JOURNAL OF CLINICAL ONCOLOGY

Hematopoietic Stem-Cell Transplantation for Advanced Systemic Mastocytosis

Celalettin Ustun, Andreas Reiter, Bart L. Scott, Ryotaro Nakamura, Gandhi Damaj, Sebastian Kreil, Ryan Shanley, William J. Hogan, Miguel-Angel Perales, Tsiporah Shore, Herrad Baurmann, Robert Stuart, Bernd Gruhn, Michael Doubek, Jack W. Hsu, Eleni Tholouli, Tanja Gromke, Lucy A. Godley, Livio Pagano, Andrew Gilman, Eva Maria Wagner, Tor Shwayder, Martin Bornhäuser, Esperanza B. Papadopoulos, Alexandra Böhm, Gregory Vercellotti, Maria Teresa Van Lint, Christoph Schmid, Werner Rabitsch, Vinod Pullarkat, Faezeh Legrand, Ibrahim Yakoub-agha, Wael Saber, John Barrett, Olivier Hermine, Hans Hagglund, Wolfgang R. Sperr, Uday Popat, Edwin P. Alyea, Steven Devine, H. Joachim Deeg, Daniel Weisdorf, Cem Akin, and Peter Valent

Listen to the podcast by Dr Pardanani at www.jco.org/podcasts

Δ

Author affiliations appear at the end of this article.

Published online ahead of print at www.jco.org on August 25, 2014.

Authors' disclosures of potential conflicts of interest and author contributions are found at the end of this article.

Corresponding author: Celalettin Ustun, MD, Department of Medicine, University of Minnesota, 14-142 PWB, 516 Delaware St SE, Minneapolis, MN 55455; e-mail: custun@umn.edu.

© 2014 by American Society of Clinical Oncology

0732-183X/14/3229w-3264w/\$20.00

DOI: 10.1200/JCO.2014.55.2018

Purpose

Advanced systemic mastocytosis (SM), a fatal hematopoietic malignancy characterized by drug resistance, has no standard therapy. The effectiveness of allogeneic hematopoietic stem-cell transplantation (alloHCT) in SM remains unknown.

BSTRA

C T

Patients and Methods

In a global effort to define the value of HCT in SM, 57 patients with the following subtypes of SM were evaluated: SM associated with clonal hematologic non-mast cell disorders (SM-AHNMD; n = 38), mast cell leukemia (MCL; n = 12), and aggressive SM (ASM; n = 7). Median age of patients was 46 years (range, 11 to 67 years). Donors were HLA-identical (n = 34), unrelated (n = 17), umbilical cord blood (n = 2), HLA-haploidentical (n = 1), or unknown (n = 3). Thirty-six patients received myeloablative conditioning (MAC), and 21 patients received reduced-intensity conditioning (RIC).

Results

Responses in SM were observed in 40 patients (70%), with complete remission in 16 patients (28%). Twelve patients (21%) had stable disease, and five patients (9%) had primary refractory disease. Overall survival (OS) at 3 years was 57% for all patients, 74% for patients with SM-AHNMD, 43% for those with ASM, and 17% for those with MCL. The strongest risk factor for poor OS was MCL. Survival was also lower in patients receiving RIC compared with MAC and in patients having progression compared with patients having stable disease or response.

Conclusion

AlloHCT was associated with long-term survival in patients with advanced SM. Although alloHCT may be considered as a viable and potentially curative therapeutic option for advanced SM in the meantime, given that this is a retrospective analysis with no control group, the definitive role of alloHCT will need to be determined by a prospective trial.

J Clin Oncol 32:3264-3274. © 2014 by American Society of Clinical Oncology

INTRODUCTION

Systemic mastocytosis (SM) is a hematopoietic stem-cell disease defined by clonal expansion of mast cells in various organs. SM comprises a pathologically and clinically heterogeneous group of disease variants with variable prognoses.¹⁻⁵ The clinically indolent forms do not shorten life expectancy and require cytoreductive therapy, whereas advanced SM variants, including mast cell leukemia (MCL), SM with associated clonal hematologic

non–mast cell lineage disease (SM-AHNMD), and aggressive systemic mastocytosis (ASM), are associated with survival rates ranging from months to a few years despite cytoreductive therapy.^{1,4,6,7}

No standard treatment exists for advanced SM. Cytoreductive therapy with cladribine or interferon alfa has been used, but no long-lasting responses have been reported.⁸⁻¹⁰ A majority of patients with SM (> 80%) have a gain of function mutation in the gene encoding the tyrosine kinase KIT, usually *KIT*^{D816V}.¹¹⁻¹⁷ Although various tyrosine kinase

inhibitors have been tested in advanced SM,¹⁸⁻²⁶ their clinical benefit seems to be limited.^{1,18,19,23} Allogeneic hematopoietic stem-cell transplantation (alloHCT) has curative potential for hematologic malignancies such as acute myelogenous leukemia (AML).²⁷ Although alloHCT has been used to treat life-threatening SM and hematologic malignancies associated with SM,²⁸⁻⁴⁰ the outcome of alloHCT in patients with advanced SM has never been systematically studied. Indeed, the largest published case series consisted of only three patients.³⁷

The purpose of this retrospective study was to evaluate the clinical outcomes of alloHCT in advanced SM and to assess potential benefits and hazards of alloHCT in all identifiable cases in the United States and Europe.

PATIENTS AND METHODS

Patients were included in the study if they underwent alloHCT for the treatment of SM-AHNMD, MCL, or ASM and if their data on mast cells-and AHNMD in case of SM-AHNMD-were available at both time points (before and after alloHCT). In case of SM-AHNMD, only patients whose SM component was known at the time of AHNMD diagnosis or before alloHCT were included, whereas patients whose SM component was discovered later (ie, hidden and/or occult mastocytosis) in a study were excluded. All these patients were indeed suffering from overt advanced mastocytosis requiring therapy. Note that in all of our patients, overt SM was documented and that any type of myelodysplastic syndrome (MDS) or AML that occurred in the context of SM was regarded as secondary and part of the entire clonal disease process (SM-AHNMD). Patients were identified at individual major transplantation or SM centers in the United States and Europe (the European Competence Network on Mastocytosis was the main source), the Center for International Blood and Marrow Transplant Research, and published reports. After approval by the individual center's institutional research board, information on patients was collected anonymously by using a data collection form. The diagnosis of SM was confirmed by a local investigator before reporting data to the data collection center at the University of Minnesota. Fifty-seven patients were identified: the data on 52 patients (43 never published and nine published) were obtained from 33 individual institutions (Appendix Tables A1, A2, and A3, online only).^{28,29,33,37-40} The remaining five patients were identified from the literature, but no contact with the respective centers for participation was secured.^{30,32,34-36} Data on surviving patients were updated during the study period of more than 2 years.

Response Evaluation in SM

Given the limitations of obtaining detailed source data for all patients, we could not use the SM response criteria developed by Valent et al⁴¹ or the consensus statement developed by the International Working Group-Myeloproliferative Neoplasms Research and Treatment and the European Competence Network on Mastocytosis.⁴² Therefore, three parameters were used to assess response in SM: the percentage of bone marrow mast cells, serum tryptase levels, and organ involvement. Organ involvement in SM at the time of diagnosis and changes over time (ie, improved, stable, or progressing) were reported and were included in the criteria used to determine responses (ie, laboratory measures, physical examination, imaging, or a combination thereof). Response was defined as \geq 50% decrease in both serum tryptase levels and bone marrow mast cell percentage from biopsies (not aspirates) when both tests were available or, if the results of only one test were available, \geq 50% improvement in one test if the results were corroborated by clinical determination of improvement and the absence of worsening of any other organ involvement. The lowest level of response was recorded if there was inconsistency among these three parameters. Complete response (CR) was defined as resolution of SM in all organs along with normalization of serum tryptase levels. Progression was defined as \geq 50% increase in any of the three parameters, and stable disease was defined as less than 50% change in all three parameters. Although quantitative assessment was desirable for response evaluation, qualitative assessment that clearly indicated outcome (eg, worsened, increased, no evidence of mast cells in biopsies) was used in few patients. Because this is a retrospective analysis, there were no predetermined uniform time points for response evaluations. However, a vast majority of patients were evaluated at day 100, at relapse of hematologic malignancy or SM, or at progression of SM. Duration of response was analyzed in 36 patients (nonresponders are excluded as well as four responders with missing time of response). Response assessments were made independently by C.U., C.A., and P.V., and each investigator who provided patient information confirmed the final assigned response. In some patients, the local hematopathologist reevaluated the original bone marrow specifically for mast cell burden. Response was accepted as reported to the French Registry by the individual institutions (n = 5; patients 42 to 46, and as previously published (n = 5; patients 1, 6, 12, 10)14, and 16). Treatment history in these patients was focused on SM-directed cytoreductive therapy that consisted primarily of interferon, steroids, tyrosine kinase inhibitors, and cladribine, but included other agents such as hydroxyurea, thalidomide, gemtuzumab ozogamicin, arsenic trioxide, cyclosporine, fludarabine, and cytarabine.

Statistical Analysis

Patient and disease characteristics were summarized by disease type. Cumulative incidence of treatment-related mortality was calculated with relapse as a competing risk. Kaplan-Meier estimations and the log-rank test were used to estimate and compare overall survival (OS) and progression-free survival (PFS) from time of transplantation. At the beginning of the study, the poor prognosis of patients with MCL was apparent and, therefore, we excluded these patients from univariable analysis of OS and PFS to eliminate possible confounding of MCL with other effects. We defined a *P* value of \leq .05 as significant in the univariable analysis of risk factors for survival. Analysis was performed by using SAS version 9.2 (SAS Institute, Cary, NC).

RESULTS

Patient, Donor, and AlloHCT Characteristics

Fifty-seven patients with advanced SM underwent alloHCT between 1990 and May 2013 (Table 1). The majority of patients (n = 38, including one patient with MCL-AML and one patient with myelomastocytic leukemia) were diagnosed with SM-AHNMD, with the most common AHNMD being AML (n = 20, including one patient with myelomastocytic leukemia). Most patients had SM involvement in at least one extramedullary organ or tissue, primarily in the spleen (n = 33), liver (n = 26), skin (n = 12), and lymph nodes (n = 11). The most frequent recurrent cytogenetic abnormality was t(8; 21)(q22,q22) (n = 5), and the most frequent molecular abnormality was *KIT*^{D816V} (n = 21). Of 20 patients with AML, 11 had abnormal cytogenetics, and nine had a *KIT* mutation, 17 received anthracycline plus cytarabine for induction, and six had persisting leukemia at the time of alloHCT. Patient and disease characteristics for each patient are detailed in Appendix Table A1.

Most patients received either sibling or unrelated alloHCT, although two patients received alloHCT from umbilical cord blood (UCB) and one received alloHCT from an HLA-haploidentical relative (Table 2). All patients received HLA-matched alloHCT except three patients whose unrelated donors were 9/10 HLA-locus and allele matched, two patients whose UCB was 5/6 HLA matched, and one patient whose HLA-haploidentical donor was 4/8 matched. Although the majority of patients (63%) received myeloablative conditioning (MAC), more than a third of patients received reduced-intensity conditioning (RIC). Detailed information on donor characteristics and alloHCT for individual patients is provided in Appendix Table A2.

	AS	Μ	M	CL	SM-AH	INMD	Тс	otal
Characteristic	No.	%	No.	%	No.	%	No.	%
No. of patients	7		12		38		57	
Age, years								
Median	5	0	43	3	4	ō	4	16
Range	31-	62	13-	60	11-	67	11	-67
Male sex	4	57	5	42	21	55	30	53
KIT mutations								
Positive	1	14	4	33	19	50	24	42
Negative	0	0	4	33	5	13	9	16
Not reported	6	86	4	33	14	37	24	42
Cytogenetics								
Normal	3	43	6	50	16	42	25	44
t(8;21) or its variants	0	0	0	0	5	13	5	9
Abnormal (other than t(8;21))	0	0	4	33	10	26	14	25
Not reported	4	57	2	17	7	18	13	23
No. of involved organs (in addition to bone marrow)								
0	3	43	1	8	8	21	12	21
1-2	3	43	5	42	15	39	23	40
≥ 3	0	0	6	50	12	32	18	32
Not reported	1	14	0	0	3	8	4	7
No. of SM treatment categories								
0	0	0	2	17	21	55	23	40
1-2	3	43	7	58	9	23	19	33
≥ 3	2	29	3	25	7	18	12	21
Not reported	2	29	0	0	1	3	3	5
Time from SM diagnosis to alloHCT								
Median	1:	9	g)	g		-	9
Range	7-1		3-2		2-9			216
Karnofsky performance score								
≥ 90	0	0	5	42	16	42	21	37
< 90	3	43	4	33	9	24	16	28
Not reported	4	57	3	25	13	34	20	35
Donor								
Sibling	4	57	5	42	25	66	34	60
Unrelated	2	29	5	42	10	26	17	30
UCB or haploidentical	0	0	2	17	1	3	3	5
Not reported	1	13	0	0	2	5	3	5
Donor age, years		-	-	-	_	-	-	
Median	3:	2	3	9	4	4	4	12
Range	22-		21-		23-			-65
Recipient-donor sex mismatched					20		21	
Matched	2	29	6	50	23	61	31	54
Mismatched	4	57	5	42	13	34	22	39
Not reported	1	14	1	8	2	5	4	7

Abbreviations: alloHCT, allogeneic hematopoietic stem-cell transplantation; ASM, aggressive systemic mastocytosis; MCL, mast cell leukemia; SM, systemic mastocytosis; SM-AHNMD, SM with an associated clonal hematologic non-mast cell lineage disease; UCB umbilical cord blood.

Disease Responses After AlloHCT

Responses were assigned to 12 patients with one criterion, 30 patients with two criteria, and 10 patients with all three criteria. Overall, SM responded to alloHCT in 40 patients (70%; Tables 2 and 3). The median bone marrow biopsy number after transplantation was 2.2. The median bone marrow mast cell percentage in biopsies (21% [range, 2% to 90%] before alloHCT ν 1.8% [range, 0% to 90%] after alloHCT) and serum tryptase levels (130 ng/mL [range, 11 to 889 ng/mL] before alloHCT and 16 ng/mL [range, 2 to 404 ng/mL] after alloHCT) decreased significantly after alloHCT in patients with data available for before and after alloHCT

(Figs 1A to 1D). In this comparison, the best values after allo-HCT were used, and the median time to reach the best responses for both variables was 3 months (range, 1 to 36 months) after alloHCT. Of the 40 responding patients, 16 (28%) achieved CR (*KIT* mutations were negative in two of two patients with CR when tested after alloHCT). Twelve patients (21%) had stable disease. Patients with MCL had more primary resistance (three of five patients) and progression after initial response (three of 10 patients). The median time of response duration was 20 months. All 38 patients with SM-AHNMD achieved CR regarding the AHNMD component, but 10 subsequently relapsed with AHNMD, and

Ustun et al

		ASN	1		MCI	_		SM-AH	NMD		Tota	ıl
Variable	No.	%	90% CI	No.	%	90% CI	No.	%	90% CI	No.	%	90% CI
No. of patients	7			12			38			57		
Conditioning												
Reduced intensity	4	57		3	25		14	37		21	37	
Myeloablative	3	43		9	75		24	63		36	63	
With TBI	1	14		3	25		12	32		16	28	
Transplantation year												
1990-2004	1	14		6	50		14	37		21	37	
2005-2013	6	86		6	50		24	63		36	63	
GVHD prophylaxis												
Methotrexate	3	43		6	50		19	50		28	49	
No methotrexate	2	29		5	42		16	42		23	40	
Not reported	2	29		1	8		3	8		6	11	
Tacrolimus	0	0		3	25		9	24		12	21	
Cyclosporine	5	71		4	33		24	63		33	58	
Not reported	2	29		5	42		5	13		12	21	
Response in SM												
Primary resistance	1	14		3	25		1	3		5	9	
Stable disease	1	14		0	0		11	30		12	21	
Response	5	72		9	75		26	68		40	70	
Complete remission	3	43		3	25		10	26		16	28	
Acute GVHD*	Ū	10		0	20		10	20		10	20	
None or grade 1	5	71		6	50		19	50		30	53	
Grade 2 to 4	2	29		5	42		16	42		23	40	
Not reported	0	0		1	8		3	8		4	7	
Chronic GVHD*	0	0		1	0		5	0		4	/	
None	3	43		8	67		12	32		23	40	
Limited or extensive	3	43		0	0		21	55		23	42	
Extensive	3	43 14		0	0		12	32		24 13	42 23	
Not reported	1	14		4	33		5	13		10	18	
Transplantation-related mortality	I	14		4	33		U	13		10	10	
6 months		14	1 to 30		25	6 to 44		5	1 to 11		11	4 to 17
		14	1 to 30		25 33			5 17	7 to 27		20	
1 year		14	1 10 30		33	12 to 54		17	/ 10 2/		20	11 to 28
Overall survival		43	14 to 70		25	0 to 10		70	64 to 07		62	E0 to 70
1 year			14 to 70			8 to 46		78	64 to 87			50 to 72
3 years		43	14 to 70		17	4 to 37		74	60 to 84		57	46 to 68
Progression-free survival		40	14+- 70		17	4 += 07		70	FF += 00			44+- 05
1 year		43	14 to 70		17	4 to 37		70	55 to 80		55	44 to 65
3 year		43	14 to 70		17	4 to 37		63	47 to 75		51	39 to 61

Abbreviations: alloHCT, allogeneic hematopoietic stem-cell transplantation; ASM, aggressive systemic mastocytosis; GVHD, graft-versus-host disease; MCL, mast cell leukemia; SM, systemic mastocytosis; SM-AHNMD, SM with an associated clonal hematologic non-mast cell lineage disease; TBI, total body irradiation. *Total incidence.

five of these died. Details of treatment and outcome are given in Appendix Table A3.

OS and PFS for all patients were 62% (90% CI, 50% to 72%) and 57% (90% CI, 44% to 65%) at 1 year, and 55% (90% CI, 46% to 68%) and 51% (90% CI, 39% to 61%) at 3 years, respectively (Figs 2A and 2B; Tables 2 and 3). OS and PFS were significantly higher in patients with SM-AHNMD and were lowest in patients with MCL (Figs 2C and 2D; P < .01). No deaths or relapses were observed after 15 and 24 months, respectively. The median follow-up among survivors was 32 months (range, 3 to 202 months).

Factors Affecting PFS and OS

Univariable analysis of relevant variables and outcomes are shown in Table 3. The strongest risk factor for worse OS was a diagnosis of MCL. Other risk factors were evaluated after excluding patients with MCL (n = 12). In the 45 remaining patients, factors that had an effect on survival included a diagnosis of ASM and RIC (Figs 2E and 2F). The median age for patients receiving MAC regimens was 38 years (range, 11 to 62 years) compared with 50 years (range, 17 to 67 years) for patients receiving RIC. The superior outcome with MAC was not fully accounted for by younger patient age; for patients older than age 40 years, 1-year OS was 85% after MAC (n = 13) and 51% after RIC (n = 16). RIC was used as frequently in the entire study cohort as in patients with Karnofsky performance status (KPSs) \leq 80%, (21 [37%] of 57 and four [25%] of 16, respectively). A lower KPS before alloHCT seemed to lower survival, and six of seven patients with KPSs \leq 70% died. OS at 1 year was shorter for patients with progression (20%; 90% CI, 2% to 52%) compared with patients with stable disease (89%; 90% CI, 54% to 98%) and with responders (63%; 90% CI, 49% to 74%; Fig 2G).

Ustun et al

				OS			PFS	
Factor	No.	%	1-Year	90% CI	P*	1-Year	90% CI	P
Diagnosis								
ASM	7	16	43	14 to 70	.05	43	14 to 70	.0
SM-AHNMD	38	84	78	64 to 87	.00	70	55 to 80	.0
AML, ALL, MML	21	47	75	55 to 87	.75	65	45 to 80	.5
MDS, MPN, MM	17	38	81	57 to 92	.75	75	40 to 80	.0
	17	30	01	57 10 92		75	52 10 66	
Age, years < 40	16	36	80	56 to 92	.39	68	44 to 83	.8
	29	36 64	80 67		.39			5.
≥ 40	29	04	07	50 to 80		65	48 to 77	
Sex	20	4.4	70	E0.+- 00	0.4	74	E4++ 07	_
Female	20	44	79	58 to 90	.34	74	54 to 87	.3
Male	25	56	65	46 to 79		59	40 to 73	
<i>KIT</i> mutations	_							
Negative	5	11	60	19 to 85	.27	40	9 to 71	.4
Positive	20	44	82	60 to 93		74	53 to 87	
Unknown	20	44	65	40 to 81		65	40 to 82	
Cytogenetics								
Normal	19	42	68	47 to 82	.61	68	47 to 82	.9
t(8;21)	5	11	100			60	19 to 85	
Other	10	22	67	35 to 86		67	35 to 86	
Unknown	11	24	69	38 to 87		62	34 to 82	
Freatment for SM								
None	21	47	79	59 to 90	.11	70	49 to 83	.2
One to two agents	12	27	81	51 to 94		74	46 to 89	
Three or more agents	9	20	44	18 to 68		44	18 to 68	
Karnofsky performance score								
< 90	12	27	48	23 to 69	.15	49	24 to 70	.2
≥ 90	16	36	80	56 to 92		80	56 to 92	
Unknown	17	38	82	60 to 93		64	42 to 80	
AML CR status	.,	00	02			0.	12 10 00	
In CR	14	31	79	54 to 91	.63	71	46 to 86	.3
Not in CR	6	13	60	19 to 85	.00	42	9 to 72	
Percentage of BM mast cells before transplantation	0	15	00	10 10 00		42	51072	
< 20	14	31	68	12 to 95	.87	53	20 +0 72	,
≥ 20	14 15	33	73	42 to 85	.07	73	29 to 73	
	15	33	/3	49 to 87		/3	49 to 87	
Fime from diagnosis to alloHCT, months		0.4	70	00 1 00	00	74	544 00	,
≤ 13 - 10	29	64	78	62 to 88	.23	71	54 to 83	.2
> 13	16	36	60	36 to 77		56	34 to 74	
Conditioning								
Reduced intensity	18	40	57	34 to 74	.10	48	27 to 66	.0
Myeloablative	27	60	81	65 to 91		77	61 to 88	
Myeloablative with TBI	13	29	85	59 to 95	.98	85	59 to 95	
Myeloablative without TBI	13	29	84	57 to 95		76	49 to 90	
Graft source								
BM	16	36	75	52 to 88	.86	75	52 to 88	.3
PBSCs	27	60	72	54 to 84		62	45 to 75	
Donor age, years								
< 40	11	24	64	35 to 82	.31	64	35 to 82	.4
≥ 40	23	51	76	55 to 87		76	57 to 88	
Donor sex match								
Match	25	56	80	62 to 90	.21	72	54 to 84	.1
Female donor, male recipient	10	22	44	18 to 68		34	11 to 59	
Male donor, female recipient	7	16	71	34 to 90		71	34 to 90	
Donor relation	,	10	<i>,</i> ,	011000			011000	
Sibling	29	64	74	56 to 85	.50	64	47 to 77	
Unrelated	29 12	04 27	67	40 to 84	.50	64 67	47 to 77 40 to 84	.:
	12			40 10 84			40 10 84	
Other (UCB)		2	0 ollowing page)			0		

				OS			PFS	
Factor	No.	%	1-Year	90% CI	P^*	1-Year	90% CI	P^*
aGVHD								
None or grade 1	24	53	73	49 to 87	.49	69	46 to 84	.55
Grade 2 to 4	18	40	66	44 to 81		61	35 to 79	

Abbreviations: aGVHD, acute graft-versus-host disease; ALL, acute lymphoblastic leukemia; alloHCT, allogeneic hematopoietic stem-cell transplantation; AML, acute myeloid leukemia; ASM, aggressive systemic mastocytosis; BM, bone marrow; CR, complete response; MCL, mast cell leukemia; MDS, myelodysplastic syndrome; MM, multiple myeloma; MML, myelomastocytic leukemia; MPN, myeloproliferative neoplasia; OS, overall survival; PBSC, peripheral blood stem cell; PFS, progression-free survival; SM, systemic mastocytosis; SM-AHNMD, SM with an associated clonal hematologic non-mast cell lineage disease; TBI, total body irradiation; UCB, umbilical cord blood.

*P value is from univariable analysis.

Factors without any identifiable impact on OS and PFS were patient age, donor age, donor type (sibling or unrelated donor), graft source (bone marrow or peripheral blood stem cells), bone marrow mast cell percentage at alloHCT, *KIT* mutation status, cytogenetic groupings, total body irradiation used in MAC regimens, and CR status at alloHCT (Table 3). OS and PFS at 1 year were not affected by whether or not the patient received prior SM-directed cytoreductive therapy (Table 3). When they were specifically evaluated in patients with SM-AHNMD only, OS and PFS were again similar (73% and 68% for patients with history of prior SM-directed therapy [41%] compared with 79% and 70% for those who did not receive therapy [55%], respectively).

All patients who received alternative donor transplants (two UCB and one HLA-haploidentical relative) and all patients with MCL who received RIC (n = 3) died. In contrast, all five patients with t(8;21) or its variant survived.

Donor Lymphocyte Infusions and Second AlloHCT

Six of 10 patients who received donor lymphocyte infusions (DLIs) for mixed chimerism and/or stable SM disease responded to this treatment (three achieved CR, of which two were durable). However, three patients who received DLIs for SM progression (n = 2) or graft failure with AML relapse (n = 1) had no response and died (Appendix Table A3).

A second alloHCT (two RIC and one MAC regimen) was performed for relapse of myelomastocytic leukemia (n = 1), relapse of AML (n = 1), and progression of both MDS and SM (n = 1) at 4, 5, and 44 months after the first alloHCT, respectively. All three patients were alive in CR of SM or hematologic malignancy after the second alloHCT (Appendix Table A3).

AlloHCT Complications

Treatment-related mortality at 6 months and 1 year was 11% and 20%, respectively, and was highest in MCL (25% and 33%; Table 2). Primary and secondary engraftment failure each occurred in one patient. In the first 100 days after initiation of alloHCT conditioning, symptoms possibly related to mast cell degranulation occurred in five patients and included hot flashs (n = 3), skin rash (n = 1), and abdominal cramps and nausea (n = 1). Acute graft-versus-host disease (GVHD) grades 2 to 4 and chronic extensive GVHD occurred in 40% and 23% of patients, respectively (Table 2). Two patients died from complications related to severe acute GVHD (Appendix Table A3).

DISCUSSION

This study has found that alloHCT can confer long-term OS in patients with advanced SM. The greatest survival benefit was observed in patients with SM-AHNMD who had a 3-year survival probability of 74%. The reported median OS of patients with SM-AHNMD without alloHCT was 2 years.⁶ Favorable OS in our group is especially significant, given that approximately one third of the patients with AML had active disease at transplantation-an indisputably poor prognostic factor for outcomes after alloHCT.^{27,43-49} Although the t(8; 21)(q22,q22) translocation is considered a favorable prognostic factor in patients with AML without SM,⁵⁰⁻⁵² patients with AML with the same cytogenetic abnormality have poor prognosis in the presence of SM, even hidden and/or occult SM. ^{31,53,54} The presence of KIT mutations in patients with AML with t(8;21) is associated with poor prognosis regardless of the presence of SM.55-60 Most of our patients with SM-AML had KIT mutations. It is possible that not all patients had aggressive SM at the diagnosis of AHNMD, given that C findings (clinical findings related to organs involved in SM, eg, pancytopenia) can be caused by the AHNMD component as well. However, regarding survival, there was no difference between patients who received SM-specific cytoreductive therapy before alloHCT (indicating aggressive SM) and those who did not. One can argue that AML diagnosed in the context of SM (or in the context of KIT^{D816V} in which an occult SM is often present) should always be judged as secondary AML and thus as high-risk (poor prognosis) disease regardless of the aggressiveness of SM. Together, our data suggest that alloHCT may overcome the unfavorable prognosis in patients with SM-AML. AlloHCT also provided long-term survival in approximately 40% of patients with ASM, which seems superior to reported survival rates in patients who did not have transplantations (median survival, 3.5 years without any evidence of a plateau).⁶ Patients with MCL had the poorest outcome among all of the SM subtypes in the study. However, given that the reported median survival of patients with MCL without alloHCT is short (< 12 months), our results suggest that alloHCT may be beneficial for patients with MCL as well.^{6,61} Evidence of treatment failure among the majority of patients with MCL was shown by early treatment-related mortality and rapid disease progression after initial responses. However, those responses, albeit transient, suggest that immunotherapy has an impact on MCL. The fact that the only longterm survivors were among patients prepared for alloHCT with highintensity MAC regimens may indicate that the actual tumor burden

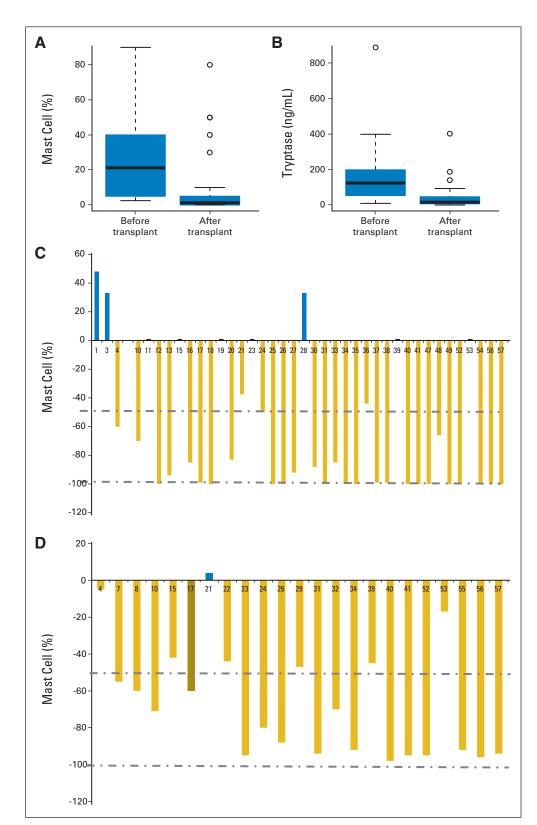


Fig 1. Allogeneic hematopoietic stemcell transplantation (alloHCT) improves responses in patients with advanced systemic mastocytosis. Changes in (A) bone marrow cell percentage (n = 39; P < .01) and (B) serum tryptase levels (n = 23; P < .01) in patients with before and after alloHCT data available. The post-transplantation data represent the best (lowest) values of both mast cell percentage and serum tryptase, both of which were observed a median of 3 months (range, 1 to 36 months) after alloHCT. The median and interquartile range are indicated by a solid line and rectangle, respectively. Observations outside the interquartile range are indicated by dashed lines or dots. Percentage change in mast cells in (C) bone marrow and (D) in serum tryptase levels in each patient with available before and after alloHCT data.

that has to be overcome by donor cells is a critical determinant influencing transplantation outcome. However, when compared with results in patients with SM-AHNMD (many of whom had AML that was not in remission at the time of alloHCT) or those with ASM, this pattern suggests that not only disease burden but also the intrinsic resistance of MCL cells was an important factor. In general, patients conditioned with myeloablative regimens fared better than patients prepared with reduced-intensity regimens; the advantage of lower

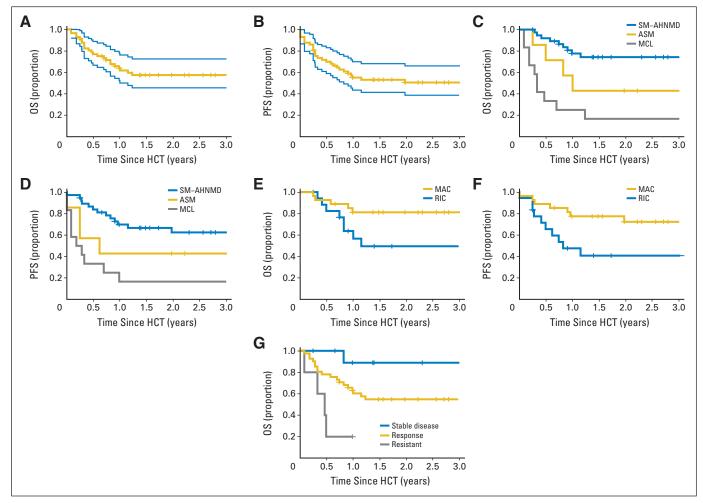


Fig 2. Allogeneic hematopoietic stem-cell transplantation (alloHCT or HCT) outcomes in patients with advanced systemic mastocytosis (SM). (A) Overall survival (OS) and (B) progression-free survival (PFS) for all patients with advanced SM. Blue lines represent 95% Cls. (C) OS and (D) SM PFS by type of systemic mastocytosis. (E) OS and (F) SM PFS by conditioning regimen intensity. (G) OS by initial response in SM. ASM, aggressive systemic mastocytosis; MAC, myeloablative conditioning; MCL, mast cell leukemia; RIC, reduced-intensity conditioning; SM-AHNMD, SM with an associated clonal hematologic non-mast cell lineage disease.

regimen-related mortality was canceled out by a higher progression incidence.^{62,63} The observation that patients with a lower KPS (\leq 70%) experienced higher mortality is consistent with results in many reports on various diseases showing the impact of performance status and comorbidities in particular on the outcome of alloHCT.^{64,65}

Responses in SM were observed in 70% of the patients examined. However, because this is a retrospective analysis and thus there were no predetermined evaluation time points after alloHCT, the duration of response and PFS should be viewed with caution. Given that there is a decrease in serum tryptase levels after alloHCT that may reflect responses in the AHNMD component (eg, AML or MDS)⁶⁶⁻⁶⁸ itself, response evaluation mainly depended on bone marrow mast cell percentage. Responses (observed after RIC and MAC regimens and DLI) were often durable and sometimes developed gradually over years, suggesting that donor-derived cells induced a potent graft-versusmastocytosis effect. Mast cells have been shown to express HLA class I and, at least under certain conditions such as in vitro stimulation of mast cells by interferon gamma, class II antigens.⁶⁹⁻⁷² These antigens are critical for eliciting a graft-versus-tumor effect through alloreactive T cells and natural-killer cells.⁷³ The apparent plateau of both OS and PFS suggests that alloHCT can be curative in some patients with SM. AlloHCT conferred long-term survival not only for the responders but also for the patients having stable disease. Most of the patients with stable disease had AHNMD as well; therefore, benefiting from allo-HCT necessitates curing AHNMD but not the SM component. Another explanation could be that perhaps a longer time is needed to observe improvements in the SM component compared with AHNMD in some patients with SM-AHNMD.

SM-specific complications, including anaphylactoid or severe mediator-related reactions⁷⁴ due to rapid lysis of mast cells and graft failure due to marrow fibrosis, were rare. Low incidence of graft failure might result from the role of mast cells in increasing allograft tolerance. Healthy mast cells are crucial for skin allograft tolerance, probably through regulatory T-cell–dependent peripheral tolerance in mice.⁷⁵ The frequency of acute and chronic GVHD was similar to that seen in the overall alloHCT population.^{76,77}

Although this study has several limitations because of its retrospective nature, it summarizes transplantation results from the largest cohort of patients with this rare and fatal disease: alloHCT is reasonably safe, and overall outcome is promising. These data support a prospective study in which before-and-after-alloHCT means should be used to further improve outcomes in patients with ASM and MCL.

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Although all authors completed the disclosure declaration, the following author(s) and/or an author's immediate family member(s) indicated a financial or other interest that is relevant to the subject matter under consideration in this article. Certain relationships marked with a "U" are those for which no compensation was received; those relationships marked with a "C" were compensated. For a detailed description of the disclosure categories, or for more information about ASCO's conflict of interest policy, please refer to the Author Disclosure Declaration and the Disclosures of Potential Conflicts of Interest section in Information for Contributors. Employment or Leadership Position: None Consultant or Advisory Role: Cem Akin, Novartis (C); Peter Valent, Novartis (C) Stock Ownership: None Honoraria: Wolfgang R. Sperr, Novartis Research Funding: Gregory Vercellotti, Sangart, Seattle Genetics Expert Testimony: None Patents, Royalties, and Licenses: None Other Remuneration: None

AUTHOR CONTRIBUTIONS

Conception and design: Celalettin Ustun, Hans Hagglund, Daniel Weisdorf, Cem Akin, Peter Valent

Collection and assembly of data: Celalettin Ustun, Andreas Reiter, Bart L. Scott, Ryotaro Nakamura, Gandhi Damaj, Sebastian Kreil, William J. Hogan, Miguel-Angel Perales, Tsiporah Shore, Herrad Baurmann, Robert Stuart, Bernd Gruhn, Michael Doubek, Jack W. Hsu, Eleni Tholouli, Tanja Gromke, Lucy A. Godley, Livio Pagano, Andrew Gilman, Eva Maria Wagner, Tor Shwayder, Martin Bornhäuser, Esperanza B. Papadopoulos, Alexandra Böhm, Gregory Vercellotti, Maria Teresa Van Lint, Christoph Schmid, Werner Rabitsch, Faezeh Legrand, Ibrahim Yakoub-agha, John Barrett, Olivier Hermine, Wolfgang R. Sperr, Uday Popat, Steven Devine, H. Joachim Deeg, Peter Valent Data analysis and interpretation: Celalettin Ustun, Andreas Reiter, Bart L. Scott, Ryotaro Nakamura, Gandhi Damaj, Sebastian Kreil, Ryan Shanley, William J. Hogan, Miguel-Angel Perales, Tsiporah Shore, Herrad Baurmann, Jack W. Hsu, Martin Bornhäuser, Vinod Pullarkat, Wael Saber, John Barrett, Edwin P. Alyea, Steven Devine, H. Joachim Deeg, Daniel Weisdorf, Cem Akin, Peter Valent Manuscript writing: All authors

Final approval of manuscript: All authors

REFERENCES

1. Valent P, Horny HP, Escribano L, et al: Diagnostic criteria and classification of mastocytosis: A consensus proposal. Leuk Res 25:603-625, 2001

2. Robyn J, Metcalfe DD: Systemic mastocytosis. Adv Immunol 89:169-243, 2006

3. Escribano L, Alvarez-Twose I, Sánchez-Muñoz L, et al: Prognosis in adult indolent systemic mastocytosis: A long-term study of the Spanish Network on Mastocytosis in a series of 145 patients. J Allergy Clin Immunol 124:514-521, 2009

4. Horny HP, Metcalfe DD, Bennet JM, et al: Mastocytosis, in Swerdlow SH, Campo E, Harris NL, et al (eds): WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (ed 4). Lyon, France, IARC, 2008, pp 54-63

 Ustun C, Savage NM, Gotlib J, et al: Systemic mastocytosis with associated clonal hematological non-mast-cell lineage disease: A case review. Am J Hematol 87:191-193, 2012

6. Lim KH, Tefferi A, Lasho TL, et al: Systemic mastocytosis in 342 consecutive adults: Survival studies and prognostic factors. Blood 113:5727-5736, 2009

 Pardanani A, Lim KH, Lasho TL, et al: Prognostically relevant breakdown of 123 patients with systemic mastocytosis associated with other myeloid malignancies. Blood 114:3769-3772, 2009

8. Valent P, Sperr WR, Akin C: How I treat patients with advanced systemic mastocytosis. Blood 116:5812-5817, 2010

9. Kluin-Nelemans HC, Oldhoff JM, Van Doormaal JJ, et al: Cladribine therapy for systemic mastocytosis. Blood 102:4270-4276, 2003

10. Kluin-Nelemans HC, Jansen JH, Breukelman H, et al: Response to interferon alfa-2b in a patient with systemic mastocytosis. N Engl J Med 326:619-623, 1992

11. Kitamura Y, Hirotab S: Kit as a human oncogenic tyrosine kinase. Cell Mol Life Sci 61:2924-2931, 2004

12. Akin C: Clonality and molecular pathogenesis of mastocytosis. Acta Haematol 114:61-69, 2005

13. Nakata Y, Kimura A, Katoh O, et al: c-kit point mutation of extracellular domain in patients with myeloproliferative disorders. Br J Haematol 91:661-663, 1995

14. Garcia-Montero AC, Jara-Acevedo M, Teodosio C, et al: KIT mutation in mast cells and other bone marrow hematopoietic cell lineages in systemic mast cell disorders: A prospective study of the Spanish Network on Mastocytosis (REMA) in a series of 113 patients. Blood 108:2366-2372, 2006

15. Nagata H, Worobec AS, Oh CK, et al: Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder. Proc Natl Acad Sci U S A 92:10560-10564, 1995

16. Longley BJ, Tyrrell L, Lu SZ, et al: Somatic c-KIT activating mutation in urticaria pigmentosa and aggressive mastocytosis: Establishment of clonality in a human mast cell neoplasm. Nat Genet 12:312-314, 1996

17. Longley BJ Jr, Metcalfe DD, Tharp M, et al: Activating and dominant inactivating c-KIT catalytic domain mutations in distinct clinical forms of human mastocytosis. Proc Natl Acad Sci U S A 96:1609-1614, 1999

18. Ustun C, DeRemer DL, Akin C: Tyrosine kinase inhibitors in the treatment of systemic mastocytosis. Leuk Res 35:1143-1152, 2011

19. Akin C, Fumo G, Yavuz AS, et al: A novel form of mastocytosis associated with a transmembrane c-kit mutation and response to imatinib. Blood 103: 3222-3225, 2004

20. Pardanani A, Elliott M, Reeder T, et al: Imatinib for systemic mast-cell disease. Lancet 362: 535-536, 2003

21. Aichberger KJ, Sperr WR, Gleixner KV, et al: Treatment responses to cladribine and dasatinib in rapidly progressing aggressive mastocytosis. Eur J Clin Invest 38:869-873, 2008

22. Ustun C, Corless CL, Savage N, et al: Chemotherapy and dasatinib induce long-term hematologic and molecular remission in systemic mastocytosis with acute myeloid leukemia with KIT D816V. Leuk Res 33:735-741, 2009 **23.** Verstovsek S, Tefferi A, Cortes J, et al: Phase II study of dasatinib in Philadelphia chromosomenegative acute and chronic myeloid diseases, including systemic mastocytosis. Clin Cancer Res 14: 3906-3915, 2008

24. Gotlib J, Berubé C, Growney JD, et al: Activity of the tyrosine kinase inhibitor PKC412 in a patient with mast cell leukemia with the D816V KIT mutation. Blood 106:2865-2870, 2005

25. Gleixner KV, Mayerhofer M, Sonneck K, et al: Synergistic growth-inhibitory effects of two tyrosine kinase inhibitors, dasatinib and PKC412, on neoplastic mast cells expressing the D816V-mutated oncogenic variant of KIT. Haematologica 92:1451-1459, 2007

26. Gleixner KV, Mayerhofer M, Aichberger KJ, et al: PKC412 inhibits in vitro growth of neoplastic human mast cells expressing the D816V-mutated variant of KIT: Comparison with AMN107, imatinib, and cladribine (2CdA) and evaluation of cooperative drug effects. Blood 107:752-759, 2006

 Gupta V, Tallman MS, Weisdorf DJ: Allogeneic hematopoietic cell transplantation for adults with acute myeloid leukemia: Myths, controversies, and unknowns. Blood 117:2307-2318, 2011

28. Sperr WR, Drach J, Hauswirth AW, et al: Myelomastocytic leukemia: Evidence for the origin of mast cells from the leukemic clone and eradication by allogeneic stem cell transplantation. Clin Cancer Res 11:6787-6792, 2005

29. Födinger M, Fritsch G, Winkler K, et al: Origin of human mast cells: Development from transplanted hematopoietic stem cells after allogeneic bone marrow transplantation. Blood 84:2954-2959, 1994

30. Przepiorka D, Giralt S, Khouri I, et al: Allogeneic marrow transplantation for myeloproliferative disorders other than chronic myelogenous leukemia: Review of forty cases. Am J Hematol 57:24-28, 1998

31. Pullarkat VA, Bueso-Ramos C, Lai R, et al: Systemic mastocytosis with associated clonal hematological non-mast-cell lineage disease: Analysis of clinicopathologic features and activating c-kit mutations. Am J Hematol 73:12-17, 2003

32. Rønnov-Jessen D, Løvgreen Nielsen P, Horn T: Persistence of systemic mastocytosis after allogeneic bone marrow transplantation in spite of complete remission of the associated myelodysplastic syndrome. Bone Marrow Transplant 8:413-415, 1991

33. Pullarkat V, Bedell V, Kim Y, et al: Neoplastic mast cells in systemic mastocytosis associated with t(8;21) acute myeloid leukemia are derived from the leukemic clone. Leuk Res 31:261-265, 2007

34. Spyridonidis A, Thomas AK, Bertz H, et al: Evidence for a graft-versus-mast-cell effect after allogeneic bone marrow transplantation. Bone Marrow Transplant 34:515-519, 2004

35. Nagai S, Ichikawa M, Takahashi T, et al: The origin of neoplastic mast cells in systemic mastocytosis with AML1/ETO-positive acute myeloid leukemia. Exp Hematol 35:1747-1752, 2007

36. Chen TY, Chen JS, Huang WT, et al: Rapid engraftment of mast cells of donor origin in a case of acute myeloid leukemia with mast cell leukemia after allogeneic stem cell transplantation. Bone Marrow Transplant 32:111-114, 2003

37. Nakamura R, Chakrabarti S, Akin C, et al: A pilot study of nonmyeloablative allogeneic hematopoietic stem cell transplant for advanced systemic mastocytosis. Bone Marrow Transplant 37:353-358, 2006

38. Gromke T, Elmaagacli AH, Ditschkowski M, et al: Delayed graft-versus-mast-cell effect on systemic mastocytosis with associated clonal haematological nonmast cell lineage disease after allogeneic transplantation. Bone Marrow Transplant 48:732-733, 2013

39. Valentini CG, Rondoni M, Pogliani EM, et al: Mast cell leukemia: A report of ten cases. Ann Hematol 87:505-508, 2008

40. Chantorn R, Shwayder T: Death from mast cell leukemia: A young patient with longstanding cutaneous mastocytosis evolving into fatal mast cell leukemia. Pediatr Dermatol 29:605-609, 2012

41. Valent P, Akin C, Sperr WR, et al: Aggressive systemic mastocytosis and related mast cell disorders: Current treatment options and proposed response criteria. Leuk Res 27:635-641, 2003

42. Gotlib J, Pardanani A, Akin C, et al: International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) & European Competence Network on Mastocytosis (ECNM) consensus response criteria in advanced systemic mastocytosis. Blood 121:2393-2401, 2013

43. Oran B, Popat U, Rondon G, et al: Significance of persistent cytogenetic abnormalities on myeloablative allogeneic stem cell transplantation in first complete remission. Biol Blood Marrow Transplant 19:214-220, 2013

44. Warlick ED, Cioc A, Defor T, et al: Allogeneic stem cell transplantation for adults with myelodysplastic syndromes: Importance of pretransplant disease burden. Biol Blood Marrow Transplant 15:30-38, 2009

45. Gyurkocza B, Storb R, Storer BE, et al: Nonmyeloablative allogeneic hematopoietic cell transplantation in patients with acute myeloid leukemia. J Clin Oncol 28:2859-2867, 2010

46. Sayer HG, Kröger M, Beyer J, et al: Reduced intensity conditioning for allogeneic hematopoietic stem cell transplantation in patients with acute myeloid leukemia: Disease status by marrow blasts is the strongest prognostic factor. Bone Marrow Transplant 31:1089-1095, 2003

47. Duval M, Klein JP, He W, et al: Hematopoietic stem-cell transplantation for acute leukemia in relapse or primary induction failure. J Clin Oncol 28:3730-3738, 2010

48. Buckley SA, Appelbaum FR, Walter RB: Prognostic and therapeutic implications of minimal residual disease at the time of transplantation in acute leukemia. Bone Marrow Transplant 48:630-641, 2013

49. Ustun C, Wiseman AC, Defor TE, et al: Achieving stringent CR is essential before reducedintensity conditioning allogeneic hematopoietic cell transplantation in AML. Bone Marrow Transplant 48:1415-1420, 2013

50. Estey EH: Acute myeloid leukemia: 2012 update on diagnosis, risk stratification, and management. Am J Hematol 87:89-99, 2012

51. Byrd JC, Mrózek K, Dodge RK, et al: Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: Results from Cancer and Leukemia Group B (CALGB 8461). Blood 100:4325-4336, 2002

52. Slovak ML, Kopecky KJ, Cassileth PA, et al: Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: A Southwest Oncology Group/ Eastern Cooperative Oncology Group Study. Blood 96:4075-4083, 2000

53. Wang SA, Hutchinson L, Tang G, et al: Systemic mastocytosis with associated clonal hematological non-mast cell lineage disease: Clinical significance and comparison of chromosomal abnormalities in SM and AHNMD components. Am J Hematol 88:219-224, 2013

54. Johnson RC, Savage NM, Chiang T, et al: Hidden mastocytosis in acute myeloid leukemia with t(8;21)(q22;q22). Am J Clin Pathol 140:525-535, 2013

55. Paschka P, Marcucci G, Ruppert AS, et al: Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8; 21): A Cancer and Leukemia Group B Study. J Clin Oncol 24:3904-3911, 2006

56. Boissel N, Leroy H, Brethon B, et al: Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia 20:965-970, 2006

57. Park SH, Chi HS, Min SK, et al: Prognostic impact of c-KIT mutations in core binding factor acute myeloid leukemia. Leuk Res 35:1376-1383, 2011

58. Cairoli R, Beghini A, Grillo G, et al: Prognostic impact of c-KIT mutations in core binding factor leukemias: An Italian retrospective study. Blood 107:3463-3468, 2006

59. Wang YY, Zhou GB, Yin T, et al: AML1-ETO and C-KIT mutation/overexpression in t(8;21) leukemia: Implication in stepwise leukemogenesis and response to Gleevec. Proc Natl Acad Sci U S A 102:1104-1109. 2005

60. Fritsche-Polanz R, Fritz M, Huber A, et al: High frequency of concomitant mastocytosis in patients with acute myeloid leukemia exhibiting the transforming KIT mutation D816V. Mol Oncol 4:335-346, 2010

61. Georgin-Lavialle S, Lhermitte L, Dubreuil P, et al: Mast cell leukemia. Blood 121:1285-1295, 2013

62. Shimoni A, Hardan I, Shem-Tov N, et al: Allogeneic hematopoietic stem-cell transplantation in AML and MDS using myeloablative versus reduced-intensity conditioning: The role of dose intensity. Leukemia 20:322-328, 2006

63. Ringdén O, Labopin M, Ehninger G, et al: Reduced intensity conditioning compared with myeloablative conditioning using unrelated donor transplants in patients with acute myeloid leukemia. J Clin Oncol 27:4570-4577, 2009

64. Marks DI, Wang T, Pérez WS, et al: The outcome of full-intensity and reduced-intensity conditioning matched sibling or unrelated donor transplantation in adults with Philadelphia chromosome-negative acute lymphoblastic leukemia in first and second complete remission. Blood 116:366-374, 2010

65. McClune BL, Weisdorf DJ, Pedersen TL, et al: Effect of age on outcome of reduced-intensity hematopoietic cell transplantation for older patients with acute myeloid leukemia in first complete remission or with myelodysplastic syndrome. J Clin Oncol 28:1878-1887, 2010

66. Sperr WR, Mitterbauer M, Mitterbauer G, et al: Quantitation of minimal residual disease in acute myeloid leukemia by tryptase monitoring identifies a group of patients with a high risk of relapse. Clin Cancer Res 11:6536-6543, 2005

67. Sperr WR, El-Samahi A, Kundi M, et al: Elevated tryptase levels selectively cluster in myeloid neoplasms: A novel diagnostic approach and screen marker in clinical haematology. Eur J Clin Invest 39:914-923, 2009

68. Sperr WR, Jordan JH, Baghestanian M, et al: Expression of mast cell tryptase by myeloblasts in a group of patients with acute myeloid leukemia. Blood 98:2200-2209, 2001

69. Dimitriadou V, Mécheri S, Koutsilieris M, et al: Expression of functional major histocompatibility complex class II molecules on HMC-1 human mast cells. J Leukoc Biol 64:791-799, 1998

70. Banovac K, Ghandur-Mnaymneh L, Leone J, et al: Intrathyroidal mast cells express major histocompatibility complex class-II antigens. Int Arch Allergy Appl Immunol 90:43-46, 1989

71. Malaviya R, Twesten NJ, Ross EA, et al: Mast cells process bacterial Ags through a phagocytic route for class I MHC presentation to T cells. J Immunol 156:1490-1496, 1996

72. Kambayashi T, Allenspach EJ, Chang JT, et al: Inducible MHC class II expression by mast cells supports effector and regulatory T cell activation. J Immunol 182:4686-4695, 2009

73. Warren EH, Deeg HJ: Dissecting graft-versusleukemia from graft-versus-host-disease using novel strategies. Tissue Antigens 81:183-193, 2013

74. Metcalfe DD, Peavy RD, Gilfillan AM: Mechanisms of mast cell signaling in anaphylaxis. J Allergy Clin Immunol 124:639-646, 2009

75. Lu LF, Lind EF, Gondek DC, et al: Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442:997-1002, 2006

76. Weisdorf D: GVHD the nuts and bolts. Hematology Am Soc Hematol Educ Program 62-67, 2007

17. Devine SM, Adkins DR, Khoury H, et al: Recent advances in allogeneic hematopoietic stemcell transplantation. J Lab Clin Med 141:7-32, 2003

Affiliations

Celalettin Ustun, Ryan Shanley, Gregory Vercellotti, and Daniel Weisdorf, University of Minnesota, Minneapolis; William J. Hogan, Mayo Clinic, Rochester, MN; Andreas Reiter and Sebastian Kreil, Universitätsmedizin Mannheim, Mannheim; Herrad Baurmann, Stiftung Deutsche

Ustun et al

Klinik für Diagnostik, Wiesbaden; Bernd Gruhn, Jena University Hospital, Jena; Tanja Gromke, University of Essen, Essen; Eva Maria Wagner, Universitätsmedizin Mainz, Mainz; Martin Bornhäuser, Universitätsklinikum Dresden, Dresden; Christoph Schmid, Klinikum Augsburg, Ausburg, Germany; Bart L. Scott and H. Joachim Deeg, University of Washington, Seattle, WA; Ryotaro Nakamura, City of Hope National Medical Center, Duarte; Vinod Pullarkat, University of Southern California, Los Angeles, CA; Gandhi Damaj, Université de Caen, Faculté de Médecine, Caen; Faezeh Legrand, Nice University Hospital, Nice, and Société Française de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC); Ibrahim Yakoub-agha, Centre Hospitalier Régionale Universitaire, Lille; Olivier Hermine, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Université Paris 5 Faculté de Médecine et AP-HP Necker-Enfants Malades, and Centre de Référence des Mastocytoses, Paris, France; Miguel-Angel Perales and Esperanza B. Papadopoulos, Memorial Sloan-Kettering Cancer Center; Tsiporah Shore, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY; Robert Stuart, Medical University of South Carolina, Charleston, SC; Michael Doubek, Masaryk University, Brno, Czech Republic; Jack W. Hsu, University of Florida, Gainesville, FL; Eleni Tholouli, Manchester Royal Infirmary, Manchester, United Kingdom; Lucy A. Godley, University of Chicago, Chicago, IL; Livio Pagano, Università Cattolica del Sacro Cuore, Milan; Maria Teresa Van Lint, Istituto Di Ricovero e Cura a Carattere Scientifico San Martino-IST, Genova, Italy; Andrew Gilman, Levine Children's Hospital, Charlotte, NC; Tor Shwayder, Henry Ford Hospital, Detroit, MI; Alexandra Böhm, Elisabethinen Hospital, Linz; Werner Rabitsch, Wolfgang R. Sperr, and Peter Valent, Medical University of Vienna, Vienna, Austria; Wael Saber, Medical College of Wisconsin, Milwaukee, WI; John Barrett, National Heart, Lung, and Blood Institute, Bethesda, MD; Hans Hagglund, Karolinska University Hospital, Stockholm, Sweden; Uday Popat, The University of Texas MD Anderson Cancer Center, Houston, TX; Edwin P. Alyea and Cem Akin, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Steven Devine, Ohio State University, Columbus, OH.

Check Out the Latest Additions to ASCO's Bookstore Today

Learn about the latest eLearning, self-assessment, maintenance of certification, CME-accredited, and patient education products offered by ASCO. New products are added each month at **asco.org/store**.

Acknowledgment

The authors thank Deepti Radia, Lawrence B. Afrin, Koen van Besien, Andy Artz, Russel Bryness, Aaron T. Gerds, and Irene Cavattoni for their invaluable assistance with identifying patients, and Michael J. Franklin and K. Frank Austen for critical review of the manuscript.

Appendix

Author*	Country	Patient No.	Sex	Patient Age at AlloHCT (years)	Diagnosis	Year of Diagnosis of Primary SM	Cytogenetic Abnormality	KIT Mutation
Chen et al ³⁶	Taiwan	1	Μ	18	MCL-AML	2001	t(8;21)(q22;q22)	No
Devine	United States	2	Μ	36	SM-AHNMD (MPN-MDS with Eos)	1997	Normal	NA
Födinger et al ²⁹	Austria	3	F	11	SM-AHNMD (AML) progressed from MDS-RAEB-II)	1991	t(8;1)(q22,q21), de1(5)(q13,q23)	NA
Hsu	United States	4	Μ	62	ASM	2005	Normal	NA
Doubek	Czech Republic	5	Μ	57	ASM	2010	Normal	D816V
Nagai et al ³⁵	Japan	6	F	32	SM-AHNMD (AML)	2006	46XX, t(8;21) (q22;q22), del9 (q22;q34)	D816Y
Nakamura et al ³⁷	United States	7	Μ	49	SM-AHNMD (MPN with Eos)	1999	NA	D816V
	United States	8	F	50	SM-AHNMD (MDS-RA)	1998	NA	D816V
Nakamura et al ³⁷	United States	9	Μ	47	MCL (progressed from SM)	1996	NA	D816G
Valent	Austria	10	F	36	MCL	2005	Normal	No D816V found
Valent	Austria	11	F	44	SM-AHNMD (AML)	1995	NA	NA
Przepiorka et al ³⁰	United States	12	Μ	32	ASM	Approximately 1990	Normal	NA
Pullarkat et al ³³	United States	13	F	51	SM-AHNMD (AML)	2003	t(8;21) (q22;22) and del(9)(q12;q22)	D816V
Rønnov-Jessen et al ³²	Denmark	14	F	38	SM-AHNMD (AML)	1991	NA	NA
Sperr et al ²⁸	Austria	15	Μ	17	MML	2001	Complex: t(8;10;21)(q22;q21;q22), t(11;19)(q13;13), del(9)(q22)	No D816V found
Spyridonidis et al ³⁴	Germany	16	Μ	31	MCL	Approximately 2000	t(13;14) (q10;q10)	No codon 81 and 560 mutation found
Stuart	United States	17	Μ	56	SM-AHNMD (AML progressed from MDS)	2009	Normal	D816V
Popat	United States	18	Μ	46	MCL	2001	Diploidy	NA
Hogan	United States	19	Μ	61	SM-AHNMD (AML)	2011	Monosomy 7	D816V
Hogan	United States	20	F	26	SM-AHNMD (AML)	2010	Normal	D816V
Kreil	Germany	21	F	50	ASM	1991	NA	NA
Reiter	Germany	22	F	27	SM-AHNMD (AML)	2005	Normal	D816V
Gruhn	Germany	23	Μ	17	SM-AHNMD (MDS-RCMD)	2007	Normal	D816V
Reiter	Germany	24	Μ	65	SM-AHNMD (AML)	2008	Trisomy 8	D816V
Hermine	France	25	Μ	61	SM-AHNMD (AML)	2007	Trisomy 8	D816V
Gromke et al ³⁸	Germany	26	Μ	53	SM-AHNMD (AML)	2002	Normal	D816V
Tholouli	England	27	F	47	MCL, progressed from SM	2011	Complex: 43,XX,-1,add(2)(p?13),- 4,add(5)(p15),-9,del(10)(q2?4q2?6),-11,- 17,der(17)? t(11;17) (q13;q25), 20, +2mar,+r[4]/88,idemx2[1]/46,XX[6]	D816Y
Chantom et al ⁴⁰	United States	28	F	23	MCL, progressed from solidary mastocytoma	2004	Normal	NA
Schmid	Germany	29	F	51	SM-AHNMD (AML progressed from MDS-MPN)	2009	Normal	No D816V found
Valentini et al ³⁹	Italy	30	F	45	MCL		Normal	D816V
Baurmann	Germany	31	F	44	SM-AHNMD (MDS-MPN with Eos)	2003	Normal	D816V
Baurmann	Germany	32	F	49	SM-AHNMD (MDS-RCMD) (continued on following page)	2008	Normal	D816V

Ustun et al

Author*	Country	Patient No.	Sex	Patient Age at AlloHCT (years)	Diagnosis	Year of Diagnosis of Primary SM	Cytogenetic Abnormality	KIT Mutatio
Shore		33	Μ	59	MCL	2008	Normal	D816V
Shore		34	Μ	57	SM-AHNMD (MDS)	2011	del7q	D816V
Scott	United States	35	Μ	35	SM-AHNMD (MDS-MPN)	2004	Normal	NA
Scott	United States	36	Μ	31	MCL	2004	Complex:43-44,XY,?del(3)(p?),- 8,?add(9)(q34), -10,?der(11)t(8;11)(q?11.2;q?13), add(16)(q24),?del(17)(q11.2) add(19)(q13.3),add(20)(q13.3)[cp13]/ 46,XY[7]	No D816V found
Scott	United States	37	Μ	21	SM-AHNMD (AML) in CR2	2006	t(8;21)(q22;q22)	NA
Scott	United States	38	Μ	46	SM-AHNMD (AML) secondary to MDS	2008	NA	No D816V found
Scott	United States	39	F	43	SM-AHNMD (MDS)	2010	46,XX[30], abnormal IFISH (25.6%) for additional copy of EVI1 (3q26)	D816V
Scott	United States	40	F	31	SM-AHNMD (MDS)	2008	Normal	No D816V found
Legrand	France	41	Μ	62	SM-AHNMD	2008	-Y	D816V
Damaj/Yakoub- agha	France	42	F	31	ASM	2001	NA	NA
Damaj/Yakoub- agha	France	43	Μ	57	SM-AHNMD (MM)	1998	NA	NA
Damaj/Yakoub- agha	France	44	Μ	42	SM-AHNMD (ALL)	2003	NA	NA
Damaj/Yakoub- agha	France	45	Μ	47	ASM	2007	NA	NA
Damaj/Yakoub- agha	France	46	F	50	ASM	2002	NA	NA
Godley	United States	47	F	50	MCL	2005	del (1p), add (6q), -9, add (16p)	NA
Van Lint	Italy	48	F	36	SM-AHNMD (AML)	2002	inv16	No D816V found
Perales	United States	49	F	40	MCL	1992	NA	NA
Perales	United States	50	Μ	50	SM-AHNMD (MPN-MDS), SM secondary to UP	2000	Normal	NA
Perales	United States	51	F	57	SM-AHNMD (MDS RAEB), SM secondary to UP	2011	Normal	NA
Gilman	United States	52	F	13	MCL	2012	Normal	No D816V found
Vercellotti	United States	53	Μ	60	SM-AHNMD (MPN-MDS RAEB-I, 8% blasts)	2010	+8	D816V
Ustun	United States	54	F	64	SM-AHNMD (AML) (therapy induced)	2009	-7	NA
Nakamura	United States	55	F	36	SM-AHNMD (MPN-CMML)	2011	Normal	NA
Nakamura	United States	56	Μ	67	SM-AHNDM (MDS-MPN)	2011	Normal	D816V
Nakamura	United States	57	Μ	41	SM-AHNMD (AML, secondary to MDS)	2003	Normal	NA

Abbreviations: ALL, acute lymphoblastic leukemia; alloHCT, allogeneic hematopoietic stem-cell transplantation; AML, acute myeloid leukemia; ASM, aggressive systemic mastocytosis; CR2, second complete remission; CMML, chronic myelomonocytic leukemia; Eos, eosinophilia; F, female; M, male; MCL, mast cell leukemia; MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasia; MML, myelomastocytic leukemia; MM, multiple myeloma; NA, not available; RA, refractory anemia; RAEB, refractory anemia with excess blasts; RCMD, refractory cytopenia with multilineage dysplasia; SM, systemic mastocytosis; SM-AHNMD, SM with an associated clonal hematologic non-mast cell lineage disease; UP, urticaria pigmentosa. *First author of a published article or one who provided information to this study.

Type Age URD NA URD NA URD RD R	Type NA NA NA NA NA NA NA	Type Type Type	Type Type	Type Type Type Type	Type Age (vens) NA Na NB 34 NB 53 NB 53 NB 53 NB 53 NB 43 NB 53 UND 53 <	Type Age (vears) NA N NB 34 NB 34 NB 34 NB 34 NB 53 NB 54 NB 52 NB 52 NB 52 NB 43 NB 30 UND 23 UND 23 UND 23 NB 30 NB 48 NB 53 NB 53 NB 53 NB 53 NB </th <th>Type Type Type Type Type Type</th>	Type Type Type Type Type Type
poside NA URD poside NA ne URD RD RD RD RD RD	poside NA URD poside NA ne URD RD RD RD RD RD RD RD RD RD Otepa NA	poside NA URD poside NA RD RD RD RD RD RD RD RD RD RD RD RD RD	poside NA URD poside NA RD RD RD RD RD RD RD RD RD RD RD RD RD	poside NA URD Doside NA RD RD RD RD RD RD RD RD RD RD RD RD Nocyte URD Nocyte URD	poside NA URD URD NA RD RD RD RD RD RD RD RD RD RD RD RD RD	poside NA URD Doside NA RD RD RD RD RD RD NA NA RD RD NC VRD NC VRD NC VRD NC VRD RD NC VRD RD NC VRD RD NC RD RD NRD RD RD RD RD RD RD RD RD RD RD RD RD R	poside NA uRD uRD ne URD RD RD RD RD RD RD NA NA NA NA NA NA NA NA NA NA
poside	ne otepa	otepa	otepa occyte	otepa ocyte	ocyte otepa	ocyte occyte	ne otepa nocyte
Busulfan-cyclophosphamide-etoposide TBI-cyclophosphamide-cytarabine FLAMSA-RIC and splenic XRT TBI-cyclophosphamide Fludarabine-cyclophosphamide Fludarabine-cyclophosphamide	Busulfan-cyclophosphamide-etoposit TBI-cyclophosphamide-cytarabine FLAMSA-RIC and splenic XRT TBI-cyclophosphamide Fludarabine-cyclophosphamide Fludarabine-cyclophosphamide Busulfan-cyclophosphamide- antithymocyte globulin TBI-etoposide Busulfan-cyclophosphamide-thiotepa	-cyclophosphamide-etopo phosphamide-cytarabine cRIC and splenic XRT phosphamide ine-cyclophosphamide ine-cyclophosphamide -cyclophosphamide- mocyte globulin oscide -cyclophosphamide-thiote phosphamide phosphamide	Busulfan-cyclophosphamide-etoposid TBI-cyclophosphamide-cytarabine FLAMSA-RIC and splenic XRT TBI-cyclophosphamide Fludarabine-cyclophosphamide Fludarabine-cyclophosphamide Busulfan-cyclophosphamide- antithymocyte globulin TBI-etoposide Busulfan-cyclophosphamide-thiotepa FTBI-etoposide Busulfan-cyclophosphamide Fludarabine-TBI Busulfan-cyclophosphamide Busulfan-cyclophosphamide Fludarabine-melphalan-antithymocyte globulin	-cyclophosphamide-etopo phosphamide-cytarabine -RIC and splenic XRT phosphamide ine-cyclophosphamide ine-cyclophosphamide -cyclophosphamide-thiote poside ophosphamide ine-thiote ine-TBI ine-TBI -cyclophosphamide ine-melphalan-antithymoc in e-melphalan-antithymoc in e-melphalan-antithymoc	Busulfan-cyclophosphamide-etopo TBI-cyclophosphamide-etopo FLAMSA-RIC and splenic XRT TBI-cyclophosphamide Fludarabine-cyclophosphamide Fludarabine-cyclophosphamide Busulfan-cyclophosphamide- antithymocyte globulin TBI-etoposide Busulfan-cyclophosphamide-thiote Fludarabine-TBI Busulfan-cyclophosphamide Busulfan-cyclophosphamide Fludarabine-TBI Busulfan-cyclophosphamide Fludarabine-melphalan-antithymoc globulin TBI-cyclophosphamide Fludarabine-melphalan-thiotepa Fludarabine-melphalan-thiotepa Fludarabine-melphalan-thiotepa Fludarabine-melphalan-thiotepa Fludarabine-melphalan-thiotepa	sulfan-cyclophosphamide-etopo I-cyclophosphamide-cytarabine AMSA-RIC and splenic XRT I-cyclophosphamide darabine-cyclophosphamide darabine-cyclophosphamide antithymocyte globulin I-tetoposide sulfan-cyclophosphamide-thiote BI-etoposide I-tcyclophosphamide darabine-TBI udarabine-TBI sulfan-cyclophosphamide darabine-melphalan-antithymoc globulin darabine-melphalan-thiotepa darabine-melphalan-thiotepa darabine-melphalan-thiotepa darabine-melphalan-thiotepa darabine-melphalan-thiotepa darabine-melphalan-thiotepa darabine-melphalan-thiotepa darabine-melphalan-thiotepa darabine-melphalan-thiotepa darabine-melphalan-thiotepa darabine-melphalan-thiotepa darabine-melphalan-thiotepa darabine-melphalan-thiotepa darabine-trelophosphamide- darabine-trel	Busulfan-cyclophosphamide-etopo TBI-cyclophosphamide-cytarabine FLAMSA-RIC and splenic XRT TBI-cyclophosphamide Fludarabine-cyclophosphamide Busulfan-cyclophosphamide- Busulfan-cyclophosphamide- Busulfan-cyclophosphamide-thiote TBI-etoposide Busulfan-cyclophosphamide Fludarabine-TBI Busulfan-cyclophosphamide Fludarabine-TBI Busulfan-cyclophosphamide Fludarabine-melphalan-antithymoc globulin TBI-cyclophosphamide Fludarabine-melphalan-antithymoc globulin TBI-cyclophosphamide Fludarabine-melphalan-antithymoc globulin TBI-cyclophosphamide Fludarabine-melphalan-thiotepa Fludarabine-melphalan-thiotepa Tresulfan-fludarabine Fludarabine-fludarabine Fludarabine-fludarabine Fludarabine-fludarabine Fludarabine-fludarabine Fludarabine-fludarabine Fludarabine-fludarabine Fludarabine-fludarabine
I B -cyclophosphamide- FLAMSA-RIC and spler TB -cyclophosphamide Fludarabine-cyclophosp Fludarabine-cyclophosp	IB-cyclophospna FLAMSA-RIC and TBI-cyclophospha Fludarabine-cyclo Fludarabine-cycloph Busulfan-cycloph antithymocyte TBI-etoposide Busulfan-cycloph	IB-cyclophosphamide- FLAMSA-RIC and splet TBI-cyclophosphamide Fludarabine-cyclophosp Fludarabine-cyclophospha Busulfan-cyclophospha antithymocyte globu TBI-etoposide Busulfan-cyclophospha FTBI-etoposide TBI-cyclophosphamide Fludarabine-TBI	IB-cyclophospha FLAMSA-RIC and FLaMSA-RIC and TBI-cyclophospha Fludarabine-cycloph Busulfan-cycloph Busulfan-cycloph FTBI-etoposide Busulfan-cycloph FTBI-etoposide Busulfan-cycloph FUdarabine-TBI Busulfan-cycloph Fludarabine-TBI Busulfan-cycloph Busulfan-cycloph Busulfan-cycloph Busulfan-cycloph Fludarabine-TBI Busulfan-cycloph Busulfan-cycloph	IB-cyclophosphamide FLAMSA-RIC and splet Fludarabine-cyclophosp Fludarabine-cyclophosp Fludarabine-cyclophospha antithymocyte globu Busulfan-cyclophospha RIB-etoposide Busulfan-cyclophospha FTB-etoposide Busulfan-cyclophospha FTB-cyclophosphamide Fludarabine-TBI Busulfan-cyclophospha Fludarabine-melphalan- globulin Fludarabine-melphalan- globulin	IB-cyclophospna FLAMSA-RIC and TBI-cyclophospna Fludarabine-cyclophospna Fludarabine-cycloph Busulfan-cycloph Busulfan-cycloph FTBI-etoposide Busulfan-cyclophospna Fludarabine-TBI Busulfan-cyclophospna Fludarabine-TBI Busulfan-cyclophospna Fludarabine-melp globulin Fludarabine-melp Busulfan-cyclophospna Fludarabine-melp FLAMSA-RIC Busulfan-cyclophospna Amtihhymoxyte Busulfan-cyclophospna Amtihhymoxyte	IB-cyclophospha FLAMSA-RIC and Fludarabine-cyclophospha Fludarabine-cyclophospha Busulfan-cyclophospha antithymocyte Busulfan-cyclophospha FTBI-etoposide Busulfan-cyclophospha Fludarabine-melp globulin Fludarabine-melp globulin Fludarabine-melp Busulfan-cyclophospha Fludarabine-melp Busulfan-cyclophospha Fludarabine-melp FLAMSA-RIC Busulfan-cyclophospha Antithymocyte FLAMSA-RIC Busulfan-cyclophospha	IB-cyclophosphamid FLAMSA-RIC and spi FLAMSA-RIC and spi Fludarabine-cyclophoso Fludarabine-cyclophosoph antithymocyte glot Busulfan-cyclophosoph RIB-etoposide Busulfan-cyclophosoph FTBI-etoposide TBI-cyclophosophamid Fludarabine-melphala globulin Fludarabine-melphala RI-cyclophosoph RIUdarabine-melphala RI-cyclophosoph RIUdarabine-melphala RI-cyclophosoph RIUdarabine-melphala RI-cyclophosoph RIUdarabine-melphala RI-cyclophosoph RIUdarabine-melphala RI-cyclophosoph RIUdarabine-melphala RI-cyclophosoph RIUdarabine-melphala RI-cyclophosoph RIUdarabine-melphala RI-cyclophosoph RIUdarabine-fludarabine FLAMSA-RIC Busulfan-fludarabine FLAMSA-RIC RUDARABI
0							
		ve AML regarding vyeloblasts	ve AML nyeloblasts ve AML ve AML	ve AML regarding veloblasts ve AML	ve AML regarding vve AML NA AML NA AML	ve AML regarding regarding ve AML NA NA NA NA NA NA NA NA NA NA NA NA	ve AML regarding vyeloblasts ve AML ve AML ve AML ve AML (CRi)
			atev 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			σ	m
1000	2001 March 2007 December 1996 1996	2001 March 2007 December 1996 1996 2004 1990 July 2001	2007	07 - 1996 - 2011	1 2007 1 2010 2 2010 2 2002 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	07 - 1996 - 2011 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	07 1996 2011 12 12 12 12 13
MCL	WL	ML ML	J J J J J J J J J J J J J J J J J J J	WF WF WF	DSH MH MH MH	ער ער אין	WH W WH W
	~ ~ ~	Z SYSYZ					10 11111111111111111111111111111111111

Diagnosis Uter of Friet January 2005 Taylu Lignosis Andre of March 2 monta Mar	7atlent No. 30 31 32*			RA PLOM Primary	CK Status of				Conditioning		Donor	
SW-MIL Mach 2011 13 CR (Ch) 90 PBSC MC Bustifan-cycloprosphamide MCL January 2005 21 NA 90 PBSC MAC Bustifan-cycloprosphamide SW-MDS-MPN September 85 NA 90 PBSC MAC Bustifan-cycloprosphamide SW-MDS September 85 NA 100 BM MAC Fluaretycloprosphamide SW-MDS September 85 NA 100 BM MAC Fluaretycloprosphamide SW-MDS September 85 NA 100 BM MAC Fluaretycloprosphamide SW-MDS May 2012 5 NA NA 100 BM MAC Fluaretycloprosphamide SW-MDS May 2012 5 NA NA 1043 abin-metholan mithymorycle mithymorycle SW-MDS May 2012 6 NA MAC Fluarabine-wouldan mithymorycle mithymorycle SW-MDS February 2003 <	29 30 31 32*		Date of First AlloHCT	sivi Diagnosis to alloHCT (months)	AIML OF MIML AT AlloHCT	AlloHCT (%)	Type	Intensity	Regimen	Type	Age (years)	Sex
MCL January 2005 21 NA 70 PBSC MAC Busufan-cyclophosphamide SWMDS-MPN September 17 NA PBSC MAC Busufan-cyclophosphamide SWMDS-MPN September 17 NA PBSC MAC Busufan-cyclophosphamide SM-MDS September 85 NA IO BM MAC Tellarabine-cyclophosphamide MCL Macr 2009 7 NA PBSC MAC Tellarabine-syclophosphamide SM-MDS Mary 2005 8 NA NA February 2005 8 NA SM-MDS May 2012 6 NA NA Fudarabine-syclophosphamide SM-MDS MAL February 2005 8 NA Rudarabine-syclophosphamide SM-MDS MAC February 2005 6 NA Rudarabine-syclophosphamide SM-MDS February 2005 6 NA Rudarabine-syclophosphamide NA SM-MDS February 2005 6 NA <t< td=""><td>30 31 32*</td><td>SM-AML</td><td>March 2011</td><td>13</td><td>CR (CRi)</td><td>06</td><td>PBSC</td><td>RIC</td><td>FLAMSA-RIC</td><td>RD</td><td>46</td><td>ш</td></t<>	30 31 32*	SM-AML	March 2011	13	CR (CRi)	06	PBSC	RIC	FLAMSA-RIC	RD	46	ш
SW-MDS-MPN September 17 NA BH-fudgrapher - pyctophosphanide- antithymosyr goloufin * September 85 NA The party september - pyctophosphanide- antithymosyr goloufin MCL Warch 2009 7 NA Thingap-bus uffan-antithymosyr goloufin MCL Warch 2009 7 NA Thingap-bus uffan-antithymosyr goloufin MCL Warch 2009 7 NA Thingap-bus uffan-antithymosyr goloufin SM-MDS-MNN Cotobar 2000 8 NA Thingap-bus uffan-antithymosyr goloufin SM-MDS-MNL February 2005 12 NA NA Fudarabine-bus uffan-antithymosyr goloufin SM-MDS-MNL February 2005 12 NA NA Fudarabine-bus uffan-antithymosyr goloufin SM-MDS-MNL February 2005 12 NA Rest cotophosphanide Rest cotophosphanide SM-MDS-MNL February 2005 12 CR2 NA Fl-cyclophosphanide SM-MDS February 2005 13 NA Fl-cyclophosphanide Rest cotophosphanide SM-MDS MMNL <td>31 32*</td> <td>MCL</td> <td>January 2005</td> <td>21</td> <td>NA</td> <td>70</td> <td>PBSC</td> <td>MAC</td> <td>Busulfan-cyclophosphamide</td> <td>RD</td> <td>41</td> <td>ш</td>	31 32*	MCL	January 2005	21	NA	70	PBSC	MAC	Busulfan-cyclophosphamide	RD	41	ш
* SM-MDS September 2010 BS NA Thotepabusulfan-evolophosphamide antitymocyte globulin MCL March 2009 7 NA Mace zood 7 NA PBSC MC Thotepabusulfan-evolophosphamide antitymocyte globulin MCL March 2009 7 NA PBSC MC Fudarabine-usulfan-evolophosphamide globulin SM-MDS-MPN February 2005 12 CR2 NA PBSC MA Fudarabine-usulfan-evolophosphamide globulin SM-MDS-MPN February 2005 12 CR2 NA PBSC MA Fudarabine-usulfan-evolophosphamide globulin SM-MDS February 2005 10 NA PBSC MA Fudarabine-usulfan-evolophosphamide globulin SM-MDS February 2003 10 NA PBSC MA Fudarabine-usulfan-evolophosphamide globulin SM-MDS February 2003 10 NA PBSC MA Fudarabine-usulfan-evolophosphamide globulin SM-MDS February 2003 10 NA NA Eleverophosphamide globulin Floadrabinevolophos	32*	NAM-SOM-MS	September 2007	17	NA	06	PBSC	MAC	TBI-fludarabine -cyclophosphamide- antithymocyte globulin	RD	46	ш
MCL Macr 2009 7 NA 80 PBSC MAC Fudarabine-busulfan-antitymocyte SW-MDS May 2012 5 NA 90 BM MAC Fudarabine-enclophatin SW-MDS-MPN October 2000 8 NA NA PBSC MAC Fudarabine-enclophatin SW-MDS-MPN Cotober 2000 8 NA NA PBSC MAC Fudarabine-enclophatin SW-MDS-MPN Cotober 2000 8 NA NA PBSC MAC Fudarabine-enclophatin SW-AMIL February 2003 12 CR2 NA PBSC MAC Fudarabine-enclophatin SW-AMIL February 2003 13 NA PBSC MAC Fudarabine-enclophatin SW-AMIL February 2003 10 NA PBSC MAC Fudarabine-enclophatin SW-AMIN November 2003 13 NA PBSC MAC Fudarabine-enclophatin SW-MNN November 2003 65 NA RS Fudarabine		SM-MDS	September 2010	85	NA	100	BM	MAC	Thiotepa-busulfan-cyclophosphamide- antithymocyte globulin	URD		ш
SN-MDS May 2012 5 NA 2012 5 NA MAC Fudarabine-melphalan SN-MDS-MPN October 2000 8 NA NA Busuffar-cycloptosphamide MCL February 2005 12 CR2 NA Fudarabine-busuffan MCL February 2005 12 CR2 NA Fudarabine-busuffan SM-MDS February 2005 12 CR2 NA Fudarabine-busuffan SM-MDS February 2005 12 CR2 NA Fudarabine-busuffan SM-MDS February 2005 12 CR2 NA Busuffar-cyclophosphamide SM-MDS February 2011 5 NA PBSC MAC Busuffar-cyclophosphamide SM-MDS February 2011 5 NA NA Busuffar-cyclophosphamide SM-MDS MAC Busuffar-cyclophosphamide Busuffar-cyclophosphamide Busuffar-cyclophosphamide SM-MDN November 2003 18 NA R R R SM-ML	33	MCL	March 2009	7	NA	80	PBSC	MAC	Fludarabine-busulfan-antithymocyte globulin	URD		Σ
SN-MDS-MPN October 2000 8 NA NA PBSC MAC Busulfan-cyclophosphamide MCL February 2005 8 NA NA PBSC MAC Fludarabine-busulfan SM-MML February 2005 12 CR2 NAC Fludarabine-busulfan SM-MML February 2005 12 CR2 NAC Fludarabine-busulfan SM-MMS February 2003 10 NA PBSC MAC Fludarabine-busulfan SM-MMD January 2003 5 NA PBSC MAC Fludarabine-busulfan SM-MDS February 2003 5 NA PBSC MAC Fludarabine-busulfan SM-MDS February 2003 5 NA PBSC MAC Fludarabine-busulfan SM-MDS November 2009 65 NA NA Busulfan-cyclophosphamide SM-MD January 2003 18 NA RC Fludarabine-busulfan-obsulfan SM-MM November 2003 18 NA RC	34	SM-MDS	May 2012	Ð	NA	06	ΒM	MAC	Fludarabine-melphalan	URD	45	Σ
WCL February 2005 8 NA NA Fladarebusulfan SW-AML February 2005 12 CR2 NA Fladarebusulfan SW-AML February 2005 12 CR2 NA Fladarebusulfan SW-AML February 2005 12 CR2 NA Fladarebusulfan SW-AML February 2003 10 NA PBSC MC TBI-tytophosphamide SW-MDS February 2011 5 NA 90 BM MC TBI-tytophosphamide SW-MDS February 2013 5 NA NA Busulfan-cytophosphamide SW-MDS February 2003 18 NA NA Busulfan-cytophosphamide SW-MM November 2009 65 NA NA Busulfan-cytophosphamide SW-MM November 2003 18 NA NA Busulfan-cytophosphamide SM-ALL January 1999 5 NA NA Busulfan-cytophosphamide SM-ALL January 1999 5 NA <td>35</td> <td>SM-MDS-MPN</td> <td>October 2000</td> <td>00</td> <td>NA</td> <td>AN</td> <td>PBSC</td> <td>MAC</td> <td>Busulfan-cyclophosphamide</td> <td>RD</td> <td>33</td> <td>ш</td>	35	SM-MDS-MPN	October 2000	00	NA	AN	PBSC	MAC	Busulfan-cyclophosphamide	RD	33	ш
SW-MIL February 2005 12 CR2 NA PBSC MAC TBI-yclophosphamide SW-MIL February 2007 5 CR NA PBSC RIC TBI-fludarabine SW-MIDS February 2009 10 NA PBSC RIC TBI-fludarabine SW-MIDS February 2011 5 NA 90 BM MAC TBI-fludarabine SW-MIDS February 2011 5 NA 90 BM MAC TBI-fludarabine SW-MIDS February 2013 5 NA NA BM MAC TBI-fludarabine SW-MIDS November 2003 65 NA NA BM RIC Fuldarabine-ontithymocyte SW-MID June 2005 19 NA BM RIC Buulfan-tyclophosphamide SM-ALL June 2005 19 NA BM RIC Fludarabine-ontithymocyte SM-ALL June 2005 19 NA RIC Buulfan-tyclophosphamide SM-AS	36	MCL	February 2005	00	NA	ΝA	PBSC	MAC	Fludarabine-busulfan	URD	21	Σ
SM-AML February 2007 5 CR NA PBSC RIC TBI-fludarabine SM-MDS February 2009 10 NA Busulfan-cyclophosphamide SM-MDS February 2011 5 NA Busulfan-cyclophosphamide SM-MDS February 2011 5 NA 90 BM MAC TBI-cyclophosphamide SM-MDS February 2011 5 NA 90 BM MAC TBI-cyclophosphamide SM-MPN January 2009 65 NA NA BW MAC TBI-cyclophosphamide SM-MPN January 2003 65 NA NA BW MAC Busulfan-cyclophosphamide SM-ML January 1999 5 NA NA BW MAC Busulfan-cyclophosphamide SM-ALL January 1999 5 NA NA BW MAC Busulfan-fludarabine-autithymocyte SM-ALL June 2005 19 NA NA TBI-cyclophosphamide SM ASM <td< td=""><td>37</td><td>SM-AML</td><td>February 2005</td><td>12</td><td>CR2</td><td>AN</td><td>PBSC</td><td>MAC</td><td>TBI-cyclophosphamide</td><td>RD</td><td>25</td><td>Σ</td></td<>	37	SM-AML	February 2005	12	CR2	AN	PBSC	MAC	TBI-cyclophosphamide	RD	25	Σ
SM-MDS February 2009 10 NA BBSC MAC Busulfan-cyclophosphamide SM-MDS February 2011 5 NA 90 BM MAC TBI-cyclophosphamide SM-MDS February 2011 5 NA 90 BM MAC TBI-cyclophosphamide SM-MDN January 2009 5 NA 70 BM MC TBI-cyclophosphamide SM-MN November 2009 65 NA NA BM RIC Fludarabine-melphalan ASM November 2003 18 NA NA PBSC RIC Busulfan-cyclophosphamide SM-MN November 2003 18 NA NA PBSC RIC Fludarabine-antithymocyte SM-ALL January 1999 5 NA NA TBI-cyclophosphamide SM-ALL January 1999 5 NA NA TBI-cyclophosphamide SM-ALL June 2005 19 NA NA TBI-cyclophosphamide SM-ALL June 200	38	SM-AML	February 2007	5	CR	NA	PBSC	RIC	TBI-fludarabine	URD	40	Σ
SM-MDS February 2011 5 NA 90 BM MAC TBI-cyclophosphamide SM-MPN January 2009 5 NA 70 BM RIC Fludarabine-melphalan SM-MPN January 2009 65 NA NA BM RIC Fludarabine-melphalan ASM November 2009 65 NA NA BM MAC Busulfan-cyclophosphamide SM-MM February 2003 18 NA NA BM MAC Busulfan-cyclophosphamide SM-MM February 2003 18 NA NA BSC RIC Busulfan-cyclophosphamide SM-ALL January 1999 5 NA NA BSC RIC Busulfan-cyclophosphamide SM-ALL June 2005 19 NA NA TBI-cyclophosphamide ASM November 2007 7 NA BSC RIC Fludarabine-autithymocyte MCL June 2003 8 NA NA TBI-cyclophosphamide NA	39	SM-MDS	February 2009	10	NA	80	PBSC	MAC	Busulfan-cyclophosphamide	URD	41	Σ
SM-MPN January 2009 5 NA 70 BM RIC Fludarabine-melphalan ASM November 2009 65 NA NA BM RIC Fludarabine-melphalan ASM November 2009 65 NA NA BM MAC Busulfan-cyclophosphamide SM-MM February 2003 18 NA NA BSC RIC Busulfan-cyclophosphamide SM-ALL January 1999 5 NA NA BM MAC Busulfan-cyclophosphamide SM-ALL January 1999 5 NA NA BM MAC Busulfan-cyclophosphamide SM-ALL June 2005 19 NA NA TBI-cyclophosphamide ASM November 2007 7 NA PBSC RIC Fludarabine-busulfan MCL June 2003 8 NA NA TBI-cyclophosphamide SM-ASM-AML October 2005 8 NA NA TBI-cyclophosphamide MCL June 2003	40	SM-MDS	February 2011	5	NA	06	ΒM	MAC	TBI-cyclophosphamide	RD	26	ш
ASM November 2009 65 NA NA BM MAC Busulfan-cyclophosphamide SM-MM February 2003 18 NA NA PBSC RIC Busulfan-cyclophosphamide SM-MM February 2003 18 NA NA PBSC RIC Busulfan-ryclophosphamide SM-ALL January 1999 5 NA NA PBSC RIC Busulfan-ryclophosphamide SM-ALL January 1999 5 NA NA BM MAC TBu-cyclophosphamide SM-ALL June 2005 19 NA NA TB-cyclophosphamide ASM November 2007 7 NA NA TB-cyclophosphamide ASM November 2003 8 NA NA TB-cyclophosphamide MCL June 2003 8 NA NA TB-cyclophosphamide MCL June 2003 8 NA NA TB-cyclophosphamide MCL June 2003 8 NA NA TB-cycl	41	SM-MPN	January 2009	£	NA	70	BΜ	RIC	Fludarabine-melphalan	RD	63	ш
SM-IMM February 2003 18 NA NA PBSC RIC Busulfan-fludarabine-antithymocyte SM-ALL January 1999 5 NA NA PBSC RIC Busulfan-fludarabine-antithymocyte SM-ALL January 1999 5 NA NA TBI-cyclophosphamide SM-ALL June 2005 19 NA NA TBI-cyclophosphamide ASM June 2005 19 NA NA TBI-cyclophosphamide ASM November 2007 7 NA PBSC RIC Fludarabine-busulfan MCL August 2002 5 NA NA TBI-cyclophosphamide MCL June 2003 8.5 NA AC TBI-cyclophosphamide MCL June 2003 8.5 NA AC TBI-cyclophosphamide SM-MDS November 2000 96 NA AC TBI-cyclophosphamide SM-MDS Hout 2003 32 NA AC TBI-cyclophosphamide SM-MDS Hout 2003 </td <td>42</td> <td>ASM</td> <td>November 2009</td> <td>65</td> <td>NA</td> <td>ΝA</td> <td>BΜ</td> <td>MAC</td> <td>Busulfan-cyclophosphamide</td> <td>RD</td> <td>29</td> <td>Σ</td>	42	ASM	November 2009	65	NA	ΝA	BΜ	MAC	Busulfan-cyclophosphamide	RD	29	Σ
SM-ALL January 1999 5 NA NA BM MAC TBl-cyclophosphamide ASM June 2005 19 NA NA PBSC RIC Fl-cyclophosphamide ASM November 2007 7 NA NA PBSC RIC Fludarabine-busulfan ASM November 2007 7 NA PBSC RIC Fludarabine-busulfan MCL August 2002 5 NA 90 PBSC RIC Fludarabine-busulfan MCL June 2003 8 Active AML 60 BM MAC TBl-thiotepa-fludarabine MCL June 2003 8.5 NA 70 PBSC MAC TBl-thiotepa-fludarabine MCL June 2003 32 NA 70 PBSC MAC TBl-thiotepa-fludarabine SM-MNN-MDS November 2000 96 NA R0 MAC TBl-thiotepa-fludarabine MA February 2003 32 NA R0 MAC Bl-thiotepa-fludara	43	SM-MM	February 2003	18	NA	AN	PBSC	RIC	Busulfan-fludarabine-antithymocyte globulin	RD	39	ш
ASM June 2005 19 NA NA PBSC RIC ASM November 2007 7 NA NA PBSC RIC Fludarabine-busulfan MCL August 2002 5 NA 90 PBSC RIC Fludarabine-melphalan-alemtuzumab MCL August 2002 8 Active AML 60 BM MAC TBI-cyclophosphanide MCL June 2003 8.5 NA 70 PBSC MAC TBI-thiotepa-fludarabine MCL June 2003 96 NA 70 PBSC MAC TBI-thiotepa-fludarabine SM-MN-MDS November 2000 96 NA R0 MAC Bullan-inethruzumab SM-MDS February 2003 32 NA R0 MAC Bullan-inethruzumab	44	SM-ALL	January 1999	5	NA	ΝA	ΒM	MAC	TBI-cyclophosphamide	RD	38	Σ
ASM November 2007 7 NA PBSC RIC Fludarabine-busulfan MCL August 2002 5 NA 90 PBSC RIC Fludarabine-melphalan-alemtuzumab MCL August 2002 5 NA 90 PBSC RIC Fludarabine-melphalan-alemtuzumab SM-ASM-AML October 2005 8 Active AML 60 BM MAC TBI-cyclophosphanide MCL June 2003 8.5 NA 70 PBSC MAC TBI-thiotepa-fludarabine SM-MN-MDS November 2000 96 NA 80 MAC TBI-thiotepa-fludarabine SM-MDS February 2003 32 NA BM MAC Bulfan-melphalan	45	ASM	June 2005	19	NA	AN	PBSC	RIC		RD		Σ
MCL August 2002 5 NA 90 PBSC RIC Fludarabine-melphalan-alemtuzumab SM-ASM-AML October 2005 8 Active AML 60 BM MAC TBI-cyclophosphamide SM-ASM-AML October 2003 8.5 NA 70 PBSC MAC TBI-thiotepa-fludarabine MCL June 2003 96 NA 70 PBSC MAC TBI-thiotepa-fludarabine SM-MDS February 2003 32 NA NA BM MAC Bulfan-melphalan	46	ASM	November 2007	7	NA	ΝA	PBSC	RIC	Fludarabine-busulfan	RD		Σ
SM-ASM-AMLOctober 20058Active AML60BMMACTBI-cyclophosphamideMCLJune 20038.5NA70PBSCMACTBI-thiotepa-fludarabineMCLNovember 200096NA80TBI-thiotepa-fludarabineSM-MDSFebruary 200332NANABMMACMADHold and the transition of the transition	47	MCL	August 2002	2	NA	06	PBSC	RIC	Fludarabine-melphalan-alemtuzumab	RD		ш
MCL June 2003 8.5 NA 70 PBSC MAC TBI-thiotepa-fludarabine SM-MDS November 2000 96 NA 80 TBI-thiotepa-fludarabine SM-MDS February 2003 32 NA NA BM MAC Busulfan-melphalan MOD Holdow R NA NA BM RAC Resultan-melphalan	48	SM-ASM-AML	October 2005	00	Active AML	60	ΒM	MAC	TBI-cyclophosphamide	RD	44	Σ
SM-MPN-MDS November 2000 96 NA 80 TBI-thiotepa-fludarabine SM-MDS February 2003 32 NA NA BM MAC Busulfan-melphalan MO H.L. 003 7 NA MAC Busulfan-melphalan	49	MCL	June 2003	8.5	NA	70	PBSC	MAC	TBI-thiotepa-fludarabine	RD	37	Σ
SM-MDS February 2003 32 NA NA BM MAC Busulfan-melphalan	50	SM-MPN-MDS	November 2000	96	NA	80			TBI-thiotepa-fludarabine	RD	45	Σ
MOI DOO DOO TDI-H	51	SM-MDS	February 2003	32	NA	ΝA	BM	MAC	Busulfan-melphalan	RD	53	ш.
INCL JUNY 2011 5 NA 60 FBSC INAC ID-FINICIEPA-INDERIADIME-ANTUNYMOCYTE GIODULIN-IOCAL ADDIMENSIONE-ANTUNYMOCYTE	52	MCL	July 2011	വ	NA	80	PBSC	MAC	TBI-thiotepa-fludarabine-antithymocyte globulin-local radiation to vertebrae	Haploidentical (mother)		ш
SM-MPN-MDS May 2013 5	53	SM-MPN-MDS	May 2013	5	NA	06	PBSC	RIC	TBI-cyclophosphamide-fludarabine	RD	62	ш
* SM-AML February 2011 3	54*	SM-AML	February 2011	С	CR	06	UCB	RIC	TBI-cyclophosphamide-fludarabine	UCB		
SM-CMML January 2010 4 NA 90 PBSC MAC Fludarabine-melphalan-TMI	55	SM-CMML	January 2010	4	NA	06	PBSC	MAC	Fludarabine-melphalan-TMI	RD	36	Σ
56 SM-AML (MDS- December 2011 8 NA 90 PBSC RIC Fludarabine-melphalan RD MPN)	56	SM-AML (MDS- MPN)	December 2011	ω	NA	06	PBSC	RIC	Fludarabine-melphalan	RD	65	ш
57 SM-AML secondary December 2011 3 CR 90 PBSC RIC Fludarabine-melphalan URD to MDS?)	57	SM-AML secondary to MDS?)	December 2011	ო	CR	06	PBSC	RIC	Fludarabine-melphalan	URD	44	Σ

														Time	
		Serum T	Serum Tryptase (ng/mL)	ig/mL)	Percentage of Mast Cells in BM^*	of Mast Ce	Is in BM [*]		SM Response	Progre:	Progression of SM	Treatment After		From First	
Disease	Reference	At Diagnosis A	At AlloHCT	After AlloHCT	At Diagnosis	At AlloHCT	After AlloHCT	Other SM-Related Changes After AlloHCT	to First AlloHCT	After Init Yes/No	After Initial Response res/No Time		Alive / (yes/no) ((AlloHCT (months)	Cause of Death
VICL-AML	1 MCL-AML Chen et al ³⁶				40	27.5	40 at 1 month	40 at 1 month Hepatomegaly, splenomegaly, and parcytopenia persisted	SD	°N N			Yes	12	
SM-MPN					←	↓ ↓	0 at 3 months	Eosinophil infiltrate (44%) in BM resolved (5%); dyserythropoiesis resolved	æ	N			9 N	4	Infection and MOF
SM-AML	SM-AML Födinger et al ²⁹				~	4	5 at 3 months		SD	No			Yes	60	
ASM			> 200 189 at 3 mont	89 at 3 months		75	30 at 3 months		œ	No			٩ ۷	с м	CNS bleeding
ASM					0		0 at 1 month	Improvement in spleen and liver size	æ	Yes	At 7 months (Cladribine, steroids, DLI: P	2	12 P	Progression of SM
SM-AML	Nagai et al ³⁵				a	2	↑↑ at 6 months		۵.		-	No treatment	Yes	12	
SM-MPN	SM-MPN Nakamura et al ³⁷		889 4	889 404 at 6 months				Eosinophilia decreased (15 \times 10 ⁹ /L to 0.6 \times 10 ⁹ /L	œ	Yes	At 6 months [DLI	Yes	თ	
SM-MDS	Nakamura et al ³⁷		150 6	60 at 10 months	¢ ¢		←	Episodic hot flashes and syncope resolved	œ	N	_	DLI†	Yes		
MCL	Nakamura et al ³⁷		> 200 ↑ ↑	← ←				Hepatosplenomegaly and pancytopenia worsened	۵.			No treatment	No	ъ Ч	Progression of SM
MCL			333 9	95 at 2 months		വ	1.5 at 2 months		ш	No			N	с С	Sepsis
SM-AML				7		Q	5 at 3 months		SD	No			Yes	206	
ASM	Przepiorka et al ³⁰					30	0 at 1 month	Splenomegaly resolved	R (CR)	° N			Yes	24	
SM-AML	Pullarkat et al ³³			17.4		06	0 at 10 months		R (CR)	No			Yes	108	
SM-AML	Rønnov-Jessen et al ³²				÷		÷	Liver infiltration persisted	SD				Yes	00	
MML	Sperr et al ²⁸	745	126 73 at 2 mon	r3 at 2 months	10	a	5 at 2 months		SD	Yes	At 3 months §	Second alloHCT after MAC: CR	Yes	144	
MCL	Spyridonidis et al ³⁴				70 by morphology	14 by flow	5 at 1 month; 2.4 by flow at 12 months	Urine histamine level was normalized	۲.	^o Z		DLI†	Yes	44	
SM-AML		97	69	69 27 at 3 months	5-10	> 10	1 at 3 months	1 at 3 months Mediator-related symptoms resolved, skin lesions immoved	œ	2 Z			Yes	30	
MCL					06	30	0 at 1 month		R (CR)	No			No	2 S	Sepsis
SM-AML		71			10	10	10 at 3 months		SD	°2			Yes	16	
SM-AML		542		1 10	30	30	5 at 7 months		ж с	No X			Yes	18	
SM-AML		230	34 1	142 at 1 month 19 at 4		~ 10 <	0 at 4 months	od at 1 months Improvement in liver, skin,	R (CR)				Yes		of SM
SM-MDS		530	mont 200 9.6 at 3	months 9.6 at 3	50	ى ك	5 at 3 months	and lymph nodes 5 at 3 months Improvement in liver and skin	œ	Yes	At 24 months 1	At 24 months DLI: SD; second	Yes	52	
				months								alloHCT with RIC: CR			
							(rontinued on	(continued on following page)							

			Serum	Serum Tryptase (ng/mL)	(ng/mL)	Percentage of Mast Cells in BM*	of Mast Ce	lls in BM*		S	Drocre	Dronression of SM	TT		From	
Patient No.	Disease	Reference	At Diagnosis	At AlloHCT	After AlloHCT	At Diagnosis	At AlloHCT	After AlloHCT	Other SM-Related Changes After AlloHCT	to First AlloHCT	After Ini Yes/No	After Initial Response Yes/No Time	Ireatment After AlloHCT and Response	Alive (yes/no)	HIRST AlloHCT (months)	Cause of Death
24 3	SM-AML		875	114	22 at 1 month	35	10	< 5 at 1 month	Improvement in liver function tests	œ	No		Second alloHCT with RIC for	Yes	21	
25	SM-AML		349		15 at 3 monthe	60	10	0	Improvement in bone, spleen,	æ	Q			No	1	AML
	SM-AML	Pardanani et al ²⁰		06	< 11 at 36 months	70	78	0 at 1 month	Improvement in nodes, spleen, and liver	R (CR)	No			Yes	42	000
	MCL		496	12 12		66	40	3 at 2 months	Improvement in skin, spleen, and liver; cytogenetic remission	œ	Yes	At 4 months	At 4 months No treatment	N	4	Progression of SM
28	MCL	Chantorn et al ⁴⁰	> 200		27	5; then 79 (MCL)	60	80 at 1 month	Mediator-related symptoms persisted	٩.			No treatment	No	4	Progression of SM
29	SM-AML		37	œ	20 at 3 months	10			Improvement in skin, splenomegaly persisted	SD	Yes	At 3 months	Cladribine	0N N	9	Graft failure-
30	MCL	Valentini et al ³⁹	> 200	35		06	10	1.5 at 1 month		œ	No			No	-	sepsis Traffic accident
31	SM-MDS- MPN		216	145	9 at 24 months	ى	ы V	0 at 24 months	Splenomegaly resolved; <i>K/T</i> ^{D816V} became undetectable in BM cells	R (CR)	°Z		DLI†	Yes	72	
- /	SM-MDS		61	48	14 at 34 months	80	35	4 at 34 months	Severe myelofibrosis improved	щ	No.		DLI†	Yes	34	
33	MCL		535			70	70	10 at 3 months		œ	N			N	œ	Respiratory failure
	SM-MDS		> 400	25	2.1 at 12 months	80	20	0 at 12 months		R (CR)	N		TKI†, DLI†	yes	12	
35	SM-MDS- MPN						20-25	0 at 1 month	Splenomegaly persisted	œ	g			No	7	Severe GVHD
36	MCL		1,500				06		Splenomegaly worsened	۹.				No	-	Progression of SM
	SM-AML SM-AML		110		26		25 4	1 at 2 months 0.1 at 2		~~~~	8 8		DLI†, TKI†	Yes No	89 6	AML
ec ec	SOM-MS		919	11.3	11.3 6.2 at 3 months	40	2-3	months 2 at 12 months		SD	No			Yes	28	relapse
40	SDM-MDS		820	394	4.4 at 12 months		20	0 at 1 month		R (CR)	°N N			Yes	19	
	SM- AHNMD		230	200	9 at 3 months	õ	8	0 at 3 months	0 at 3 months No evidence of mast cells in liver and GI tract biopsies; K/7 ^{DB16V} became undetectable in the BM cells: diarrhear resolved	R (CR)	ŝ			2 Z	30	Pulmonary fibrosis
								(continued or	(continued on following page)							

			Serum Tryptase (ng/mL)	ryptase	(ng/mL)	Percentag	Percentage of Mast Cells in BM^*	ells in BM*		SM		Progression of SM	Toottoo to the second		From Erron	
Patient No.	Disease	Reference	At Diagnosis A	AlloHCT	After AlloHCT	At Diagnosis	At AlloHCT	After AlloHCT	Other SM-Related Changes After AlloHCT	to First AlloHCT		After Initial Response res/No Time	AlloHCT and Response	Alive (yes/no)	AlloHCT (months)	Cause of Death
42	ASM		230							R (CR)	No			Yes	27	
43	SM-MM									SD	No			Yes	105	
44	SM-ALL									R (CR)	No			Yes	56	
45	ASM		250							٩.				No	9	Progression
46	ASM									R (CR)	No			Yes	30	of SM
47	MCL					95	06	0 at 3 months		R (CR)	Yes	At 12 months		No	15	Progression of SM
48	SM-AML					15	15	< 5 at 4 months		œ	Yes	At 12 months D	DLI	N	12	Progression of SM and AML
49	MCL					38	10	0 at 12 months	Mast cells persisted in liver biopsy	œ	N		DLI†	Yes	82	
20	SM-MDS- MPN					Present	Some mast cells	< 5 at 36 months	Eosinophils significantly decreased in BM	œ	9 N		DLI†	Yes	150	
51	SM-MDS						Rare	Rare- scattered		SD	°N N			Yes	104	
52	MCL		> 1,200	63	3 at 1 month	80	10	0 at 1 month		R (CR)	Yes	At 1 month D	DLI	No	5	Progression of SM
53	SM-MDS- MPN		49	45	37 at 1 month		Q	5 at 1 month		SD	N			Yes	m	
54	SM-AML						Q	0 at 3 months		R (CR)	No			No	a	AML relapse
55	NM-MPN		69.4	67	5 at 3 months	a		0 at 3 months	0 at 3 months Hepatosplenomegaly resolved	R (CR)	N			Yes	33	
56	SM-MDS- MPN		> 400	> 400	16 at 3 months	15-20	30	0 at 3 months	Ascites continued	œ	No			No	10	GVHD- sepsis
57	SM-AML			145	9 at 1 month	a	20	0 at 1 month	Hepatosplenomegaly persisted	œ	N			°N N	41	AML relapse