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A B S T R A C T

Purpose
Approximately 12,000 glioblastomas are diagnosed annually in the United States. The median
survival rate for this disease is 12 months, but individual survival rates can vary with patient-
specific factors, including extent of surgical resection (EOR). The goal of our investigation is to
develop a reliable strategy for personalized survival prediction and for quantifying the relationship
between survival, EOR, and adjuvant chemoradiotherapy.

Patients and Methods
We used accelerated failure time (AFT) modeling using data from 721 newly diagnosed patients
with glioblastoma (from 1993 to 2010) to model the factors affecting individualized survival after
surgical resection, and we used the model to construct probabilistic, patient-specific tools for
survival prediction. We validated this model with independent data from 109 patients from a
second institution.

Results
AFT modeling using age, Karnofsky performance score, EOR, and adjuvant chemoradiotherapy
produced a continuous, nonlinear, multivariable survival model for glioblastoma. The median
personalized predictive error was 4.37 months, representing a more than 20% improvement over
current methods. Subsequent model-based calculations yield patient-specific predictions of the
incremental effects of EOR and adjuvant therapy on survival.

Conclusion
Nonlinear, multivariable AFT modeling outperforms current methods for estimating individual
survival after glioblastoma resection. The model produces personalized survival curves and
quantifies the relationship between variables modulating patient-specific survival. This approach
provides comprehensive, personalized, probabilistic, and clinically relevant information regarding
the anticipated course of disease, the overall prognosis, and the patient-specific influence of EOR
and adjuvant chemoradiotherapy. The continuous, nonlinear relationship identified between
expected median survival and EOR argues against a surgical management strategy based on rigid
EOR thresholds and instead provides the first explicit evidence supporting a maximum safe
resection approach to glioblastoma surgery.

J Clin Oncol 32:774-782. © 2014 by American Society of Clinical Oncology

INTRODUCTION

Glioblastoma is the most common malignant brain
tumor, with approximately 12,000 new cases diag-
nosed annually in the United States.1 The current
standard of care is surgical resection followed by adju-
vant chemoradiotherapy.2,3 Mortality is greater than
90% at 2 years,1,4 and age, Karnofsky performance
score (KPS), and the extent of surgical resection of
enhancing tumor on T1-postgadolineum magnetic
resonance imaging (EOR) modulate this estimate.4-11

Several studies demonstrate the critical role of
surgical resection in glioblastoma management and
also suggest that some EOR thresholds (eg, 88% to
89% or 95% to 98%) distinguishes two subgroups of
postresection patients with significant differences in
median survival.4-11 Although statistically valid,
these discontinuous survival models ensue from cat-
egoric analyses that are fundamentally limited in
their ability to describe the probabilistic nature of
continuous-time processes but were initially neces-
sary because limited data availability precludes more
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complex mathematical modeling. Also, using categoric models for
individual, patient-level survival predictions requires secondary
generalization of aggregate data,4,7 and data from categoric models
can be misinterpreted to suggest that subthreshold resections are
not clinically indicated. The former risks inadequately informing
clinicians and patients during medical decision-making; the latter
may result in inappropriately withholding potentially beneficial
surgical intervention.

We hypothesize that a continuous, probabilistic approach to
survival modeling will provide a more accurate representation4,7 of the
relationship between the factors influencing the survival of patients
with glioblastoma after surgical resection than is achievable with cur-
rent, categoric models. High-level interpretation of a continuous,
probabilistic survival model can provide additional insight into the
general role of surgery in glioblastoma management and into the
nature of the relationship between EOR and survival. Also, individu-
alized application of the model using patient-specific covariate data
allows clinicians to calculate personalized survival curves, to estimate
individual median survival, and to predict the patient-specific, incre-
mental survival effects of quantitative changes in EOR and of qualita-
tive changes in adjuvant therapeutic strategy.

PATIENTS AND METHODS

Patient Selection

Our investigation was approved by the institutional review boards at The
University of Texas MD Anderson Cancer Center (IRB No. DR07-0585) and
at the Cleveland Clinic (IRB No. 2559). The MD Anderson Cancer Center
Neuro-Oncology database was used to identify all patients who underwent
initial surgical resection of histologically confirmed glioblastoma between
June 1, 1993 and October 20, 2011. All patients at least 18 years old were
eligible for inclusion (n � 933). Patients who were alive at the time of
analysis (n � 165; 17.7%) were excluded so that all analyzed survival data
were noncensored. Patients with incomplete preoperative and postopera-
tive magnetic resonance imaging volumetric tumor data were also ex-
cluded (n � 47; 5.0%). A total of 721 patients met all criteria and
comprised the study sample (Table 1). Identical inclusion criteria were
used to identify 109 novel patients with glioblastoma treated at the Cleve-
land Clinic, and this data set (Cleveland Clinic validation data) was used
for external validation purposes.

Summary of Analytic Methods

Forty patient-specific preoperative features were screened for potential
inclusion in the survival model (Table 1) through a multistep statistical process
involving correlation testing and univariable and multivariable analysis. The
features selected using this reductive strategy were used as covariates for pre-
dictive survival modeling using the log-logistic accelerated failure time (AFT)
method.12,13 The applicability of this approach and the validity of the final
model were tested through distribution analysis, proportional odds assess-
ment, and residual analysis (Data Supplement).12,13

Goodness-of-fit, explanatory ability, and model-based statistical signifi-
cance were tested using standard metrics. Pseudoexternal validation was per-
formed using 20% bootstrapping and leave-one-out crossvalidation. True
external validation was performed by measuring the median absolute predic-
tive error (APE; Data Supplement) that was observed when the study model
was applied to the validation set of 109 novel patients with glioblastoma
(Table 2).

Accuracy of personalized survival prediction and comparative explana-
tory ability of the study model was tested against current EOR-threshold-only
models and their derivatives using APE and Nagelkerke’s pseudoR2, respec-
tively (Table 2).

The final model was used to generate prototypic patient-specific survival
profiles comprising four curves representations of the relationship between

model parameters and survival (see Discussion; Fig 1). These curves can also be
used to calculate the incremental survival effects of changes in EOR and
adjuvant therapy regimens (Figs 2 and 3).

A detailed discussion of the statistical and mathematical methods is
presented in the Data Supplement.

RESULTS

Final Model

The final survival model has an intercept and five variables (Table
3). This includes three continuous variables, age, the natural log of the
preoperative KPS, and EOR, plus two categoric variables (0, absent; 1,
present) describing adjuvant therapy, cranial radiotherapy (XRT; pos-
itive if the patient received any postoperative radiotherapy) and temo-
zolomide (TMZ; positive if the patient received any postoperative
chemotherapeutic regimen that included temozolomide). The ratio-
nale for these definitions is presented in the Data Supplement. Distri-
bution, log-odds, and residual analyses confirmed the applicability of
the log-logistic AFT model (Data Supplement).

Model Validation

Model fit (internal validity) was confirmed by testing the statisti-
cal significance of the final model versus the null model (�2 � 262.4;
P � .001) and the significance of each term in the model (all P � .001;
Table 3). R2 was calculated to investigate the degree to which the
model explains the observed survival. The model’s R2 value of 0.307
suggests that the covariates explain approximately 30% of the variabil-
ity seen in the estimated survival. Internal model accuracy for individ-
ualized survival estimation was assessed by calculating the median
APE for the source data set (Data Supplement), which was 4.37
months with an SE percent of � 7.3%. Pseudoexternal validity was
assessed by examining pseudoR2 and concordance indices (c index)
from two holdout models: 20% bootstrapping and leave-one-out
crossvalidation. The pseudoR2s were 0.30 and 0.31, respectively,
which closely approximate that of the final model. Additionally, the c
indices were 0.69 and 0.69, respectively, suggesting good model con-
cordance with the underlying data. True external validity was assessed
by determining the APE of the model when applied to a novel data set
of 109 patients collected at a different institution. The median APE for
that data set was 4.42 months with an SE percent of � 3.53%. This
suggests that the model performs at least as well on completely novel
data as it does on the native training set (Table 2).

Comparison With Current Models

The pseudoR2 for the five threshold-only models4,7,8 and for the
recursive partitioning model described by Sanai et al4 ranged from
0.014 to 0.067. This is markedly less than the study model’s value of
0.307, suggesting that the study model has considerably more explan-
atory ability for survival than models based only on EOR thresholds or
on recursive partitioning analysis classes.4 A model that combines an
EOR greater than 98% with categoric data on adjuvant therapy had a
pseudoR2 of 0.278, which is still less than that of the final model. This
suggests that the final model provides explanation beyond the simple
combination of EOR threshold data plus knowledge of adjuvant ther-
apy modulators. Also, the predictive performance of the final model
was significantly better than any of the seven comparators (all
P � .001).
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The median APE of the final model was 4.37 months. This was
better than any of the five threshold-only models or the Sanai et al4

recursive partitioning analysis model, which had APEs range from
5.57 to 5.90 months. This represents a 21.5% to 25.9% reduction in the
APE of the final model relative to the threshold-only models (all P �
.001; Table 2).

Individual Predictive Models

In addition to allowing calculation of point estimates for
patient-specific median survival, the study model can also be used
to generate at least four types of patient-specific data plots that
convey additional, clinically relevant information. The first is a
survival curve, which presents the probability of survival p(S) at
any time [(t); Fig 1A]. The second depicts the relationship between

Table 1. Patient Demographic Characteristics (N � 721)

Characteristic No. of Patients %

Sex
Male 430 59.6
Female 291 40.4

Age at diagnosis, years
Mean 59.4
SD 12.3
Median 60.1
Q1, Q3 51.6, 68.4
Range 18.6-87.8

KPS
� 60 39 5.4
60 26 3.6
70 95 13.2
80 213 29.5
90 284 39.4
100 64 8.9
Median 80
Q1, Q3 80, 90

Symptoms at presentation
Headache 302 41.9
Visual problems 154 21.4
Dizziness 47 6.5
Cranial neuropathy 31 4.3
Nausea or vomiting 101 14.0
Sensory symptoms 74 10.2
Speech problems 222 30.8
Seizure 185 25.7
Focal weakness 234 32.4
Memory deficits 183 25.4
Mental status changes 115 16.0
Confusion 85 11.8
Unsteady gait 98 13.6
Other 56 7.8

Tumor location
Brain stem, basal ganglia, or thalamus 18 2.5
Cerebellar 9 1.2
Frontal 234 32.5
Occipital 31 4.3
Parietal 88 12.2
Temporal 242 33.6
Intraventricular/pineal/suprasellar 6 0.8
Multifocal 93 12.9

Tumor side
Right 345 47.9
Left 353 49.0
Midline 7 1.0
Bilateral 16 2.2

Functional involvement
Eloquent 302 41.9
Near eloquent 356 49.4
Noneloquent 63 8.7

Imaging characteristics
Mass effect 513 71.2
T1 postgadolinium enhancement 721 100
Calcified 2 0.3
Hemorrhagic 77 10.7

Prior therapy
Prior biopsy 174 24.1
Corticosteroids before surgery 405 56.2
Antiepileptics before surgery 440 61.0

(continued in next column)

Table 1. Patient Demographic Characteristics (N � 721) (continued)

Characteristic No. of Patients %

Postoperative adjuvant therapy
Postoperative XRT, any regimen 469 65.0
Adjuvant chemotherapy

Any regimen 406 56.3
Regimen containing temozolomide 354 49.1
Regimen not containing
temozolomide 52 7.2

Volumetric data, mL
Preoperative

T1 hypointensity
Mean 4.0
SD 22.5

T1 postgadolinium enhancement
Mean 33.7
SD 25.6

T2/FLAIR hyperintensity
Mean 59.2
SD 61.5

Total volume
Mean 96.82
SD 79.5

Postoperative
T1 hypointensity

Mean 1.2
SD 9.2

T1 postgadolinium enhancement
Mean 1.8
SD 4.9

T2/FLAIR hyperintensity
Mean 24.9
SD 30.8

Total volume
Mean 27.9
SD 34.8

Extent of resection, % by volume
T1 hypointensity 85.1
T1 postgadolinium enhancement 94.7�

T2/FLAIR hyperintensity 60.0
Total volume 76.1

Abbreviations: EOR, extent of surgical resection; FLAIR, fluid-attenuated
inversion recovery; KPS, Karnofsky performance score; Q1, first quartile; Q3,
third quartile; SD, standard deviation; XRT, cranial radiotherapy.

�More information on the distribution of the EOR variable is in the
Data Supplement.
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the median estimated survival and extent of resection of enhancing
tumor. This is generated by setting p(S) � 0.5 and solving for EOR
over the interval (1,100%; Fig 1B). The third is a family of survival
curves for all possible combinations of the categoric variables for
XRT and/or TMZ while the remaining patient-specific parameters
remain constant (Fig 1C). This plot demonstrates the patient-
specific survival effects of each type of adjuvant therapy, alone or in
combination. Finally, the fourth plot is a combination of the EOR
curve and the adjuvant therapy curves. By again letting p(S) � 0.5
and varying both the EOR and the categoric values of the XRT and
TMZ variables, a family of curves that depict the relationship

between EOR and adjuvant therapy on median predicted survival
can be plotted (Fig 1D).

DISCUSSION

Analysis of 40 potential clinical and imaging features (Table 1) identi-
fied five patient-level covariates that make significant contributions to
a model for survival prediction: age, KPS, EOR, and adjuvant therapy
with XRT and/or temozolomide. The covariate coefficients (Table 3)
show that lower age, higher KPS, higher EOR, and positive XRT and
TMZ are associated with increased survival. All of these factors have

Table 2. Model Validation

Characteristic

Model MD
Anderson

AFT Model
(median)

Pseudoexternal Validation

True External
Validation
Cleveland

Clinic
Glioblastoma

DataHoldout Validation

Leave-One-Out
Crossvalidation

80% Training
Set (median)

20% Test
Set (median)

Full v
Training (P)

Full v
Test (P)

Training v
Test (P) Median P

Actual survival, months 11.57 11.16 13.00 .78 .38 .28 12.17
.56

Predicted survival, months 10.90 10.54 11.10 .57 .67 .93 14.60
.82

SE of prediction 0.82 0.79 0.77 0.47
SE, % 7.30 0.22 0.23 3.53
Difference (actual-predicted, net) �0.02 �0.21 0.49 .96 .17 .18 �0.43 .79

.36
Difference (actual-predicted,

absolute)
4.37 4.46 4.06 .69 .26 .16 4.42 .33

.39
R2 0.31 0.30 0.31
C index 0.69 0.69

Comparison to Alternate Models

Characteristic
Final

Model
EOR

� 98%
EOR

� 95%
EOR

� 90%
EOR

� 85%
EOR

� 80%
Berger RPA

Category
EOR � 98% With XRT

and TMZ As Factors

Median absolute predictive error, months� 4.37 5.57 5.77 5.83 5.80 5.90 5.60
Difference v model, % 21.5 24.2 25.1 24.7 25.9 21.9
P v final model � .001 � .001 � .001 � .001 � .001 � .001

R2 0.307 0.054 0.040 0.027 0.023 0.014 0.067 0.278
Log-ratio test, �2 264.2 40.1 29.8 19.6 16.8 9.9 49.6 234.6

Degrees of freedom 5 1 1 1 1 1 4 3
P v final model � .001 � .001 � .001 � .001 � .001 � .001 � .001

NOTE. Multiple approaches were used to test the goodness-of-fit and the external validity of the survival model. The top section presents data from both
pseudoexternal validity tests (20% bootstrap and leave-one-out crossvalidation) and from true external validation (using a novel sample from a different institution).
The holdout (bootstrap) analysis shows that there is no statistically significant difference between the median estimated survival using the study model versus a
novel model trained on 80% of the original data and tested against the remaining 20% (10.54 v 11.10 months; P � .57). Similarly, the median of the patient-level
differences between actual and predicted survival is not significant between the study model and the 20% test model (4.37 v 4.06 months; P � .26). The remaining
P values are included to illustrate that the complete, training, and test sets are fundamentally similar regarding relevant parameters. Model-fit testing of both the
holdout and the leave-one-out crossvalidation suggest that the model fit and the explanatory ability of the study model is stable under holdout validation testing (r2;
c index).

The true external validation tested the study model on 109 novel patients with glioblastoma collected at a different institution with a similar, tertiary care clinical
brain tumor practice. Survival characteristics of both the primary (MD Anderson) and the validation (Cleveland Clinic) patient populations were similar, and model
testing showed no significant difference in median individualized predictive error when the study model was applied to the novel, external dataset (4.37 v 4.42
months; P � .33). All P values were calculated nonparametrically using the Mann-Whitney U test.

The bottom section compares the median absolute predictive error of the study model with that of seven alternate methods for individual survival prediction, and
the statistical significance of this difference is tested using the Mann-Whitney U test. The relative explanatory abilities of the models for survival are compared using
Nagelkerke’s Pseudo R2 (larger values indicate superior explanatory ability). Finally, the overall statistical significance of each model is compared with that of the
study model using the log-ratio test and the results are presented both in terms of absolute difference of the �2 statistic (with degrees of freedom) and as a P value.
This analysis shows that the study model predicts individual survival more accurately (overall) than any of the EOR-threshold–based models, even when adjuvant
XRT and TMZ are accounted for as covariates. Similarly, the model outperforms the recently proposed, four-class RPA model suggested by Sanai et al.4 The methods
for calculating the APE are discussed in detail in the text and in the Data Supplement.

Abbreviations: AFT, accelerated failure time; APE, absolute predictive error; c index, concordance index; EOR, extent of surgical resection; RPA, recursive
partitioning analysis; TMZ, temozolomide-based chemotherapy; XRT, cranial radiotherapy.

�Distributions across all groups are tested with a one-way, three-class, independent samples Kurskal-Wallis test.
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been previously demonstrated to have similar qualitative influence on
survival,2-8 which supports the results of our feature selection and
modeling processes.

The study model has been specifically designed to be used clini-
cally before surgery for the purpose of better informing the surgical
decision-making and consent processes, so only factors whose values
are available before surgery have been included in the model. Al-
though the actual values of the EOR and adjuvant therapy variables are
not precisely known preoperatively, they are commonly estimated by
the surgeon and can be used on an intention-to-treat basis.

In contrast with the Cox proportional hazards model, log-logistic
AFT modeling is particularly useful for applications that involve
prospective prediction (in this case, survival) because the model is
closed-form, involves a fixed intercept, and is associated with explicit
hazard and survival functions.12,13 This enables accurate point estima-
tion of median survival and facilitates construction of probabilistic
survival curves (Fig 1A) that are explicit and patient-specific, rather
than being estimated by scaling the population median with
semiquantitative hazards (as with the Cox proportional hazards
model). Also, univariable and multivariable model-based simulation
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Fig 1. Personalized survival profile for a hypothetical patient. This figure depicts the four primary curve sets that comprise a patient-specific survival profile constructed using
this model. The specific curves used in this example are for a hypothetical 72-year-old patient with a Karnofsky performance score (KPS) of 80. (A) Survival curve. This curve
depicts a patient’s estimated probability of survival at any time in days (gold lines, 95% CIs). It can be used to calculate the estimated survival for any percentile (including the
median, where p(x) � 0.5. It presents the most comprehensive survival information but requires that all covariates in the model be known. Here, extent of resection (EOR)
of gadolinium-enhancing (T1) tumor is 98%, cranial radiotherapy (XRT) is positive, and temozolomide-based chemotherapy (TMZ) is positive. This curve is useful to determine
survival rates either preoperatively (when the plan for adjuvant therapy is known and the surgeon can estimate the anticipated extent of resection) or postoperatively (when
all values are known explicitly). (B) Survival versus EOR curve. This curve presents estimated median survival as a function of EOR (gold lines, 95% CIs). This curve is particularly
useful preoperatively to a surgeon attempting to determine the incremental survival advantages associated with increases in EOR (Fig 2, application details). Here, XRT is
positive and TMZ is positive. (C) Survival versus adjuvant therapy curves. This is the family of survival curves (similar to A) generated when all possible combinations of XRT
and TMZ variables are simulated. It can be used to calculate the estimated survival for any percentile [including the median, where p(x) � 0.5] when various adjuvant therapy
strategies are applied. Although adjuvant chemoradiotherapy is currently considered standard of care, individual circumstances or patient preferences may require assessment
of the individualized survival advantages of alternate adjuvant strategies. This curve is useful for investigating these relationships and informing individualized treatment plans.
Here EOR is 98%. (D) Survival, EOR, and adjuvant therapy curve. Combining the simulations used for (B) and (C) produces a family of curves stratified by adjuvant therapy
strategy for which the survival estimate is a function of EOR. This family of curves provides a considerable amount of clinically relevant information using relatively little
specified data; only the values of the invariant parameters in the model (age and KPS) are required and the rest are simulated using the model for all possible covariate values.
This representation, which simulates and then summarizes the effects of all of the modifiable factors in the survival equation, is useful preoperatively to inform survival
implications of various combinations of surgical resection strategies and adjuvant therapy modalities.
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allow straightforward investigation and graphical representation of
the patient-specific relationships between individual or combined
covariates (eg, EOR, adjuvant therapy) and survival (Figs 1B to 1D).

The AFT modeling approach to the survival analysis (Table 3)
yields at least five novel, clinically relevant results that were previously
unavailable using categoric survival models. These are summarized
herein and are subsequently discussed in additional detail.

Patient-specific median survival estimates calculated using this
model are more accurate than patient-level secondary generalizations
of categoric median survival data from previous investigations (Table
2). Patient-specific survival curves, which offer more information
than point-estimates of median survival, and covariate-specific incre-

mental survival curves can be computed (Fig 1) using this model.
Survival versus EOR curves can inform personalized, preoperative
surgical decision-making by estimating the individual, incremental
survival benefits associated with more aggressive surgical resections
(Fig 2). Survival versus adjuvant therapy curves can be used to quan-
tify the patient-specific survival benefits of adjuvant therapy (Figs 1 to
3). EOR versus adjuvant therapy curves can depict the complex rela-
tionship between these variables and the survival effects associated
with their simultaneous, multivariable manipulation (Fig 3 and
Data Supplement).

The most basic survival statistic of interest to both clinicians and
patients is the estimated median survival. Our results demonstrate
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Fig 2. Personalized survival effects of extent of resection (EOR) of gadolinium-enhancing (T1) tumor or adjuvant therapy as individual covariates. These figures illustrate
how to use survival versus EOR curves (Fig 1B) or survival versus adjuvant therapy curves (Fig 1C) to estimate the personalized survival effects of changes in these
modifiable covariates. (A and B) Survival implications of 75% (gray) versus 95% (black) EOR in two different patients. (A) The estimated incremental survival benefit
of a more aggressive resection in a hypothetical young (age, 40 years), high-functioning (Karnofsky performance score [KPS], 100) patient is calculated at 135 days. (B)
In contrast, a similar calculation in a hypothetical patient who is elderly (age 84 years) and debilitated (KPS, 60) has the same incremental survival benefit at only 55
days. These curves illustrate the importance of patient-specific covariates in the relationship between survival and EOR, and they can inform surgeons of the potential
advantages of a more aggressive resection. This, in turn, provides better information on which patient-specific decisions regarding the risk/benefit balance of more
aggressive surgical resections can be based. (C and D) Survival implications of alternative adjuvant therapy strategies in two different patients. (C) The estimated
incremental survival benefit of adjuvant temozolomide alone (TMZ) versus adjuvant temozolomide plus radiotherapy (XRT) in a hypothetical young (age, 40 years),
high-functioning (KPS, 100) patient is calculated at 200 days. (D) In contrast, a similar calculation in a hypothetical patient who is elderly (age 84 years) and debilitated
(KPS, 60) results in an incremental survival benefit of only 90 days. These curves illustrate the importance of patient-specific covariates in the survival advantages of
adjuvant therapy, and they can inform oncologists of the potential advantages of more aggressive adjuvant therapy. This, in turn, provides better information on which
patient-specific decisions regarding the risk/benefit balance of the ideal, patient-specific adjuvant therapy strategy can be based. These curves also show that the
survival effects of both EOR and adjuvant therapy vary with patient-specific covariates. This may have implications for the design, analysis, and interpretation of future
trials that incorporate surgery, TMZ, or XRT as part of the glioblastoma management strategy being studied.
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that using a patient-specific AFT survival model improves predictive
accuracy by 21.5% to 25.9% over current EOR-threshold-only models
(Table 3). We believe that this can be attributed to a combination of
the personalized predictive approach (as opposed to a secondary gen-
eralization of categoric survival data) facilitated by the study model

and to the predictive advantages of the AFT over the more commonly
applied Cox proportional hazards survival model.12,13

Static median survival estimates present a limited view of the
expected clinical course for a patient with glioblastoma. By using the
study model to construct personalized survival curves, the patient and
clinician are afforded a more comprehensive, probabilistic overview of
the expectation of survival as a function of time (Fig 1A). Also, by
simulating variations in the expected EOR and/or the course of adju-
vant therapy, a comprehensive view of the influence of these parame-
ters on survival as a function of time can be appreciated (Figs 1B and
1C). This provides the patient and clinician with much more informa-
tion on which to base management decisions and the informed con-
sent process.

During the preoperative surgical decision-making process, sur-
geons and patients must weigh the potential survival benefits of ag-
gressive resection against the risks of postoperative neurologic deficits.
This is particularly true of tumors that involve or are adjacent to
eloquent areas, where extending the resection by only a few percent
may significantly increase the risk of deficit. The prior neurosurgical
literature, which has focused on EOR thresholds,4-8 is of limited utility
for informing these decisions. Although it shows that achieving a
prescribed EOR threshold is likely to improve overall median survival,
the patient-specific relationship of EOR and survival can neither be
specified accurately nor estimated quantitatively using these data. In
this context, increased risks may be unnecessarily accepted to achieve
an EOR threshold perceived as critical for prolonged survival, or
surgical resection may be withheld in favor of a biopsy-only strategy
because the surgeon feels that an adequate EOR threshold cannot be
safely achieved and that subthreshold resection is meaningless. In
either circumstance, inadequate patient-specific information regard-
ing the relationship of EOR and survival could lead to suboptimal
surgical decision-making.

Using the study model, holding all patient-specific parameters
constant and varying EOR from 1% to 100% produces a curve of
estimated median survival as a function of EOR (Fig 1). This curve can
then be used to calculate the incremental survival advantages
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Fig 3. Personalized survival effects of extent of resection (EOR) of gadolin-
ium enhancing (T1) tumor and adjuvant therapy as simultaneous covariates
and how to use an integrated EOR and adjuvant therapy survival curve (Fig 1D)
to estimate the personalized survival effects of simultaneous changes in
these modifiable covariates. (A) The combined effects of EOR and adjuvant
therapy on estimated survival in a hypothetical young (age 40 years),
high-functioning (Karnofsky performance score [KPS], 100) patient is exam-
ined. When 95% resection is achieved (blue intervals), cranial radiotherapy
(XRT) alone adds an estimated 120 days of survival (�2) and concomitant
temozolomide-based chemotherapy (TMZ) adds an additional 260 days (�1)
for a total of 380 days of estimated survival advantage versus no adjuvant
therapy (680 days v 300 days total, �3). When EOR is decreased from 95%
to 75%, the absolute values of the intervals decrease, and the absolute
survival advantage is reduced (relative to the estimated survival for 95% EOR)
from 680 to 540 days. (B) The combined effects of EOR and adjuvant therapy
on estimated survival in a hypothetical patient who is elderly (age 84 years)
and debilitated (KPS, 60) is examined. When 95% resection is achieved
(blue intervals), XRT alone adds an estimated 50 days of survival (�2) and
concomitant TMZ adds an additional 100 days (�1) for a total of 150 days of
estimated survival advantage versus no adjuvant therapy (270 days v 120 days
total, �3). When EOR is reduced from 95% to 75%, the absolute values of the
intervals decrease and the absolute survival advantage is reduced (relative
to the estimated survival for 95% EOR) from 270 to 220 days. Together,
these observations may have implications for the interpretation of the in-
cremental advantages of adjuvant therapy as well as for the design, analy-
sis, and interpretation of future trials that incorporate surgery, TMZ,
or XRT.

Table 3. Survival Model

Final Model

Characteristic Coefficient SE P

Intercept 1.1754 0.7072 .0965
Adjuvant XRT (1 � yes) 0.3157 0.0835 � .001
Adjuvant temozolomide (1 � yes) 0.492 0.0795 � .001
Age, years �0.0104 0.0024 � .001
ln(KPS) 0.8391 0.1545 � .001
Extent of resection of enhancement,

% as decimal 1.1399 0.2569 � .001
Model �2 264.2
P � .001
R2 0.307

NOTE. Covariates included in the accelerated failure time survival model. The
log-logistic accelerated failure time model is a proportional odds model with
multiplicative hazards. This differs from the more common additive, propor-
tional hazards of the Cox model, and so care should be exercised when
interpreting these model covariates.

Abbreviations: KPS, Karnofsky performance score; ln, natural log; XRT,
cranial radiotherapy.
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associated with incremental changes in EOR (Figs 2A and 2B), and
these data can be used in the context of patient-specific management
priorities to more accurately inform the decision-making process re-
garding the intended EOR.

Because the estimated survival is a function of four additional
patient-specific covariates, the magnitude of the incremental ad-
vantage of increasing EOR will vary between patients. Similarly,
because the survival function is nonlinear, the absolute change in
estimated median survival per unit EOR will not be constant over
the entire EOR spectrum for a given patient (eg, the survival
advantage of going from 93% to 98% may be different than the
advantage of going from 40% to 45% in a given patient, despite the
identical �EOR � 5%). These observations illustrate the impor-
tance of determining the personalized relationship between sur-
vival and EOR during the management decision-making process,
and the AFT facilitates this determination.

Examining the general behavior of the median survival versus
EOR curves calculated using the study model advocates for an impor-
tant paradigm shift in the surgical management of glioblastoma;
namely, it favors a maximum safe resection rather than a percent-
EOR-threshold approach to glioblastoma surgery. Whereas the static,
dichotomous nature of the analytics applied in previous investigations
of the relationship between EOR and survival could only be inter-
preted as representing a critical resection threshold, the curves gener-
ated using the study model suggests a continuous relationship
between EOR and median survival.

Clinically, this suggests that there is a survival advantage associ-
ated with any degree of resection and therefore provides the first
explicit evidence supporting the practice of maximum safe resection
for glioblastoma. Similarly, this model argues against the practice of
withholding surgery based on the belief that failure to achieve some
predefined EOR threshold will negate potential survival benefits of
surgery. Conceptually, this brings glioblastoma surgery in line with
many other forms of oncologic surgery, where cytoreductive proce-
dures are performed for maximum safe reduction of tumor burden in
preparation for adjuvant therapy.

Surgical resection of glioblastoma is currently undertaken as
part of a comprehensive, multimodality approach to management
that also includes adjuvant XRT and chemotherapy.2,3 However,
extenuating clinical circumstances or unique patient preferences
may prompt the neurooncologist to consider management strate-
gies that omit one or both adjuvant modalities. Previously, the
effect of such decisions on estimated median survival could only be
generalized from aggregate data that describe the incremental ad-
vantages of such therapies. However, using the AFT model, all four
possible combinations of the adjuvant therapy options (� XRT
and � TMZ) can be simulated and a family of survival curves can
be generated (Fig 1C). When EOR is known (eg, postoperatively),
these curves can be used to estimate the incremental differences in
survival of any percentile for each of the four alternate strategies of
adjuvant therapy (Figs 2C and 2D). When EOR is not yet known
(eg, preoperatively), the effect on median survival of alternate

adjuvant therapy strategies can be examined in the context of
variable EOR by combining the two simulation processes (Fig 1D).
This allows the incremental effects on median survival for each
adjuvant therapy to be calculated for any given EOR (Fig 3).

Analysis of these curve families also suggests that patient-specific
covariates (including EOR) influence the magnitude of the incremen-
tal benefit of adjuvant XRT and temozolomide (Figs 1D and 3). This
finding suggests that these factors may need to be considered when
designing future adjuvant therapy trials and be accounted for during
the analysis and interpretation of such data.

Age, preoperative KPS, EOR, and postoperative treatment
with radiotherapy and with temozolomide-containing chemother-
apy regimens affect the postresection survival rates of patients with
glioblastoma. A nonlinear, multivariable AFT model incorporat-
ing these factors provides more accurate point-estimates of median
survival than previous methods based on secondary generaliza-
tions of the median survival of categoric patient groups. Also, AFT
modeling allows prospective, preoperative, patient-specific con-
struction of probabilistic survival curves and allows the relation-
ships between survival, EOR, and adjuvant therapies to be
estimated quantitatively. These comprehensive predictive survival
analyses provide significantly more information to patients and
clinicians regarding the anticipated course of disease, the overall
prognosis, and the influence of modulatory factors than do previ-
ous, static estimates of median survival, and this information can
be used to improve the quality of surgical decision-making and of
the informed consent process. A free, online tool for performing
individual, patient-level predictive analyses using this model is
available at http://www.neurosurgeryriskprofiles.com. The con-
tinuous nature of expected median survival as a function of EOR
argues against a surgical management strategy based on EOR
thresholds and instead provides the first explicit evidence support-
ing a maximum safe resection approach to glioblastoma surgery.
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