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ABSTRACT
The NIH-funded LINCS program has been initiated to generate a

library of integrated, network-based, cellular signatures (LINCS).

A novel high-throughput gene-expression profiling assay known

as L1000 was the main technology used to generate more than

a million transcriptional profiles. The profiles are based on the

treatment of 14 cell lines with one of many perturbation agents

of interest at a single concentration for 6 and 24 hours duration.

In this study, we focus on the chemical compound treatments

within the LINCS data set. The experimental variables available

include number of replicates, cell lines, and time points. Our

study reveals that compound characterization based on three

cell lines at two time points results in more genes being affected

than six cell lines at a single time point. Based on the available

LINCS data, we conclude that the most optimal experimental

design to characterize a large set of compounds is to test them

in duplicate in three different cell lines. Our conclusions are

constrained by the fact that the compounds were profiled at a

single, relative high concentration, and the longer time point is

likely to result in phenotypic rather than mechanistic effects

being recorded.

INTRODUCTION

C
hemical compounds can be characterized by their

chemical structure and the associated physiochemical

properties as well as by the effects they induce in one

or more experimental settings. High throughput

screen (HTS) is traditionally used to identify lead compounds

revealing activity in a biological assay for a single therapeutic

target or pathway of interest.1,2 These assays test for activity on

the protein level (e.g., binding assays), the biochemical level

(e.g., enzyme activity assays), or the cellular level (e.g., cell

viability assays). Characterization of biological effects induced

by treating cellular systems with small molecules using tran-

scriptional profiling is currently being explored as a means to

add compound annotation beyond information, which can be

derived from HTS (i.e., chemical structures and measured bio-

logical activity). Indeed, compound-induced transcriptional

effects can be translated into ‘‘gene signatures’’ (i.e., set of

differentially expressed genes characterizing the activity of a

given compound, pathway, or disease), which can be used to

discover new connections among compounds, pathways, and

diseases.2–8

To this end, Peck et al.9 developed a cost-effective tran-

scriptional profiling methodology, in which up to 100 tran-

scripts can be measured in HTS mode, combining multiplex

ligation-mediated amplification with the Luminex FlexMap

(Luminex, Austin, TX) optically addressed and barcoded mi-

crosphere, and flow cytometric detection technology. The com-

bination of ligated-mediated amplification and an optically

addressed microsphere and flow cytometric detection has

since been extended to 978 gene transcripts. This technology,

known as L1000 (developed at the Broad Institute and com-

mercialized by Genometry, Inc., Cambridge, MA), can now be

used to screen and measure the transcriptionally induced ef-

fect(s) of thousands of compounds per day at a cost far below

conventional transcriptomic techniques like microarrays. The

978 genes that are measured using the L1000 platform have

been identified to capture most of the information contained

within the entire transcriptome (www.lincscloud.org/l1000).

The rest of the transcriptome can then be estimated by a model

built from computational processing of thousands of gene

expression data sets from GEO. Within this study, such ex-

trapolation is not considered, focusing instead on only the 978

directly measured genes.

When exploring compound-induced transcriptional effects,

one must, however, find a balance between the number of

compounds and the number of conditions that can be tested.

Conditions may include the number of (1) biological repli-

cates, needed for sound statistical testing, (2) cellular back-

grounds, which are likely to reveal different biological effects,

(3) compound concentrations, with low concentrations likely

to expose highly potent interactions between a small molecule

and its respective target and high concentrations tending to

show less specific or even toxic effects, and (4) time points,
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with earlier time points revealing more primary versus

downstream biological effects.

With the availability of the public library of integrated

network-based cellular signatures (LINCS) data set, which

covers multiple cellular contexts, and time points across

multiple compounds, it becomes possible to explore these

experimental variables and propose some level of guidance on

how to strike the right balance for genome-wide HTS tran-

scriptional profiling.

MATERIALS AND METHODS

General
Raw L1000 data were downloaded from the Broad Institute’s

FTP server (www.broadinstitute.org/LINCS/) and processed by

Genometry, Inc. using their proprietary methods. A total of

162,499 gene-expression profiles with a ‘‘CPC’’ designation

satisfied Genometry’s well- and plate-based quality thresholds.

These gene-expression profiles covered 14,199 compounds that

were repeatedly measured (one to five replicates) at two time

points (6 and 24 h), and in subsets of cell lines selected from

14 available lines (PC3, VCAP, A549, HT29, HEPG2, HCC515,

HA1E, MCF7, ASC, SKB, NPC, NEU, PHH, and A375; www

.lincscloud.org/cell_types/). In total there were 63,119 treat-

ments (i.e., any combination of compound, time, and cell line)

as shown in Table 1. These treatments came from 221 of the

original plate designs (with one to five replicate plates pass-

ing quality control), where a plate design included up to 362

treatment wells and up to 29 DMSO wells on a 384 multiwell

plate. There were a minimum of four DMSO wells passing

quality control on plates included in this study.

Compound Diversity
A differential gene expression analysis was run for each of

the 221 plate designs, using the limma R package.10 In this

analysis, the logged gene expression intensities between

compound treatment and DMSO are compared.

A linear model was estimated for each of the 978 investi-

gated genes, with a coefficient for the effect of each treatment

versus DMSO.11 Based on this model, t-statistics and associ-

ated P values were obtained to test separately whether the

absolute fold change (FC) is (1) different from 1 (test of any

difference) and (2) greater than 2 (test of substantial differ-

ence).12 The t-statistics were moderated using an empirical

Bayes method to shrink the variance estimates obtained for

each gene toward a common value.11 For each test, the P values

are adjusted to control the false discovery rate across genes.13

Where there were replicates for a given plate design, the within-

plate correlation was estimated and incorporated in the

model using generalized least squares to account for po-

tential plate effects.14

To separate the differences between compounds from the

differences between cell lines and time points within com-

pounds, a between-compound principal component analysis

(PCA) was applied to the moderated t-statistics for the test

of any difference from DMSO. In this analysis, genes are

weighted by the loadings from a standard PCA of the 63,119

treatments by 978 genes, compounds are weighted by the

relative frequency of treatments per compound, and principal

components are obtained for the variance between the mean

profile per compound.15 Unfortunately, the number of prin-

cipal components required to adequately represent the vari-

ance between compounds, that is, the bioactivity space, was

too large to summarize the compound diversity by observing

projections in low dimensions. As a result, the compound

diversity was summarized by a measure based on the distances

between compounds in the bioactivity space. Lacevic and

Amaldi16 considered a number of diversity measures for points

in Euclidean space and recommended using the sum of

Euclidean distances over the minimum spanning tree. Thus

compounds were projected onto a certain number of principal

components from the between-compound PCA, the minimum

spanning tree connecting the compounds was found, and the

sum of distances on this tree represented the diversity, that is,

how spread out the compounds were in the bioactivity space.

Adding a compound in a new area of the bioactivity space

adds a large amount to the diversity, whereas adding a com-

pound near to other compounds in the same space adds a

small amount and adding a compound that produces the same

response as another compound adds nothing at all.

The redundancy in the current set of compounds was ex-

plored by how well a subset of the compounds captures the

diversity of the full set of compounds. Two methods for se-

lecting subsets were applied. The first method obtained a subset

of size k by selecting the medoids of k clusters obtained from a

hierarchical clustering, where the medoid is the compound with

Table 1. Summary of Tests for Differential Expression
Between Treatments and DMSO

Treatments Compounds

Total 63,119 14,199

>1 significant gene 50,595 13,856

>1 significant gene, FC >2 24,306 11,392

>10 significant genes, FC >2 2,844 2,746

FC, fold change.

L1000: TRANSCRIPTIONAL CHARACTERIZATION OF COMPOUNDS
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minimum total distance from other members in the cluster. The

second method generated subsets iteratively, starting with a

randomly selected compound and then adding the compound

with maximum distance to its nearest neighbor in the subset.17

Both methods were applied to diversity based on the full set of

between-compound principal components (i.e., 978 compo-

nents) and to a reduced set, covering 70% of the between-

compound variability (i.e., 222 components).

Benefit of Additional Time Points
From the available 14,199 compounds, only 9,236 were

tested at both 6 and 24 h. The number of cell lines per com-

pound represented in these treatments ranged from one to six

(Table 2). As a result, the analysis was split up into six groups.

In each group, the percentage of compounds that revealed no

significant genes, at least one significant gene, at least one

significant gene at FC >2, and at least 10 significant genes at

FC >2, compared with DMSO, was plotted for both time points

and graphically compared.

Benefit of Different Cellular Backgrounds
Since all cell lines are not always used to measure the

transcriptional effect of compounds at the same time point,

there is a need to split up the treatments according to time. A

total of nine cell lines have 744 compounds in common,

which were run at 6 h (i.e., group 1: PC3, VCAP, A549, HT29,

HEPG2, HCC515, HA1E, MCF7, and A375). At 24 h, there is

less overlap between the treatments run for different cell

lines. Four groups can be identified, based on the treatments

run for NEU, PHH, A375, and HA1E, respectively. In each

case the number of cell lines was chosen to maximize the

number of common compounds. These four groups (i.e.,

group 2: NEU, NPC, MCF7, ASC, A549, and SKB; group 3:

A549, ASC, SKB, MCF7, NPC, and PHH; group 4: A549,

HT29, MCF7, PC3, VCAP, and A375; and group 5: HCC515,

HA1E, PC3, VCAP, SKB, NPC, MCF7, ASC, and A549) cover

all cell lines apart from HEPG2, for which no treatments were

run at 24 h.

A linear discriminant analysis (LDA) was performed for

each of the five cell line groups. In addition, the percentage of

compounds that revealed no significant genes, at least one

significant gene, at least one significant gene at FC >2, and at

least 10 significant genes at FC >2, compared with DMSO, was

plotted for each of the cell lines within each of the five cell line

groups and was graphically compared.

Benefit of Replicates
The addition of cell lines or time points implies collating

results from different differential expression analyses, whereas

additional replicates of the same plate design are analyzed to-

gether. The benefit of replicate plates on the L1000 differential

expression analysis can thus be investigated through a simu-

lation experiment. The log2 expression of gene i on plate j in the

kth well is assumed to be

yijk = li + sij + eijk,

where mi is the true gene expression and

sij ~ N(0, r2
b)

eijk ~ N(0, r2
w),

in which s2
b is the between-plate variance and s2

w is the

within-plate variance. Without loss of generality, the re-

spective DMSO means are assumed to be 0. In each simulation,

data are simulated for 978 genes, 24 DMSO, and 1 treatment

sample. The true treatment mean is always assumed to be one,

representing a twofold change on the log scale. For multiple

plates, this requires an estimate of the intra-plate well corre-

lation. Since the same treatment effect is assumed for all wells,

this correlation is not estimated in the simulation experiment,

but included as one of the simulation parameters. The simu-

lation is run over a grid of parameters for the within-group

variance, between-group variance, within-plate correlation,

and the number of plates. With the exception of plate num-

bers, the values for all remaining parameters are set to the

lower quartile, median, and upper quartile of the corresponding

statistics, taken from the 6,458 DMSO samples. For each set of

parameters, the significance of the logged gene expression

intensity between the treatment and the DMSO is determined

for each of the 978 genes. The proportion of genes significant

after correction for multiple testing shows the power to detect

a twofold change.

All analyses were run using R version 3.1.118 and inter-

preted at a 5% significance level, with Bonferroni correction

for multiple testing when needed.

RESULTS

Compound Diversity
The number-of-genes-changing is a crude measure for ac-

tivity and the adopted FC thresholds are high and arbitrarily

Table 2. Number of Cell Lines per Compound Represented
in Treatments at Both Time Points

Number of Cell Lines

1 2 3 4 5 6

Compounds (N) 7,541 278 329 574 92 422

DE WOLF ET AL.
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defined. The current analysis does not capture coordinated (i.e.,

signature-type) effects that have been shown to be robust bio-

logical effects, encoded in and detected from gene-expression

data. Against this background, 13,856 compounds from 14,119

compounds that were run in 63,119 treatments yield at least one

gene with a significant difference from the corresponding

DMSO sample. Within this group, 11,392 compounds reveal a

twofold change difference for at least one gene, and 2,746

compounds have 10 or more of suchlike genes (Table 1).

The between-compound PCA reveals that 28% of the total

variance is due to differences between the 14,119 compounds.

The first two and three principal components (cumulative)

only describe 18% and 21%, respectively, of the between-

compound variance; therefore, it is impossible to adequately

capture the bioactivity space in low dimensions. In fact, up to

222 dimensions are required to explain 70% of the variance.

Compound diversity is consequently summarized by means of

the sum of the Euclidean distances over the minimum span-

ning tree in full (i.e., 978) and reduced (i.e., 222) dimensions,

for selected subsets of compounds. Figure 1 shows the di-

versity against the proportion of compounds selected, where

the diversity is given as a proportion of the diversity of the full

set of 14,119 compounds. If selected compounds were evenly

spread throughout the bioactivity space, then the diversity

would be proportional to the number of compounds selected,

that is, the diversity would fall on the diagonal as shown in

Figure 1. This would be true regardless of the selection

method. If, in contrast, there are clusters of compounds in the

bioactivity space, then it is possible to select subsets that

represent disproportionally high amounts of the diversity.

Different selection methods will be more or less effective at

identifying subsets that efficiently cover the bioactivity space:

the closer the curve is to the top left corner as shown in Fig-

ure 1, the more effective the method at optimizing diversity

and the greater redundancy revealed in the data. Both com-

pound selection methodologies (i.e., cluster medoid and

maximum distance to nearest neighbor) are able to find sub-

sets with more efficient coverage, so there is clearly some

redundancy in the data (Fig. 1). The cluster medoid method is

virtually unaffected by whether the distances are based on all

978 or only 222 of the principal components. This suggests

that this method is robust to noise, selecting compounds by

the dominant features of bioactivity. Selection of cluster

medoids may thus be more stable and reflect true diversity. In

contrast, the maximum distance method improves with using

distances based on the full dimensionality, suggesting that

small differences between compounds allow the method to

differentiate between similar compounds and make the best

selection to optimize diversity. Thus the maximum distance

methodology based on 222 principal components seems to be
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a good compromise between robustness and coverage. The

resulting diversity curve suggests that 50% of the compounds

can capture 68% of the diversity, 75% can capture 87% of the

diversity, whereas the full diversity is approximately reached

when 98% of the compounds are included (Fig. 1).

Benefit of Additional Time Points
The compounds that were treated at both 6 and 24 h are

classified by the corresponding number of cell lines in Table 2.

The cumulative percentage, across time, of compounds that

induce significant differential gene expression in at least

one cell line, split up by the number of cell lines, is shown

in Figure 2. Around 75% of the compounds affect at least

one gene significantly in a single

cell line after 6 h of incubation

(Fig. 2). This value increases to

nearly 100% when an additional

time point is considered (Fig. 2).

When there are two or more cell

lines, the percentage of com-

pounds significantly affecting at

least one gene is already nearly

100% (Fig. 2). However, an addi-

tional time point approximately

doubles the number of compounds

where there are at least 10 genes

with significant FCs greater than

2 in at least 1 cell line, regardless

of the number of cell lines (Fig. 2).

Hence, different compounds have

large FCs at different points in

time.

Benefit of Different Cellular Backgrounds

At 6 h, differential gene expression was measured in 9 cell

lines for 744 compounds. Based on this compound subset, the

nine cell lines are ordinated in two dimensions according to

LDA (Fig. 3). The first two linear discriminant axes explain

32% of the variance and discriminate PC3 and VCAP from

each other as well as all others. The remaining cell lines can, to

some extent, be discriminated from each other using a third

linear discriminant dimension (Fig. 3). Figure 4A reveals that

the highest percentage of compounds that induce at least one

differentially expressed gene can be found in VCAP, whereas

PC3 has the least. Even though PC3 is less sensitive than

VCAP, it still identifies compounds that do not affect VCAP
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(Fig. 4B). Each additional cell line increases the number of

compounds that reveal at least one gene with a significant FC

greater than 2, although the additional benefit becomes small

after three cell lines (Fig. 4B).

At 24 h, differential gene expression was measured in four

groups of cell lines, for 197, 445, 569, and 445 common com-

pounds, respectively (Fig. 5). Figure 5 summarizes the number

of compounds that affect the different cell lines in the four

different cell line groups at 24h of treatment. Similar to the

analysis at 6 h, the effect of adding more cell lines after the first

three, LDA based, most distant located cell lines, is marginal.

Based on the 6 and 24 h LDAs, the cell lines can be ranked

in terms of their dissimilarity from other cell lines, with

higher weight given to the analyses that are based on a higher

number of compounds (i.e., from highest to lowest rank: PC3,

VCAP, A549, HT29, HEPG2, HCC515, HA1E, MCF7, ASC, SKB,

NPC, NEU, PHH, and A375). In addition, LDA suggests that at

least three cell lines should be considered and that the addi-

tional benefit is likely to be marginal after six to seven cell

lines. It must be stated, however, that there is no measure of

the relative diversity in the chosen LINCS cell line panel and

that the cell lines could be highly redundant.

Benefit of Replicates
The benefit of using replicates has been investigated in a

simulation-based power analysis. This analysis reveals that

when the between-plate variance is at its highest, increasing

the number of replicates will adversely affect the power of the

test (Fig. 6). In all other cases, the power of the test increases

with increasing number of replicates. When the within-plate

variance is at its median value or lower, three replicates are

sufficient to obtain a power of 50% or more. In particular, with

all settings at their median value, three replicates result in a

power of around 80%, whereas only one replicate results in a

power of 50% (Fig. 6).

Trade-Off Between Factors
Finally, the relative importance of time points, cell lines, and

replicates is investigated on a reduced data set, representing 3

replicates of 298 compounds at 2 time points for the top 3 most

informative cell lines taken from the LDA (i.e., PC3, VCAP, and

A549). The differential gene expression analysis is run on the

full data set, and then repeated twice. In a first iteration, two of

the three replicates in each {cell line, time} combination are

taken at random, followed by a second iteration in which just

one replicate is taken at random. The percentage of compounds

identified as having at least one gene with a significant FC

greater than 2 in at least one {cell line, time} combination

when varying the number of time points, number of cell lines,
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and number of replicates is summarized in Figure 7. Starting

from PC3 at 6 h, there is more benefit in adding an extra cell line

(i.e., VCAP) than an extra time point, irrespective of the number

of replicates that are considered. However, the effect of adding

an extra cell line is most clearly noted in the case where there is

only one replicate (Fig. 7). Having added VCAP at 6 h, there is

relatively more benefit in adding A549 than adding an addi-

tional time point, given the number of additional plates that

would be required for an additional time point. In the three

replicate cases, adding an additional cell line would for instance

add an extra 20% for three extra plates, whereas adding an

additional time point would add an extra 26% for double the

amount of extra plates (Fig. 7C).

DISCUSSION
A between-compound PCA cannot adequately reduce the

total compound bioactive space to lower dimensions. Indeed,

222 dimensions would be required to capture only 70% of the

total variance. It is, however, not surprising that the dimen-

sionality in the LINCS data set cannot be reduced to a small

set of principal components, since the genes that were mea-

sured on the L1000 platform were deliberately selected to be

nonredundant. Nonetheless, the sum of Euclidean distances

over the minimum spanning tree, using the maximum distance-

based methodology on a reduced set of 222 principal compo-

nents, represents an elegant and robust way to summarize the

compound diversity. As such, only 2% of the compounds

(i.e., 282 compounds) can be regarded as totally redundant,

as the diversity reaches 100% when 98% of the compounds

are considered in the LINCS data set. It should, however, be

mentioned that this analysis does not take the coordinated

gene expression effects among the compounds into account.

Gene signatures, preferentially cross validated, will do so, and

will be able to pick up common patterns between compounds

that are transcriptionally diverse.5,19–23 Gene signatures were

not used in this study, because the transcriptional diversity

of the entire LINCS data set needed to be captured, instead

of focusing on a set of signatures that could not be cross

validated.

In planning transcriptional compound profiling studies,

priority should clearly be given to additional replicates to

ensure the analysis is not underpowered, so that true FCs of at

least twofold can be frequently detected and so that t-statistics

are not inflated when true FC is less than twofold. The

simulation-based power analysis indicates that three repli-

cates would give power of around 80% on average, whereas

six replicates would give a power greater than 50% in nearly

all of the simulated tests. Despite the decrease in accuracy,

fewer replicates may well result in similar top compound

rankings, which will ultimately be the compounds of interest.

However, in the study of trade-off between factors, the cor-

respondence between the one replicate analysis and either the

two or three replicates analysis is only around 25% for the top

50 compounds, which is little more than the 17% that would

be expected by chance alone. Hence, a single replicate will not

only lead to poorly estimated statistics but will also result in

unreliable compound rankings. In contrast, the correspon-

dence between the ranked lists of the two and three replicate

analyses is nearly always above 75%, with 19 common

compounds in the top 20. Thus the two-replicate condition is a

good approximation for the three-replicate condition, when

the top ranked compounds are considered.
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Fig. 6. Power to detect a twofold change from DMSO based on simulations varying the within-plate variance, the between-plate variance,
and the within-plate correlation assumed in the joint model of expression over replicate plates. With the exception of the number of
replicate plates, parameter settings were determined by the lower quartile, median, and upper quartile of values observed in the DMSO
samples. (A) Lower quartile, (B) median, and (C) upper quartile setting for the within-plate correlation.
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Adding extra cell lines will add more information about the

compound-induced biological effects as illustrated by the LDA

at 6 and 24 h. The combination of PC3, VCAP, and A549 will

cover most of the transcriptional effects within the LINCS data

set. The benefit of multiple cell lines is slightly greater than

adding an extra time point. However, this cell line effect de-

creases after three cell lines and becomes marginal at six cell

lines. In contrast, the benefit of an additional time point re-

mains fairly constant up to six cell lines. Therefore, it would

probably be better to run three cell lines at two time points than

to run six cell lines at one time point. Obviously, the choice of

PC3, VCAP, and A549 should be viewed in the context of this

particular data set. Important cell lines may be missing, whereas

others may be overrepresented in the current data. PC3 and

VCAP are, for example, two cell lines originating from prostate

tissue. In addition, the compound groups that were used to

assess the effect of cell lines may hold a bias toward a particular

biological effect. Finally, as pointed out by Iorio et al.,22 if a

compound shows inconsistent transcriptional effects across

different cell lines, its biological effect may be diluted when

merging gene expression values from these different cell lines.

The current findings must, however, be interpreted with care

and viewed against the context of the current LINCS data set and

all of its limitations: (1) the LINCS data were not explicitly

collected to address which experimental variables are needed

in a genome-wide HTS transcriptional profiling study, (2) all

compounds have been profiled at the same high single dose, (3)

concentration is not considered as a variable, (4) there is no

measure of the relative diversity in the chosen cell line panel and

could be highly redundant, (5) the compounds used are almost

certainly not typical of those in primary-screening libraries nor

the molecularly targeted and (allegedly) highly selective agents

that pharma companies chose. Finally, the current analysis does

not capture coordinated (i.e., signature-type) effects such as

those used by other authors,3–5,19–23 but rather uses the number-

of-genes-changing as a crude measure for activity.

CONCLUSIONS
In this article, a publicly available LINCS data set from the

NIH-funded LINCS program and processed by Genometry, Inc.

was used to explore different experimental conditions that can

be used to assess compound-induced transcriptional effects.

Given the limitations, already outlined, we suggest that two

replicates from three cell lines at one time point seem to

provide the best experimental conditions for genome-wide

HTS transcriptional profiling of thousands of compounds,

yielding highest power to do correct transcriptional charac-

terization of the compound-induced transcriptional effects.

DISCLOSURE STATEMENT
No competing financial interests exist.

REFERENCES

1. Drews J: Drug discovery: A historical perspective. Science 2000;287:1960–1964.

2. Iorio F, Rittman T, Ge H, et al.: Transcriptional data: A new gateway to drug

repositioning? Drug Discov Today 2013;18: 350–357.

3. Lamb J, Crawford ED, Peck D, et al.: The connectivity map: Using gene-

expression signatures to connect small molecules, genes and diseases. Science
2006;313:1929–1935.

44

64

93

95

98

100

1

1 2 3

1 2 3

1 2 3

2

Cell lines

T
im

e 
po

in
ts

16

34

43

75

63

100

1

2

Cell lines

T
im

e 
po

in
ts

15

32

48

74

68

100

1

2

Cell lines

T
im

e 
po

in
ts

0

25

50

75

100

Percent

A

B

C

Fig. 7. Compounds identified in (A) one replicate, (B) two repli-
cates, and (C) three replicates analyses, as having at least one
gene with significant fold change greater than 2 in at least one cell
line: time combination when varying the number of time points
and/or the number of cell lines, as a percentage of those identified
with all three cell lines and both time points.

L1000: TRANSCRIPTIONAL CHARACTERIZATION OF COMPOUNDS

ª MARY ANN LIEBERT, INC. � VOL. 14 NO. 4 � MAY 2016 ASSAY and Drug Development Technologies 259



4. Lamb J: The connectivity map: A new tool for biomedical research. Nat Rev
Cancer 2007;7:54–60.

5. D’Arcy P, Brnjic S, Olofsson MH, et al.: Inhibition of proteasome deubiquitinating

activity as a new cancer therapy. Nat Med 2011;17:1636–1640.

6. Finley SD, Chu L-H, Popel AS: Computational systems biology approaches to

anti-angiogenic cancer therapeutics. Drug Discov Today 2015;20:187–197.

7. Verbist B, Verheyen GE, Vervoort L, et al.: Integrating high-dimensional

transcriptomics and image analysis tools into early safety screening: A proof-

of-concept for a new early drug development strategy. Chem Res Toxicol
2015;28:1914–1925.

8. Liu C, Su J, Yang F, Wei K, Ma J, Zhou X: Compound signature detection on

LINCS L1000 big data. Mol Biosyst 2015;11:714–722.

9. Peck D, Crawford ED, Ross KN, Stegmaier K, Golub TR, Lamb J: A method for

high-throughput gene expression signature analysis. Genome Biol 2006;7:R61.

10. Ritchie ME, Phipson B, Wu D, et al.: Limma powers differential expression

analyses for RNA-sequencing and microarray studies. Nucleic Acids Res
2015;43:7:e47.

11. Smyth GK: Linear models and empirical Bayes methods for assessing

differential expression in microarray experiments. Stat Appl Genet Mol Biol
2004;3:Article3.

12. McCarthy DJ, Smyth GK: Testing significance relative to a fold-change

threshold is a TREAT. Bioinformatics 2004;25:765–771.

13. Benjamini Y, Hochberg Y: Controlling the false discovery rate: A practical and

powerful approach to multiple testing. JRSS B 1995;57:289–300.

14. Smyth GK, Michaud J, Scott H: The use of within-array replicate spots for

assessing differential expression in microarray experiments. Bioinformatics
2005;21:2067–2075.

15. Within PCA and Between PCA. Available at: https://pbil.univ-lyon1.fr/R/pdf/

course4.pdf (Last accessed April 17, 2016).

16. Lacevic B, Amaldi E: Ectropy of diversity measures for populations in Euclidean

space. Inf Sci 2011;181:2316–2339.

17. Wawer MJ, Li K, Gustafsdottir SM, et al.: Toward performance diverse small-

molecule libraries for cell-based phenotypic screening using multiplexed high-

dimensional profiling. Proc Natl Acad Sci 2014;111:10911–10916.

18. R: A language and environment for statistical computing. Available at: www

.R-project.org (Last accessed July 10, 2014).

19. Peng T, Golub RT, Sabatini MD: The immunosuppressant rapamycin mimics a

starvation-like signal distinct from amino acid and glucose deprivation. Mol Cell
Biol 2002;22:5575–5584.

20. Fournier MV, Martin KJ, Kenny PA, et al.: Gene expression signature in

organized and growth-arrested mammary acini predicts good outcome in

breast cancer. Cancer Res 2006;66:7095–7102.

21. Ciuffreda L, Del Bufalo D, Desideri M, et al.: Growth-inhibitory and

antiangiogenic activity of the MEK inhibitor PD0325901 in malignant

melanoma with or without BRAF mutations. Neoplasia 2009;11:720–731.

22. Iorio F, Bosotti R, Scacheri E, et al.: Discovery of drug mode of action and drug

repositioning from transcriptional responses. Proc Natl Acad Sci U S A

2010;107:14621–16626.

23. Nigsch F, Hutz J, Cornett B, et al.: Determination of minimal transcriptional

signatures of compounds for target prediction. EURASIP J Bioinform Syst Biol
2012;2012:2.

Address correspondence to:

Hans De Wolf MSc, PhD

Department of Discovery Sciences

Janssen R&D

Turnhoutseweg 30

Beerse B-2340

Belgium

E-mail: hdwolf@its.jnj.com

Abbreviations Used

A375 ¼ malignant melanoma cell line

A549 ¼ lung carcinoma cell line

ASC ¼ adipocyte cell line

DMSO ¼ dimethyl sulfoxide

FC ¼ fold change

FTP ¼ file transfer protocol

GEO ¼ Gene Expression Omnibus

HA1E ¼ immortalized kidney cell line

HCC515 ¼ lung carcinoma cell line

HEPG2 ¼ hepatocellular carcinoma cell line

HT29 ¼ colon adenocarcinoma cell line

HTS ¼ high throughput screen

LDA ¼ linear discriminant analysis

LINCS ¼ library of integrated network-based cellular signatures

MCF7 ¼ breast adenocarcinoma cell line

NEU ¼ primary terminally differentiated neuron cells

NIH ¼ National Institute of Health

NPC ¼ primary iPS-derived neural progenitor cells

PC3 ¼ prostate adenocarcinoma cell line

PCA ¼ principal component analysis

PHH ¼ primary hepatocyte cells

SKB ¼ skeletal myoblast cells

VCAP ¼ metastatic prostate cancer cell line
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