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Abstract

Acetazolamide is the standard carbonic anhydrase (CA) inhibitor used for acute

mountain sickness (AMS), however some of its undesirable effects are related

to intracellular penetrance into many tissues, including across the blood–brain
barrier. Benzolamide is a much more hydrophilic inhibitor, which nonetheless

retains a strong renal action to engender a metabolic acidosis and ventilatory

stimulus that improves oxygenation at high altitude and reduces AMS. We

tested the effectiveness of benzolamide versus placebo in a first field study of

the drug as prophylaxis for AMS during an ascent to the Everest Base Camp

(5340 m). In two other studies performed at sea level to test side effect differ-

ences between acetazolamide and benzolamide, we assessed physiological actions

and psychomotor side effects of two doses of acetazolamide (250 and 1000 mg)

in one group of healthy subjects and in another group compared acetazolamide

(500 mg), benzolamide (200 mg) and lorazepam (2 mg) as an active compara-

tor for central nervous system (CNS) effects. At high altitude, benzolamide-

treated subjects maintained better arterial oxygenation at all altitudes (3–6%
higher at all altitudes above 4200 m) than placebo-treated subjects and reduced

AMS severity by roughly 50%. We found benzolamide had fewer side effects,

some of which are symptoms of AMS, than any of the acetazolamide doses in

Studies 1 and 2, but equal physiological effects on renal function. The psy-

chomotor side effects of acetazolamide were dose dependent. We conclude that

benzolamide is very effective for AMS prophylaxis. With its lesser CNS effects,

benzolamide may be superior to acetazolamide, in part, because some of the

side effects of acetazolamide may contribute to and be mistaken for AMS.

Abbreviations

AMS, acute mountain sickness; ANOVA, analysis of variance; CA, carbonic anhy-

drase; SaO2, arterial hemoglobin oxygen saturation.

Introduction

Carbonic anhydrase (CA) inhibition with acetazolamide

(DiamoxR) reduces the incidence and symptomatology of

acute mountain sickness (AMS) (Forward et al., 1987;

Wright et al., 1983; Birmingham Medical Research Expe-

ditionary Society Acute Mountain Sickness Study Group

[BMRES] 1981; Swenson, 2014a). These benefits are a

result of improved arterial oxygenation arising from the

well-known ventilatory stimulation by this drug due lar-

gely to its inhibition of renal CA and generation of a

metabolic acidosis (Kronenberg and Cain, 1968a; Larson
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et al. 1982; Swenson and Teppema 2007). Not surpris-

ingly, acetazolamide has become the drug of choice for

AMS prophylaxis (Bärtsch and Swenson, 2013; Luks et al.

2010). There is, however, an unavoidable disadvantage

with acetazolamide and other clinically approved CA inhi-

bitors, such as methazolamide, in that several of its side

effects are the same as some AMS symptoms, particularly

headache, drowsiness, and nausea or vomiting (Wang

et al. 2013). Thus, it is plausible that the efficacy of aceta-

zolamide in AMS may be underestimated (Ellsworth et al.

1987; Swenson 2014a) and that a CA inhibitor with fewer

side effects by virtue of lesser central nervous system

(CNS) penetrance would be more effective against AMS,

avoid diagnostic confusion, and afford clearer evaluation

of the benefits of targeted CA inhibition.

Benzolamide is a 10-fold more potent CA inhibitor and

is more hydrophilic and less lipophilic than acetazolamide

(Travis 1969). These attributes lead to very limited mem-

brane permeability, restricting its uptake into the central

and peripheral nervous systems and other organs besides

the kidneys. The kidneys are uniquely sensitive to any of

the sulfonamide CA inhibitors, independent of lipid and

water solubility, because organic acid transporters in the

renal tubule concentrate the drugs intracellularly and in

the tubular fluid to fully inhibit renal enzyme at low

doses (Swenson, 2014a). On this basis, benzolamide

should likely have less CNS side effects of acetazolamide,

and thus be of greater value at high altitude. These pre-

dictions and conclusions have never been adequately

tested, but in two small studies, benzolamide was shown

to be effective in reducing AMS symptomatology in a 3-

day hypoxic chamber simulation (Kronenberg et al.,

1968a) and against sleep-related periodic breathing at

high altitude (Swenson et al. 1991). Based on the work

showing beneficial effects of benzolamide on subretinal

fluid absorption in rabbits (Wolfensberger et al. 2000),

benzolamide was substituted for acetazolamide in univer-

sity age patients with macular edema. These students

found examination work easier than when taking acetazo-

lamide (A. C. Bird, Moorfields Eye Hospital, London,

unpublished observations).

Despite a considerable literature on the efficacy of aceta-

zolamide for the prophylaxis and treatment of AMS, there

has been much controversy concerning its optimal dosing

with advocacy of doses ranging from 250 to 1000 mg daily.

There has been some resolution toward lower dosing

recently with demonstration that doses as low as 125 mg

bid are as effective as higher doses, at least for typical ascent

profiles. With lower dosing there may be fewer side effects

(Basnyat et al. 2006; Van Patot et al. 2008).

The hypotheses tested herein were that benzolamide,

which remains an orphan drug since its first testing in

humans more than 50 years ago and never tested under

field conditions for AMS prevention, is effective in

increasing arterial oxygenation and preventing AMS dur-

ing a high-altitude expedition. Underlying this proposed

effectiveness and possible superiority of benzolamide over

acetazolamide is the likelihood that benzolamide has

fewer CNS side effects than acetazolamide, when tested in

a rigorous double-blinded placebo-controlled fashion with

an active comparator, lorazepam, known to alter CNS

function (Dawson et al.2008). We found that benzo-

lamide is effective in reducing AMS during a high-altitude

trek up to 5430 m and this efficacy is associated and cor-

related with improvements in arterial oxygenation. At sea

level, benzolamide has fewer CNS side effects than aceta-

zolamide at all doses studied.

Materials and Methods

Study 1: effectiveness of benzolamide
during a high-altitude trek

For the high-altitude investigation (Study 1) examining

the effectiveness of benzolamide on oxygenation and

AMS during a Himalayan trek, volunteers were recruited

from the membership of the British Mount Everest Medi-

cal Expedition. Data were collected and entered before

the randomization codes were broken. All subjects gave

written informed consent to these studies, following

approval by the Ethics Committee of the City and Hack-

ney Health Authority, London, United Kingdom. The

high-altitude study was conducted in accordance with the

CONSORT guidelines on the performance and reporting

of clinical trials (Begg et al. 1996).

During the high-altitude study 25 volunteers each

received either 100 mg benzolamide or matching placebo

capsules twice daily in a double-blind placebo-controlled

manner. Individual volunteers were assigned to benzo-

lamide or placebo prior to leaving the U.K. A third party

produced the allocation schedule, treatment was assigned

randomly (without replacement) to the list of volunteers.

Capsules of placebo were visually indistinguishable from

benzolamide and were packed and labeled by an indepen-

dent pharmacist. Tablets were begun 1 day before leaving

Kathmandu (1250 m) for an internal air flight to Lukla

(2800 m), and subjects then trekked to Everest base camp

(5340 m) following a conservative ascent profile, climbing

no more than 300 m per day above 3000 m, and taking a

rest day every 2–3 days (Ward et al. 1995). Subjects were

the members of different parties (separated in time) dur-

ing the ascent to base camp.

All subjects completed the Lake Louise consensus ques-

tionnaire, a standardized AMS questionnaire (Hackett

and Oelz, 1992), and measured and recorded their oxygen

saturation by pulse oximetry (Nellcor N20, Minneapolis,
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MN, USA) each morning and evening. On arrival at base

camp, 11 of the subjects had arterialized capillary blood

sampled from a warmed thumb and analyzed using a

Ciba-Corning 248 (Medfield, MA, USA) blood gas ana-

lyzer. Of these 11 subjects, eight were later found to have

taken placebo, and three benzolamide. This imbalance

was not planned, but was simply a random result of the

fact that blood gas analysis was not available for all sub-

jects arriving at base camp due to an avalanche blast that

temporarily halted some measurements dependent on

instrumentation in the affected research tents. Although

the study was not designed to compare side effects of

benzolamide against those of placebo, all subjects were

asked after arrival at base camp, what symptoms they had

experienced. This was before the sealed code was broken.

The code was broken at base camp (5340 m) after data

collection was complete.

Studies 2 and 3: CNS effects of
acetazolamide and benzolamide at sea level

We performed two placebo-controlled, randomized, dou-

ble-blind, cross-over studies with university-level students

(age range 18–32 years) at sea level (London, UK) to

examine the physiological and psychometric effects of

benzolamide and acetazolamide.

In the first study (Study 2), 15 fasting volunteers

attended the laboratory on the same day each week for

four consecutive weeks at 8:30 AM. They emptied their

bladders and underwent a series of psychometric and

related tests described below.

Three matching treatments were given: a single dose of

(1) placebo, (2) acetazolamide 250 mg, or (3) acetazo-

lamide 1000 mg. The different tablets were identical and

a test battery, including a urine collection, was performed

at 0, 2, 4.5, and 6.5 h postdosing. For this study, arterial-

ized capillary blood gas analysis was performed during

each test battery from a warmed ear lobe using a Ciba-

Corning 248 analyzer. End-tidal carbon dioxide tension

was also measured, after 5 min of sitting rest, using an

infra red carbon dioxide analyzer (PK Morgan Capno-

graph, Chatham, Kent, UK).

The second study (Study 3) was of similar design to

the first and was performed over a 4-week period of time.

After subjects emptied their bladders, they were each wit-

nessed taking a single dose of (1) placebo, (2) lorazepam

2 mg (a positive control for neuropsychological changes),

(3) acetazolamide 500 mg, or (4) benzolamide 200 mg

according to a Latin square design. Capsules containing

each of the four preparations were of identical appear-

ance, smell, and taste. Urine collections and the test bat-

tery were performed at 0, 2, 4.5, and 6.5 h after dosing.

In both the studies, the subjects were randomized such

that each took one of the four drugs each week so that at

the end of the 4 weeks each subject had taken all four

drugs in a randomized order.

The psychometric test battery for Studies 2 and 3 com-

prised a series of tests including critical flicker fusion

(CFF), reaction time assessment (Study 3 only), peg and

washer placement timing, postural sway assessed using a

force platform, and vertical judgment error. Intraocular

pressure (by noncontact tonometry) was also measured.

Each of these tests was performed three times at each

time interval and the arithmetic mean of the three results

was used to describe subject performance in each test at

each interval. A series of visual analog scales were also

completed which assessed subjective sleepiness, clear

headedness, and dizziness as well as control questions

about hunger and feeling hot or cold. These objective and

self-reported measures were designed to elicit symptoms

that could easily be confused with presentations of AMS

as well as the known physiological effects of these drugs.

Urinary pH and volume were determined at each time

interval. Each subject was also asked about any side

effects they had experienced while taking any of the

drugs.

For Studies 2 and 3 (at sea level), the measures for each

test were compared between the different control and

treatment groups by means of a general linear model for

analysis of variance (ANOVA). Dunnett’s test was used to

determine pairwise comparisons of data. For the high-

altitude study (Study 3), AMS scores and mean SaO2 val-

ues at various altitudes were compared using the paired t-

test and ANOVA. Arterialized capillary blood gas analysis

results between the two groups at Everest base camp were

compared using the unpaired t-test. A linear regression

model was calculated for the relationship between arterial

oxygen saturation and AMS score, with ANOVA used to

test significance; P < 0.05 was considered as significant.

Statistics were calculated using Minitab.

Results

Study 1: effectiveness of benzolamide
during a high-altitude trek

Twenty-five subjects completed the study, 13 with placebo

and 12 with benzolamide. Three subjects inadvertently vio-

lated the protocol, one subject (D. J. C.) had to descend for

a prolonged period to attend to logistical problems with

research equipment and so had a grossly atypical ascent

profile (placebo group). Another subject’s flight from

Kathmandu to Lukhla was delayed, but he had started his

tablets nonetheless, and so ran out of tablets at 4930 m

(Lobuche), and was without tablets for 2 days before arri-

val at base camp. The third subject had not declared any
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respiratory difficulties previously, but proved to have sig-

nificant chronic obstructive pulmonary disease. These sub-

jects were therefore excluded from the per-protocol

analysis, but were included in the primary intention-to-

treat analysis to avoid bias – even though the protocol vio-

lations were all decided prior to unmasking the study. Sub-

jects taking placebo reached base camp after a median of

13 days (mean = 12.6, SD = 2.1; range, 8–14 days), sub-

jects on benzolamide took a median of 12 days (mean

= 12.0, SD = 2.2; range, 9–15 days, P = 0.4, nonsignificant

difference by Mann–Whitney U test).

Subjects taking benzolamide experienced significantly

less AMS particularly during the higher elevations of the

trek. The average AMS scores on arrival at each new alti-

tude during the ascent are shown in Figure 1. Compar-

ison of average AMS scores on placebo and benzolamide

showed significantly lower values on the drug (paired

t-test; placebo average 2.18, benzolamide average 1.28,

mean difference 0.90, SEM 0.37, t = 2.46, P = 0.025, one-

sided). It can be seen that benzolamide produced a signif-

icant reduction in AMS symptomatology. The median

scores for placebo are higher than for benzolamide for

the last two stopover sites and arrival at base camp

(5340 m). This was significant at base camp (P < 0.025,

per-protocol analysis). There was also a significant differ-

ence for the worst scores (*P = 0.02, intention-to-treat

analysis; P < 0.005, per-protocol analysis). Considered

overall by ANOVA, the reductions in AMS on benzo-

lamide were significant (P = 0.02, intention-to-treat anal-

ysis) or highly significant (P = 0.003, per-protocol

analysis).

Figure 2 shows the mean values of arterial oxygen satu-

rations for placebo and benzolamide-treated subjects on

arrival at each altitude (stopover sites). At all sites from

Pheriche (4240 m) and above up to Everest Base Camp,

arterial oxygen saturation was statistically significantly

higher in the subjects taking benzolamide.

In the 11 volunteers who had arterialized capillary

blood gas analysis on arrival at 5340 m, pH, PaCO2

and bicarbonate were all lower in those treated with

benzolamide than for subjects on placebo (Table 1).

With benzolamide the average pH was 7.41 (range

7.40–7.41), whereas on placebo average pH was 7.44

(range 7.41–7.47; P = 0.003, 95% CI = 0.016, 0.053:

unpaired t-test). Arterialized capillary PCO2 was lower

on benzolamide, averaging 23.6 mmHg (range

22.8–24.3 mmHg), compared with 27.0 mmHg on pla-

cebo (range 24.3–32.0 mmHg; P < 0.01, 95% CI = 0.16,

0.77: unpaired t-test). Mean bicarbonate concentration

was lower, 17.7 mmol/L (range 17.5–17.8 mmol/L) in

the benzolamide group and 20.6 mmol/L (range 19.5–
22) in the placebo group (P < 0.0001, t = 9.0, 95%

CI = 2.14, 3.62: unpaired t-test). Although the mean

arterialized PaO2 tended to be higher in the benzo-

lamide group (45.7 mmHg) than in the placebo group

(43.6 mmHg), the increase while of similar magnitude

to the fall in PaCO2 did not reach statistical signifi-

cance (P = 0.2).

Symptoms at base camp included paresthesia (8 of 12

subjects on benzolamide and 0 of 13 on placebo) and

breathlessness (0 on benzolamide and 4 on placebo). One

subject on benzolamide reported urinary frequency and

another tinnitus (persisting for several days after stopping

the drug). No subjects found the tingling troublesome.

Two subjects on benzolamide appeared to develop

significant AMS after stopping the drug (scores >10), one
having run out of the drug and the other stopping (per-

protocol analysis) on arrival at Everest base camp.

Studies 2 and 3: CNS effects of
acetazolamide and benzolamide at sea level

In both the sea level pharmacological studies a few sub-

jects were unable to attend every weekly session. In the
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Figure 1. Median acute mountain sickness (AMS) scores on arrival at each new altitude during ascent with the median values of the worst AMS

scores for comparison. The scores are given for placebo and benzolamide-treated subjects at each altitude (placebo n = 13; benzolamide n = 12

intention-to-treat analysis).
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two sea level studies, we obtained completed data sets for

21 subjects taking placebo and acetazolamide, 20 subjects

taking benzolamide, and 18 taking lorazepam.

In Study 2, the effects of the two different doses of

acetazolamide are presented in Tables A1 and A2 in the

Appendix and may be summarized as follows. Acetazo-

lamide at a dosage of 250 mg caused an increase in uri-

nary pH (P < 0.001) and a decrease in blood pH

(P < 0.01), base excess (P < 0.05), and intraocular pres-

sure (P < 0.05, combined left and right eye results). At a

dose of 1000 mg, it caused an increase in urinary pH

(P < 0 .001) and volume (P < 0.01), and a decrease in

blood pH (P < 0.001), base excess (P < 0.001), blood

bicarbonate (P < 0.01), and intraocular pressure

(P < 0.001). Although PetCO2 appeared to fall with

increasing acetazolamide dosage from 35.2 mmHg on pla-

cebo to 34.3 mmHg on 250 mg and 33.6 mmHg on

1000 mg acetazolamide the variation in responses was so

large that the average PCO2 decrease (<2 mmHg) did not

meet statistical significance. Visual analog scores (VAS) of

sleepiness (P < 0.001) and dizziness (P < 0.01) were

increased and clear headedness declined (P < 0.001) with

1000 mg acetazolamide. There were no significant differ-

ences in any of the testing measures between placebo and

250 mg acetazolamide.

In Study 3, the head-to-head comparison of placebo,

benzolamide 200 mg, acetazolamide 500 mg, and loraze-

pam 2 mg, we obtained a complete set of data for 16 sub-

jects. Inclusion of all data collected, rather than

restriction to the 16 complete data sets does not alter the

results significantly, and so all available data are included

here. Although the capsules were identical in taste, smell,

and appearance, some subjects (about 10%) guessed their

allocation code during one of the four study days.

Side effects at any time point were reported in 2/21

(10%) taking placebo, 9/18 (50%) taking lorazepam

2 mg, 10/21 (48%) taking acetazolamide 500 mg, and 5/

20 (25%) taking benzolamide 200 mg. The specific side

effects are listed in Table 2. The physiological and psy-

chometric results for each drug, for each time point, are

given in Table A3 in Appendix. Compared to placebo,

lorazepam caused a fall in CFF and number of pegs and

washers placed correctly (both P < 0.001), an increase in

postural sway (P < 0.01) and vertical error (P < 0.05).

Subjectively, lorazepam led to an increase in self-reported

dizziness, drowsiness, and decrease in clear headedness

(all, P < 0.001). Lorazepam had no significant effect on

intraocular pressure, urinary pH, or volume.

Compared to placebo, acetazolamide 500 mg caused an

increase in urinary pH and volume (P < 0.001), fall in
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Table 1. Arterialized capillary blood gases in subjects taking benzo-

lamide or placebo on arrival at 5340 m (Everest base camp).

Subject

pHa

PaCO2 PaO2

Units mmHg mmHg

Benzolamide

42 7.404 24.3 44.8

5 7.411 22.8 44.3

28 7.409 23.5 46.1

Mean 7.4081 23.61 45.1

SD 0.004 0.8 0.9

SEM 0.002 0.5 0.5

Placebo

1 7.447 26.7 46.4

7 7.41 29.6 41.3

26 7.433 32 41.6

37 7.463 25.1 41.6

53 7.435 25.7 46.1

67 7.464 24.3 47.6

69 7.466 26 42.1

63 7.419 26.9 42.7

Mean 7.442 27 43.6

SD 0.021 2.6 2.6

SEM 0.008 0.9 0.9

1P < 0.01 compared to placebo.
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intraocular pressure (P < 0.01), increase in postural sway

and vertical error (P < 0.05), an increase in dizziness, and

a decrease in clear headedness (both P < 0.001) and

drowsiness (P < 0.05), but no significant effect on CFF or

peg and washer placement.

Compared to placebo, benzolamide 200 mg caused an

increase in urinary pH (P < 0.001) and volume

(P < 0.01), but had no significant effect on CFF, postural

sway, vertical error, peg and washer placement, intraocu-

lar pressure, drowsiness, dizziness, or clear headedness.

The time course and magnitude of the diuretic effects of

acetazolamide and benzolamide are illustrated in Figure 3.

Both drugs caused a statistically significant alkaline diuresis

of equal magnitude and onset when compared to placebo.

Discussion

Our altitude study, for subjects trekking to 5340 m

(17,520 feet), confirms the effectiveness of benzolamide

100 mg bid as prophylaxis for AMS. The present study

accords with findings of a chamber study (72 h elevation

to the equivalent of 4600 m, 14,000 feet) that benzo-

lamide has prophylactic properties in regard to AMS

symptomatology (Kronenberg and Cain 1968a). The effec-

tiveness of benzolamide on arterial blood gases appears

equal to that of acetazolamide, studied in a similar cham-

ber experiment (Kronenberg and Cain 1968b). Compar-

ison of our findings with other studies suggests that

benzolamide 100 mg bid has similar efficacy to acetazo-

lamide at both 125 mg bid and 250 mg bid dosing sched-

ules in preventing AMS symptoms under similar trekking

conditions (Basnyat et al. 2003, 2006).

The other focus of our study was to critically assess

and compare side effects and physiological effects of

benzolamide and acetazolamide in a large number of

healthy subjects at sea level so as to avoid any confound-

ing effects of hypoxia and other stresses of traveling in a

new environment, which may vary from subject to sub-

ject. Taken together the data across two groups of sub-

jects showed that benzolamide at 200 mg is equally

effective as all doses of acetazolamide (250, 500,

1000 mg) in causing an alkaline diuresis, the hallmark of

renal CA inhibition. However, only acetazolamide causes

evidence of other tissue CA inhibition, in this case easily

and relatively noninvasively assessed as a reduction in

intraocular pressure as a consequence of CA inhibition in

the ciliary apparatus of the eye. In keeping with a lack of

significant tissue penetrance, particularly into the CNS,

we show that benzolamide has far fewer side effects than

acetazolamide, even at the lowest dose of acetazolamide

shown to be effective against AMS. This is unequivocally

the case for benzolamide 200 mg versus acetazolamide

500 mg since the same subjects took both doses (Study

3). Although benzolamide was not tested in the same sub-

jects taking the 250 and 1000 mg doses of acetazolamide

(Study 2), these subjects in Study 2 were similar in age,

health, and background to those in Study 3 and all sub-

jects in both studies served as their own controls by tak-

ing placebo. When the change from placebo at 6.5 h after

drug administration for the three VAS-scored symptoms

most relevant to AMS of dizziness, sleepiness, and decline

in concentration are used (Table 3), benzolamide caused

Table 2. Number of subjects complaining of specific side effects after

administration of each drug in Study 3.

Effect

Placebo

(21)

Lorazepam

(18)

Acetazolamide

(21)

Benzolamide

(20)

Headache1 2 5 (2 severe) 4

Drowsiness 1 8 4 2

Dizziness1 9 2

Tingling of

lip or limb

4 1

Numbness

of hands

2

Earache 2

Coldness 1

Vomiting1 1

Metallic taste 1

Sore throat 1

Dry eyes 1

1Symptoms common to acute mountain sickness.

Figure 3. The time courses of urine output after dosing with either

placebo, acetazolamide 500 mg, or benzolamide 200 mg. Mean

values at each time point are shown � SEM.
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the least impact, with lorazepam roughly equivalent to

the greater side effects of acetazolamide at 250 and

500 mg. The 1000 mg dose of acetazolamide had the

greatest side effect impact. The data showed a very plausi-

ble dose–response relationship for acetazolamide across

the three doses studied.

Our findings of modest but definite CNS side effects of

acetazolamide at 250 mg accord with the recent study by

Wang et al. (2013) which suggests that the side effects of

acetazolamide at this lowest dosing are not trivial. In par-

ticular, their study found significant neuropsychological

decline in the areas of concentration, cognitive processing

speed, reaction time, and short-term memory with acetazo-

lamide after 4 days even at the low dosage of 125 mg bid.

We may indeed underestimate the benefits at high altitude

of benzolamide over acetazolamide observed in our one

time dose study. The greater lipid solubility of acetazo-

lamide is more likely to cause problems as more drug

reaches the CNS with repeated dosing over several days, as

suggested by Wang et al. (2013). Because these side effects,

which are similar to those that constitute the symptom

complex of AMS, are detectable at sea level, and thus can-

not be attributable to AMS, the full effectiveness of prophy-

laxis with CA inhibition at high altitude is not realized.

Our results with benzolamide suggest that AMS prophy-

laxis with CA inhibitors might be most effectively achieved

with less lipophilic, more hydrophilic soluble drugs that

pass the blood–brain barrier with lesser capacity (Table 4).

Unfortunately, benzolamide has no patent protection

and thus it is unlikely that any pharmaceutical company

will ever market this drug. However, with an emerging

realization that plasma membrane-associated CA iso-

zymes with extracellular orientation (IX and XII) are

richly and almost uniquely expressed in cancer cells and

critical to their growth and metastatic potential (Robert-

son et al. 2004; Swietach et al. 2010), clinical develop-

ment of other membrane impermeant CA inhibitors

which block CA IX are underway and have shown

promising features. Drugs in this class would be well

worth studying in AMS, since they too like benzolamide

would be concentrated in the kidney at low doses by the

same mechanism as for benzolamide and all sulfonamide

CA inhibitors.

The basis by which acetazolamide and other CA inhibi-

tors act to reduce AMS is overwhelmingly by improve-

ment in arterial oxygenation (Roach et al. 1998;

Kazunobu et al. 2001; Muza et al. 2004), although other

mechanisms are emerging (Swenson 2014a). The

improvement in arterial oxygenation arises from renal CA

inhibition and the subsequent alkaline diuresis to decrease

the magnitude of respiratory alkalemia and its braking

action on the fullest expression of the ventilatory response

to hypoxia (Swenson 2014a). This is shown in Tables 1–
3; the latter compared our data with selected data of

others and demonstrated that the increase in ventilation

as evidenced by lowering of PaCO2 with benzolamide is

equal to that of acetazolamide.

In support of a causal pathway between arterial oxy-

genation and AMS, we found in a recent study of two

modest ascents (each of them to around 5000 m), follow-

ing an initial 5 days acclimatization at 3324 m, a definite

negative correlation between individual mean AMS scores

and SaO2 value (Brierley et al. 2012). We therefore, addi-

tionally, have explored the relationship between AMS

scores and SaO2 in this present study of benzolamide at

altitude. When we plot mean values of the AMS scores

Table 3. Change in VAS1 score from placebo at 6.5 h after drug

ingestion.

ACTZ

250

ACTZ

500

ACTZ

1000

BENZ

200 LOR 2

Dizziness 15 18 38 �5 18

Decline in concentration 21 19 42 2 9

Sleepiness 15 22 28 0 15

1Visual analog score of symptom severity: range 0–100.

Table 4. PCO2 and pH data from the present study and the three other major studies.

PAPER Present study Swenson et al. 1991 Kronenberg and Cain 1968a Swenson and Hughes 1993

Drug Benz Benz Benz Acet

Duration Days 24 h 24 h 72 h Acute i.v. 24 h

Condition Altitude Sea level Chamber Chamber Sea level Sea level

pHa

Placebo 7.442 7.44 7.493 7.501 7.43 7.44

Inhibitor 7.408 7.39 7.437 7.445 7.44 7.40

PaCO2

Placebo 27.0 39.4 28.5 27.3 41.2 39.9

Inhibitor 23.6 36.0 26.7 25.8 38.0 35.3

PaCO2 fall 3.4 3.4 1.8 1.5 3.2 4.6
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against mean SaO2 values for all subjects at each altitude,

there is a significant negative AMS–SaO2 correlation, both

for the placebo and benzolamide-treated subjects individ-

ually (Figure 4) and when combined (Figure 5). Numer-

ous other studies have found a correlation (Faulhaber

et al. 2014; Roach et al. 1998; Kazunobu et al. 2001;

Tannheimer et al. 2002; Koehle et al. 2010; Roeggla et al.

1996), but not all (Roach et al. 1995; O’Connor et al.

2004). Because correlation highly suggests but does not

prove causation, and AMS itself may alter lung function

to cause further hypoxemia (Swenson 2014a,b) better

studies with attention to what degree of hypoxemia pre-

cedes the onset of AMS along with investigations of pro-

phylactic strategies that stimulate ventilation or act by

other mechanisms, such as dexamethasone, are needed

(Luks and Swenson 2011).

Our study has several limitations requiring some

acknowledgment. We did not test benzolamide directly

against acetazolamide at high altitude because we did not

have sufficient volunteers to include another arm in Study

1. Such a trial in the future is clearly deserving of study,

but it will require a greater number of subjects to prove

either noninferiority or superiority due to the efficacy

both drugs display. A second weakness of the study is that

we did not compare benzolamide directly in the sea level

study against the 250 and 1000 mg doses of acetazo-

lamide (Study 2). However, we believe that the use of pla-

cebo groups in very similar subjects does permit us to

combine results of the two studies as we did and show in

Table 3. Future head to head studies of these doses would

be useful. Finally, we chose to study the drugs for their

side effect profile at sea level to minimize any differences

due to variable influences of high altitude, cold, change in

diet, and the stress of travel and trekking on our results.

These results provide important background reference

data for the interpretation of any future comparative

study of these drugs at high altitude.

In conclusion, our investigation confirms that the

membrane impermeant CA inhibitor, benzolamide, has

prophylactic benefit against AMS and does so under field

conditions of high-altitude trekking. It acts as a ventila-

tory stimulant by virtue of its targeted action on the kid-

ney and that the beneficial effect is due to the resultant

higher arterial oxygen saturation. Extensive and well-con-

trolled psychometric testing shows that benzolamide has a

considerably lesser side effect profile than acetazolamide

at sea level, that theoretically should make it, or a similar

membrane impermeant CA inhibitor, a better choice for

AMS prophylaxis.
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Appendix 1:

Table A2. Physiological results from Study 2.

Test Drug Time 0 h Time 2 h Time 4.5 h Time 6.5 h

Intraocular pressure (mmHg) Placebo 10.1 (0.9) 9.6 (0.7) 9.5 (0.6) 9.2 (0.4)

Acetazolamide 250 mg* 10.4 (0.8) 8.6 (0.6) 8.1 (0.3) 7.8 (0.6)

Acetazolamide 1000 mg*** 10.1 (0.8) 7.7 (0.5) 8.4 (0.6) 7.2 (0.5)

End-tidal PCO2 (mmHg) Placebo 34.0 (1.3) 34.4 (1.0) 35.2 (1.1) 35.5 (1.1)

Acetazolamide 250 mg 34.3 (0.9) 34.0 (1.1) 34.7 (1.1) 32.0 (0.9)

Acetazolamide 1000 mg 36.7 (1.2) 33.5 (1.2) 33.8 (1.0) 32.1 (1.7)

Blood pH Placebo 7.44 (0.01) 7.44 (0.01) 7.45 (0.01) 7.45 (0.01)

Acetazolamide 250 mg** 7.43 (0.00) 7.40 (0.01) 7.41 (0.01) 7.39 (0.01)

Acetazolamide 1000 mg*** 7.42 (0.01) 7.38 (0.01) 7.39 (0.00) 7.40 (0.01)

Blood PCO2 Placebo 35.2 (0.8) 34.8 (0.9) 33.9 (1.0) 34.5 (1.0)

Acetazolamide 250 mg 35.2 (1.2) 35.7 (1.0) 35.7 (1.0) 33.9 (0.8)

Acetazolamide 1000 mg 35.4 (0.9) 34.3 (0.8) 35.2 (0.6) 32.8 (0.7)

Blood bicarbonate (calculated) Placebo 23.7 (0.5) 23.2 (0.4) 23.1 (0.6) 23.2 (0.5)

Acetazolamide 250 mg 23.8 (0.6) 22.4 (0.8) 22.5 (0.6) 19.8 (0.4)

Acetazolamide 1000 mg** 22.9 (0.6) 20.1 (0.5) 21.2 (0.4) 20.1 (0.6)

Simple Reaction time Placebo 233.9 (9.5) 226.8 (9.4) 221.3 (9.9) 228.2 (9.9)

Acetazolamide 250 mg 236.9 (13.7) 235.3 (11.5) 213.6 (9.2) 222.0 (6.7)

Acetazolamide 1000 mg 221.6 (10.4) 227.8 (9.8) 207.2 (9.7) 224.8 (7.7)

Base Excess (mEq/L) Placebo �0.17 (0.523) �1.120 (0.509) �1.233 (0.693) �0.907 (0.591)

Acetazolamide 250 mg* �0.930 (0.700) �3.05 (0.509) �2.163 (0.831) �5.267 (0.537)

Acetazolamide 1000 mg*** �0.446 (0.975) �4.860 (0.509) �3.715 (0.501) �4.914 (0.781)

Urine pH Placebo 6.0 (0.1) 6.6 (0.15) 6.6 (0.2) 6.8 (0.1)

Acetazolamide 250 mg*** 5.7 (0.1) 7.7 (0.06) 7. 9 (0.0) 7.7 (0.0)

Acetazolamide 1000 mg*** 6.2 (0.2) 7.7 (0.06) 7.9 (0.0) 7.7 (0.0)

Urine volume (mL) Placebo 159 (28) 238 (44) 143 (22) 147 (19)

Acetazolamide 250 mg 88 (18) 401 (45) 268 (24) 345 (24)

Acetazolamide 1000 mg** 126 (20) 527 (46) 382 (46) 364 (23)

*P < 0.05, **P < 0.01 ***P < 0.001 (relative to placebo). Values shown are mean � SEM.

Table A1. Psychometric results from Study 2 (acetazolamide dosage).

Test Drug Time 0 h Time 2 h Time 4.5 h Time 6.5 h

CFF (hz) Placebo 31.4 (0.8) 32.1 (0.7) 31.1 (0.6) 30.9 (0.6)

Acetazolamide 250 mg 31.3 (1.1) 31.5 (0.8) 30.0 (0.7) 31.7 (0.8)

Acetazolamide 1000 mg 32.2 (0.7) 31.1 (0.5) 32.5 (0.5) 32.2 (0.5)

Pegs correctly placed in 2 min Placebo 32.1 (1.5) 33.5 (1.4) 32.9 (0.9) 30.8 (1.2)

Acetazolamide 250 mg 33.1 (1.3) 33.8 (1.2) 35.1 (1.4) 36.0 (1.4)

Acetazolamide 1000 mg 33.2 (1.0) 32.9 (0.8) 31.9 (0.9) 33.8 (1.0)

VAS wide awake Placebo 74.8 (5.4) 81.1 (3.7) 75.2 (6.3) 69.0 (7.3)

Acetazolamide 250 mg 77.2 (4.4) 70.1 (4.9) 59.6 (7.0) 53.9 (8.1)

Acetazolamide 1000 mg*** 77.4 (5.2) 51.6 (6.3) 34.2 (5.3) 41.3 (5.7)

VAS decline in clear headedness Placebo 15.0 (4.3) 11.3 (3.4) 9.7 (4.1) 16.6 (5.6)

Acetazolamide 250 mg 21.5 (5.5) 22.6 (4.0) 30.5 (7.5) 37.4 (7.7)

Acetazolamide 1000 mg*** 19.3 (5.6) 45.4 (6.8) 62.4 (4.1) 58.4 (8.5)

VAS dizzy Placebo 95.5 (1.8) 95.5 (1.4) 96.5 (1.1) 85.8 (4.9)

Acetazolamide 250 mg 95.5 (1.7) 92.1 (2.3) 73.1 (7.2) 70.0 (8.0)

Acetazolamide 1000 mg** 96.4 (1.7) 67.9 (7.4) 48.6 (5.3) 47.3 (8.3)

VAS hungry Placebo 42.1 (5.1) 55.4 (6.5) 9.5 (1.7) 39.4 (2.5)

Acetazolamide 250 mg 37.8 (6.9) 52.1 (6.6) 12.1 (4.2) 23.4 (4.6)

Acetazolamide 1000 mg 45.1 (7.1) 66.9 (4.7) 26.0 (7.1) 44.7 (5.1)

*P < 0.05, **P < 0.01, ***P < 0.001 (relative to placebo at and beyond 2 h). Values are mean � SEM.
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Table A3. Physiological and psychometric results in Study 3.

Test Drug Time 0 h Time 2 h Time 4.5 h Time 6.5 h

Urine pH Placebo 5.5 (0.1) 5.9 (0.1) 5.7 (0.1) 6.1 (0.1)

Lorazepam 5.6 (0.1) 6.2 (0.1) 6.2 (0.1) 6.5 (0.2)

Acetazolamide*** 5.6 (0.2) 7.5 (0.1) 7.7 (0.1) 7.4 (0.2)

Benzolamide*** 5.7 (0.1) 7.5 (0.1) 7.7 (0.1) 7.5 (0.1)

Urine vol (mL) Placebo 92 (21) 211 (30) 142 (26) 145 (31)

Lorazepam 65 (15) 225 (38) 132 (22) 132 (20)

Acetazolamide*** 81 (16) 358 (38) 301 (36) 238 (21)

Benzolamide** 100 (21) 321 (36) 265 (37) 210 (24)

CFF (Hz) Placebo 33.9 (0.9) 33.6 (0.9) 32.8 (0.8) 32.9 (0.8)

Lorazepam*** 33.7 (0.7) 30.4 (0.9) 32.6 (0.9) 31.9 (1.0)

Acetazolamide 32.9 (1.0) 33.3 (1.0) 33.5 (0.9) 33.4 (0.9)

Benzolamide 33.6 (0.6) 33.0 (0.7) 33.1 (0.7) 32.3 (0.9)

Sway (degrees) Placebo 0.53 (0.03) 0.57 (0.04) 0.57 (0.03) 0.58 (0.04)

Lorazepam** 0.56 (0.04) 0.83 (0.05) 0.69 (0.05) 066 (0.04)

Acetazolamide* 0.53 (0.04) 0.62 (0.03) 0.62 (0.04) 0.68 (0.06)

Benzolamide 0.53 (0.03) 0.52 (0.03) 0.60 (0.05) 0.63 (0.05)

Vertical error (sum of steps) Placebo 21.0 (3.1) 23.7 (3.0) 36.5 (5.6) 27.1 (5.5)

Lorazepam* 29.7 (5.7) 32.8 (7.2) 32.1 (6.9) 41.9 (8.4)

Acetazolamide* 30.2 (3.9) 44.3 (5.6) 31.1 (2.9) 30.3 (5.5)

Benzolamide 29.6 (3.9) 27.1 (3.0) 26.9 (3.3) 30.4 (3.6)

Pegs correctly placed in 2 min Placebo 34.5 (1.1) 36.1 (1.3) 34.7 (1.1) 36.6 (1.2)

Lorazepam*** 36.3 (1.0) 28.9 (1.4) 35.7 (1.9) 33.9 (1.2)

Acetazolamide 34.1 (1.1) 34.8 (1.3) 35.0 (1.2) 34.5 (1.5)

Benzolamide 33.7 (1.0) 34.0 (1.0) 34.0 (1.0) 34.8 (1.2)

VAS sleepy Placebo 66.8 (6.5) 60.5 (6.2) 65.1 (5.4) 64.2 (6.1)

Lorazepam*** 72.1 (6.4) 40.8 (7.5) 43.6 (7.7) 47.8 (6.6)

Acetazolamide* 64.8 (6.6) 51.7 (6.0) 47.3 (6.1) 42.8 (8.3)

Benzolamide 75.8 (5.5) 68.3 (6.0) 58.3 (7.4) 64.8 (6.5)

VAS clear headedness Placebo 23.3 (5.0) 25.9 (3.9) 28.6 (5.4) 28.4 (5.3)

Lorazepam*** 28.8 (6.8) 53.1 (6.7) 45.6 (6.6) 38.4 (7.2)

Acetazolamide*** 30.6 (5.9) 58.4 (5.2) 54.3 (6.0) 46.9 (7.1)

Benzolamide 17.3 (4.7) 28.8 (6.5) 35.2 (7.0) 30.6 (6.7)

VAS dizzy Placebo 80.9 (6.3) 80.9 (4.6) 73.3 (6.4) 73.9 (6.2)

Lorazepam*** 79.9 (5.8) 31.8 (6.3) 33.9 (6.1) 56.1 (8.4)

Acetazolamide*** 72.5 (7.2) 58.8 (8.2) 53.8 (8.4) 55.8 (7.8)

Benzolamide 87.5 (4.5) 82.5 (5.0) 74.7 (6.6) 79.0 (6.1)

VAS hungry Placebo 25.8 (5.7) 51.8 (6.9) 25.1 (5.3) 36.1 (6.0)

Lorazepam 28.8 (6.5) 54.0 (7.1) 25.4 (5.5) 36.1 (5.9)

Acetazolamide 33.7 (6.7) 49.9 (7.5) 20.4 (4.4) 35.3 (7.1)

Benzolamide 26.5 (5.3) 51.6 (5.3) 24.4 (5.2) 35.5 (5.5)

Intraocular pressure (mmHg) Placebo 9.8 (0.7) 10.4 (0.6) 9.0 (0.4) 9.1 (0.4)

Lorazepam 9.9 (0.6) 9.3 (0.5) 9.0 (0.5) 8.9 (0.5)

Acetazolamide** 9.0 (0.6) 7.7 (0.7) 7.7 (0.5) 8.3 (0.5)

Benzolamide 9.4 (0.6) 8.5 (0.4) 8.6 (0.5) 8.7 (0.5)

*P < 0.05, **P < 0.01, ***P < 0.001 (relative to placebo). Values are mean � SEM.

2016 | Vol. 4 | Iss. 3 | e00203
Page 12

ª 2016 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd,

British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

Benzolamide as an Alternative for AMS Prophylaxis D. J. Collier et al.


