loss for certain estimands appears to occur even in 

settings where the true mean trajectories do not deviate much from the slope model or the 

quadratic model.

In Web Appendix, we provide additional simulations that examine (1) the extent to which 

efficiency is improved when adopting a non-independent working correlation structure in the 

estimation, for varying levels of true within-person correlations among Yt; and (2) the 
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performance of confidence intervals constructed based on the asymptotic standard error. The 

results show that using the non-independent working correlation is only notably more 

efficient when the true underlying correlation among repeated measures is at least 

moderately high. Additionally, the confidence intervals seem to have reasonably good 

coverage probability.

7. Discussion

This manuscript provides modeling guidelines for comparing DTRs based on a repeated-

measures outcome arising from a SMART. Three distinct SMART study designs were used 

for illustration. The autism SMART has a relatively simple design, with only three 

embedded DTRs, and all patients transitioned to the second stage at the same time. In 

addition, there are only four measurement occasions during the entire study. Therefore, we 

suggested the piecewise linear model. In the ADHD SMART, non-responders transitioned to 

the second stage at different time points, and the transition times vary between two initial 

treatment groups. Thus we recommended a parametric model that accommodates these 

features. The ExTENd SMART differs from the other two SMARTs in that both responders 

and non-responders were re-randomized, but with different transition times to second stage. 

There are more DTRs embedded in this study (i.e., eight DTRs) and more measurement 

occasions. Thus we modeled the trajectories of all embedded DTRs using regression splines 

that are properly constrained to respect the relationship among the embedded DTRs. In 

practice, decisions about how to appropriately model repeated measures arising from 

SMARTs should be based on when patients transition between treatment stages, the timing 

of outcome measurement occasions relative to treatment stages, and any additional area 

specific knowledge about the developmental pattern of the repeated-measures outcome 

under the assigned treatments.

In additional simulations not reported here we discovered that including the repeated 

measures before re-randomization in the model for estimating the true known weight seems 

to play a similar role as specifying a non-independent working correlation structure in the 

GEE implementation, for the purpose of improving the efficiency of the estimator. However, 

this was in simulations mimicking the autism study with just two measurement occasions in 

the second stage. One advantage of the approach of using non-independent working 

correlation is that it allows scientists to capitalize on utilizing correlation among repeated 

measures that belong to the second treatment stage, which cannot be included in the model 

for estimating the weights.

In our data analysis, we report standard errors that are calculated from the asymptotics. In 

some experiments not presented in this paper, we have found that for a small sample size 

(such as N = 100), the true standard deviations of the parameter estimates can be under-

estimated by the asymptotic standard errors, thus the resulting confidence intervals might 

have lower coverage than the nominal level. This phenomenon has been discovered and 

discussed in the GEE literature [52]. With the weighting and replication in our repeated-

measures estimator for SMART data, it is more challenging to correct for the small-sample 

bias in the asymptotic standard error. We will investigate this correction in future work.
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Model selection for modeling the repeated measures under the embedded DTRs in a 

SMART is a challenging task and a direction for future research. In this paper, we mainly 

focused on the general principles of a repeated-measures model that takes into account the 

specific design features of a SMART study. However, there might be multiple parametric 

models that are in accordance with the design features of a SMART study. Evaluation of the 

goodness of fit in the context of the weighted-and-replicated estimation procedure requires 

novel statistical methods.

The repeated-measures estimator we propose in this paper is built based on some moment 

equalities of the observed data that are derived from moment equalities in populations where 

each DTR is assigned upfront. In fact, due to the sequential randomization of the treatment, 

there might be more valid moment equalities of the observed data that we can write, 

especially regarding the repeated measures at earlier time points. Appropriately utilizing 

these valid equalities in proposing the estimator may further improve the efficiency. Lai and 

Small [45] propose similar idea, in the context of regression analysis of longitudinal data, 

that aims to construct more efficient estimators when the regression model is conditional on 

time-varying covariates. We will investigate more along this direction in future work.

The ExTENd SMART contains more subtle features that may have implications on 

modeling repeated measures, which are beyond the scope of this paper. For example, the 

initial randomization is between two distinct criteria for non-response, instead of between 

two distinct treatments, as in most other trials. This implies that two DTRs that differ in the 

criterion for non-response can only start to differ, after the participant meets the more 

stringent non-response criterion. In other words, there is a chance for all the embedded 

DTRs to share the same mean trajectory during the first few weeks of the study. In addition, 

non-responders were blinded to the re-randomization, but responders were not (due to the 

nature of the treatments); this might have implications for modeling repeated-measures data 

in ExTENd. In future work we will extend the guidelines provided here to accommodate 

other unique features of SMART designs like ExTENd.

This work can also be extended readily in a number of directions. One natural extension is to 

consider different link functions in the marginal model to examine how DTRs differ based 

on trajectories of categorical, count or ordinal outcomes. A second extension is to the 

analysis of cluster- (or group-) randomized SMARTs in which clusters are randomized 

sequentially, yet the primary outcome is measured at the level of individuals nested within 

clusters [53]; this is a setting where GEE methods are often used to account for clustering of 

individuals (patients) within clusters (groups).
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Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A. Potential Outcome Framework

Here we briefly review the potential outcome framework and the required assumptions that 

make the marginal structural mean  identifiable from the observed data. The 

potential outcome framework was introduced by [32, 33] for time-independent treatments 

and later extended by [1] for time-dependent treatments. Associated with DTR, potential 

outcomes for Yt can be conceptualized for each subject if he/she had followed this particular 

DTR. Readers may refer to [21] for a more complete exposition. One of the key 

assumptions, the Consistency Assumption requires that, each observed outcome is equal to 

the potential outcome associated with the DTR the individual was consistent with (see pages 

7–8 in [21] for more details).

The second identifying assumption is the Sequential Randomization, which states that the 

treatment assignment at each stage is independent of all potential outcomes given the 

observed history prior to that treatment. The third identifying assumption, Positivity 

Assumption, requires that if certain covariate history and treatment sequence can exist in the 

population where all the subjects follow the DTR (a1, a2), the pair of this covariate history 

and this treatment sequence must also exist with positive probability in the observed 

population. In a SMART study, these two assumptions are satisfied by design. Under these 

three assumptions, E[Yt(a1,a2)|X], which is identical to , can be identified 

from the observed data.

APPENDIX B. Details Concerning the Data-generative Models for the 

Simulation

In the simulation in Section 6, we illustrate the importance of considering the special 

features of SMART designs in the modeling of repeated measures from SMART trials, by 

comparing a repeated-measures model that incorporates SMART features with more 

traditional longitudinal models such as slopes and quadratic models. Here we provide 

additional details about the data-generative models used in this simulation. We adopted a 

series of data-generative models under which the mean trajectory of DTR (−1, ·) is 

maintained to be linear, and the average of the two mean trajectories of DTRs (1, 1) and (1, 

−1) is maintained to be linear; each data-generative model in the series is indexed by a 

parameter θ > 0, which quantifies the extent to which the trajectories of DTRs (1, 1) and (1, 

−1) deflect at t = 12.

We generate data (X, Y0, A1, Y12, R, A2, Y24, Y36) for each individual in a sample of size 

N.

• X includes six mean-centered baseline covariates: age, gender, indicator of African 

American, indicator of Caucasian, indicator of Hispanic, indicator of Asian. (Note 

that in the simulation experiments, the marginal model we fit for repeated measures 
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only includes the first four covariates in X to avoid rank deficient problem in the 

estimation) X is sampled (with replacement) from the real autism SMART data. For 

notational simplicity, we let X below always contain intercept as the first 

coordinate.

• Generate , where ɛ0~N (0, σ2)

• Generate A1 to be −1 or 1 with equal probability.

• Generate , where ɛ1~N (0, σ2)

• Generate A2 to be −1 or 1 with equal probability, among individuals with A1 = 1 

and R = 0; otherwise set A2 = 0.

• Generate , where 

β21 = −θ and ɛ2~N (0, σ2).

• Generate , where 

η31 = 2η21, η32 = 2η22, η33 = 2η23, η34 = 2η24 − 1, β31 = 2β21 = −2θ and ɛ3~N (0, 

σ2).

• The values of the coefficients mentioned above: η0 = (29.5,−5.1, −16.3, 0, 

14.3,−11.8, 0.5), σ = 10, η11 = (23.46, 1.4,−3.0, 16.6, 11.1, 6.5, 22.5), η12 = 0.3, β11 

= −1, η21 = (22.758, 1.20, 4.33, 12.33, 4.00, 7.53, 7.47), η22 = 0.2, η23 = −1.8, η24 

= 0.2.

In order to have data-generative models that are reasonable, we conceptualize an effect size 

in terms of the contrast in AUC between two embedded DTRs. We define the effect size of 

the comparison between DTR (1, 1) and DTR (1, −1) as the ratio of the difference in their 

AUCs over the pooled standard deviation of “a person-specific AUC” between the two DTR 

groups. More specifically, we operationalize the person-specific AUC as 12(Y0/2 + Y12 + 

Y24 + Y36/2) for each individual. Let σ(1,1) denote the standard deviation of this person-

specific AUC under DTR (1, 1) and σ(1,−1) denote the standard deviation of this person-

specific AUC under DTR (1, −1). Then the effect size mentioned above can be written as 

. This measure quantifies the extent to 

which DTRs (1, 1) and (1, −1) differ throughout the entire study period.

Figure 7 shows the true mean trajectories of the repeated measures under the three 

embedded DTRs, in each of the four data-generative models (with the effect size defined 

earlier equal to 0, 0.2, 0.5, 0.8) that we use in our simulation experiments. Across all of the 

four data-generative models, the effect size in terms of the comparison between DTR (−1, ·) 

and the average of DTRs (1, 1) and (1, −1) is kept at around 0.4.

APPENDIX C. Details Concerning the Analysis of Repeated-Measures Data 

in the ADHD Study

For individual i, we observe Xi, A1,i, Ri, Mi, A2,i and repeated measures Y1,i, …, Y8,i. A1 = 

1 denotes that the individual received low-intensity BMOD and A1 = −1 denotes that the 
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individual received low-dose MED. R indicates whether the individual continued to respond 

until the end of the study. When R = 0 (i.e., the individual became a non-responder during 

the study), M denotes the time (in months) of non-response and A2 denotes whether (A2 = 1) 

the initial treatment was intensified or (A2 = −1) the initial treatment was augmented with 

the alternative treatment.

The repeated-measures model proposed in (2) was estimated using the estimator presented 

in (3). In particular, the treatment sequence of each individual is consistent with either one or 

two of the embedded DTRs. An individual’s treatment sequence is consistent with only one 

embedded DTR if this individual was a non-responder (e.g., a non-responder to BMOD who 

was later re-randomized to INT is only consistent with DTR (BMOD, INT)). An 

individual’s treatment sequence is consistent with two embedded DTRs if this individual 

was a responder (e.g., a responder to BMOD is consistent with both (BMOD, INT) and 

(BMOD, BMOD+MED)). The weight W in (3) is the inverse probability of an individual 

receiving the treatment sequence that was assigned to him/her. Therefore, responders receive 

a weight equal to 2 (they were randomized only once, to two options) and non-responders 

receive a weight equal to 4 (they were randomized twice, each time to two options). In our 

data analysis, however, we estimate these known weights using covariates specified in 

Section 5.2 to improve the statistical efficiency.

APPENDIX D. Details Concerning the Analysis of Repeated-Measures Data 

in the ExTENd Study

Given the many measurement occasions of the repeated-measures outcome, we adopted a 

piecewise splines model. Here we describe the details. From t = 0 to t = 2, we let the mean 

trajectory under DTR (a1, a2R, a2NR) be a regression spline that can only vary with a1 and 

has the identical intercept regardless of a1. From t = 2 to t = 8, we let the mean trajectory 

under the DTR (a1, a2R, a2NR) be a regression spline that continously connects to the 

trajectory before t = 2, which can vary with different values of (a1, a2NR). From t = 8 to t = 

16, we let the mean trajectory under the DTR (a1, a2R, a2NR) be a regression spline that 

continuously connects to the trajectory before t = 8, and the trajectory can vary with 

different values of (a1, a2R, a2NR). For model simplicity, all the b-spline bases are of degree 

2. We apply internal knots at t = 5 (midway from t = 2 to t = 8) and t = 12 (midway from t = 

8 to t = 16).

A regression splines model can be viewed as a linear model, with properly chosen functions 

of b-spline bases as predictors. Therefore, the estimator presented in (3) can be readily 

applied. More specifically, in the ExTENd study, each individual’s treatment sequence is 

consistent with two embedded DTRs. For example, a patient who was assigned the lenient 

early non-response definition and later transitioned to stage two as a responder and received 

TDM was consistent with the following two DTRs: (a1, a2R, a2NR)=(lenient, TDM, NTX

+CBI) and (a1, a2R, a2NR)=(lenient, TDM, Placebo+CBI). The weight in (3) is equal to 4 for 

every individual, because in the ExTENd study each individual was randomized twice, each 

time to one of two options. In our data analysis, we estimate these known weights using the 

covariates specified in Section 5.3 to improve the statistical efficiency.
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Figure 1. 
A SMART study for developing a DTR for children with autism who are minimally verbal. 

R = randomization. BLI = behavioral language intervention. AAC = augmentative or 

alternative communication approach.

Lu et al. Page 24

Stat Med. Author manuscript; available in PMC 2017 May 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
A SMART study for developing a DTR for children with attention deficit/hyperactivity 

disorder. R = randomization. MED = medication. BMOD = behavioral modification.
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Figure 3. 
A SMART study for developing a DTR for adults with alcohol dependence. R = 

randomization. NTX = Naltrexone. TDM = telephone disease management. UC = usual 

care. CBI = combined behavioral interventions. MM = medical management.
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Figure 4. 
Estimated mean trajectories under the embedded DTRs of the autism SMART.
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Figure 5. 
Estimated mean trajectories under the embedded DTRs of the ADHD SMART.
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Figure 6. 
Estimated mean trajectories under the embedded DTRs of the ExTENd SMART. a1 (the 

definition for non-response) and a2 (stage two treatment regime) jointly specify the eight 

embedded DTRs.
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Figure 7. 
True mean trajectories of the repeated measures under the embedded DTRs, under four data-

generative models corresponding to effect size (of the contrast in AUC between DTR (1, 1) 

and (1, −1)) = 0, 0.2, 0.5, 0.8.
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Table 1

Embedded DTRs in the autism SMART.

Label Treatment decision rule

DTR (BLI, BLI+AAC) (1, −1) Begin treatment with BLI for 12 weeks. At the end of week 12, if the child does not show early signs of 
response, augment BLI with AAC for 12 weeks. Otherwise, continue with BLI for another 12 weeks.

DTR (BLI, INT) (1, 1) Begin treatment with BLI for 12 weeks. At the end of week 12, if the child does not show early signs of 
response, intensify BLI for 12 weeks. Otherwise, continue with BLI for another 12 weeks.

DTR (BLI+AAC, ·) (−1, ·) Begin treatment with BLI+AAC for 12 weeks. At the end of week 12, if the child does not show early signs 
of response, intensify BLI+AAC for 12 weeks. Otherwise, continue with BLI+AAC for another 12 weeks.
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Table 2

Design features of ExTENd study and their implications on modeling.

Design features Implications for repeated-measures modeling

Randomization is (or should be) stratified on baseline measurements; 
there is no difference in anticipatory effect among the eight DTRs.

Trajectories of all the eight DTRs have the same intercept.

Patients became responders only if they stayed in stage one for eight 
weeks without meeting the assigned criterion for non-response. There can 
be no expectancy effects due to knowledge of second stage treatments 
during stage one.

A pair of DTRs that only differ in a2R (the second-stage treatment 
for responders) should share the same trajectory until the end of 
week eight, and may differ from then on.

Patients transitioned to stage two as non-responders as early as week two. 
There can be no expectancy effects due to knowledge of second stage 
treatments during stage one.

A pair of DTRs that only differ in a2NR (the second-stage 
treatment for non-responders) should share the same trajectory 
until the end of week two, and may differ from then on.
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Table 3

An analysis of the repeated-measures outcome from the autism SMART. The reported summary of each DTR 

and the comparison between DTRs is regarding AUC/36.

Estimate SE p-value

β0 (Intercept) 29.57 3.30 <0.01

η1 (age) −3.63 2.92 0.22

η2 (male) −9.39 13.38 0.49

η3 (AfricanAmerican) 1.04 11.52 0.93

η4 (Caucasian) 1.09 8.17 0.89

β1 (time; stage one) 1.39 0.32 <0.01

β2 (time×A1; stage one) −0.80 0.29 <0.01

β3 (time; stage two) 0.12 0.17 0.47

β4 (time×A1; stage two) 0.20 0.18 0.27

β5 (time×A1A2; stage two) −0.08 0.23 0.73

(BLI, INT) 37.38 4.16 <0.01

(BLI, BLI+AAC) 38.68 4.99 <0.01

(BLI+AAC, ·) 50.84 4.27 <0.01

(BLI, INT) vs (BLI, BLI+AAC) −1.30 3.72 0.73

(BLI+AAC, ·) vs (BLI, BLI+AAC) 12.16 5.43 0.03

(BLI+AAC, ·) vs (BLI, INT) 13.46 5.02 0.01
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Table 4

An analysis of the repeated-measures outcome from the ADHD SMART. The reported summary of each DTR 

and the comparison between DTRs is regarding AUC/7.

Estimate SE p-value

β0 (Average Intercept of BMOD and MED) 2.31 0.12 < 0.01

β1 (A1; baseline) −0.25 0.11 0.03

β2 (time; t ≤ 2 under BMOD) −0.01 0.16 0.93

β3 (time; t > 2 under (BMOD,INT)) 0.34 0.13 0.01

β4 (time2; t > 2 under (BMOD,INT)) −0.04 0.02 0.03

β5 (time; t > 2 under (BMOD,BMOD+MED)) 0.09 0.03 0.01

β6 (time; t ≤ 3 under MED) 0.11 0.07 0.13

β7 (time; t > 3 under (MED,INT)) −0.03 0.04 0.41

β8 (time; t > 3 under (MED,MED+BMOD)) −0.05 0.03 0.17

(BMOD, BMOD+MED) 2.29 0.14 < 0.01

(BMOD, INT) 2.48 0.13 < 0.01

(MED, MED+BMOD) 2.67 0.13 < 0.01

(MED, INT) 2.69 0.12 < 0.01

(BMOD, BMOD+MED) vs (BMOD, INT) −0.19 0.13 0.15

(BMOD, BMOD+MED) vs (MED, MED+BMOD) −0.38 0.19 0.05

(BMOD, BMOD+MED) vs (MED, INT) −0.41 0.19 0.03

(BMOD, INT) vs (MED, MED+BMOD) −0.19 0.18 0.30

(BMOD, INT) vs (MED, INT) −0.21 0.18 0.24

(MED, MED+BMOD) vs (MED, INT) −0.03 0.07 0.71
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Table 5

An analysis of the repeated-measures outcome from the ExTENd SMART. LNT=lenient non-response 

definition. STRGT=stringent non-response definition. NTX=naltrexone+CBI. PLC=placebo+CBI.

Embedded DTR Estimate of AUC/16 SE of AUC/16

(LNT, TDM, NTX) 20.65 0.54

(LNT, TDM, PLC) 21.02 0.52

(LNT, UC, NTX) 20.83 0.56

(LNT, UC, PLC) 21.19 0.53

(STRGT, TDM, NTX) 20.18 0.56

(STRGT, TDM, PLC) 20.18 0.52

(STRGT, UC, NTX) 20.04 0.54

(STRGT, UC, PLC) 20.03 0.54
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