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ABSTRACT

Practical protein design problems require designing sequences with a combination of af-
finity, stability, and specificity requirements. Multistate protein design algorithms model
multiple structural or binding ‘‘states’’ of a protein to address these requirements. comets

provides a new level of versatile, efficient, and provable multistate design. It provably
returns the minimum with respect to sequence of any desired linear combination of the
energies of multiple protein states, subject to constraints on other linear combinations. Thus,
it can target nearly any combination of affinity (to one or multiple ligands), specificity, and
stability (for multiple states if needed). Empirical calculations on 52 protein design problems
showed comets is far more efficient than the previous state of the art for provable multi-
state design (exhaustive search over sequences). comets can handle a very wide range of
protein flexibility and can enumerate a gap-free list of the best constraint-satisfying se-
quences in order of objective function value.
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1. INTRODUCTION

Protein design requires the prediction and selection of protein sequences with desired properties,

generally some combination of structure stability, binding to desired ligands, and lack of binding to

undesired ligands. The gold standard for protein design is natural evolution, in which protein mutations

confer fitness advantages only if several desired properties are all present: mutants must be sufficiently stable,

effective at binding or catalysis, and selective for their fitness-conferring function (Frey et al., 2010).

Researchers have tried to emulate this process by directed evolution experiments (Arnold, 1998). But

methods to optimize these properties computationally (Donald, 2011) allow enormous sequence spaces to be

searched without enormous resource expenditures and thus greatly expand the space of possible designs.

Such searches require algorithms that do not analyze each candidate sequence separately: Large sequence
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spaces are too expensive to analyze one by one. Computational protein designers have used three different

strategies to achieve the desired properties with their new sequences: energy minimization of a single desired

protein or complex structure (‘‘single-state design’’); heuristic minimization of some function combining

multiple desired properties (‘‘traditional multistate design methods’’); and analysis of one sequence at a time

in detail (‘‘single-sequence analysis’’).

Single-state design is the most developed class of dedicated protein design algorithms. It is commonly

used to improve fold stability by selecting mutants that minimize the protein’s total energy (Donald, 2011;

Kuhlman and Baker, 2000; Desmet et al., 1992; Gainza et al., 2012; Georgiev et al., 2014), and to increase

binding affinity by selecting mutants that minimize the energy of a complex (Karanicolas and Kuhlman,

2009; Georgiev et al., 2008; Floudas et al., 1999). Some of these methods are provable: Given a sequence

space to search, a model of the protein’s conformational space, and an energy function, they are guaranteed to

return the lowest-energy sequence and conformation (the global minimum-energy conformation, or GMEC).

The dead-end elimination (DEE) (Desmet et al., 1992) and A* (Leach and Lemon, 1998) algorithms have

this guarantee. In their original form, they assume a discrete conformational space, but they have been

extended to include both continuous sidechain (Georgiev et al., 2008; Gainza et al., 2012) and backbone

(Georgiev and Donald, 2007; Hallen et al., 2013) flexibility. Provable single-state methods can also enu-

merate either a gap-free list of the lowest-energy sequences and conformations (Leach and Lemon, 1998;

Gainza et al., 2012; Hallen et al., 2013), or of the sequences with the lowest-energy optimal conformations

(Roberts, 2014). Other single-state methods are not provable, most prominently Metropolis Monte Carlo–

based methods (Lee and Levitt, 1991; Kuhlman and Baker, 2000), but are popular for reasons of compu-

tational speed. All these methods use some simplified model of protein conformational flexibility. A popular

but highly approximate model is to allow the conformation of each amino acid to be selected from a discrete

set, referred to as rotamers. This model can be made substantially more accurate by allowing small, con-

tinuous conformational adjustments around the rotameric conformations, which can be incorporated while

maintaining provable accuracy (Georgiev et al., 2008; Gainza et al., 2012; Hallen et al., 2013).

Single-state design can be thought of as the stabilization of a desired ‘‘state’’ of a protein—essentially, its

fold, overall conformation, and ligand-binding mode. This paradigm can be extended to include multiple

states, possibly with different ligands, in order to specify multiple desired properties for the designed

sequence. This strategy is known as multistate protein design (Davey and Chica, 2012). DEE has been

extended to multistate design in the type-dependent DEE algorithm (Yanover et al., 2007). This algorithm

prunes rotamers that are guaranteed not to be part of the optimal conformation of a state of the protein. It

offers a significant advantage in efficiency, but does not reduce the number of sequences that must be

considered in multistate design, because it only eliminates rotamers in comparison to more favorable

rotamers of the same amino-acid type.

On the other hand, nonprovable methods have also been developed to try to optimize objective functions

based on the energies of multiple states, without considering each sequence separately. Genetic algorithms

have been used to optimize differences in energy between states (Lewis et al., 2014) as well as other

objective functions (Leaver-Fay et al., 2011), and belief propagation has been used to optimize sums of

energies of different states, in order to design a binding partner appropriate for multiple ligands (Fromer

et al., 2010ba,b; Fromer, 2010). Type-dependent DEE can also be combined with such techniques, to

reduce the conformational space that is searched heuristically (Yanover et al., 2007; Fromer et al., 2010a).

In addition, some design systems can be described fairly accurately by an energy function whose terms

depend only on the amino acid types of one or a few residues (Grigoryan et al., 2006); the CLASSY method

(Grigoryan et al., 2009) derives such energy functions by least-squares fitting, and then uses them to

perform efficient multistate designs that bypass conformational search entirely and use integer linear

programming algorithms to find the optimum of the sequence-based energy function with a provable

guarantee of optimality. However, for design systems that are not well described by a cluster expansion

(i.e., that exhibit significant higher-order interactions between conformational changes at different resi-

dues), previous multistate design algorithms cannot provide any guarantees about the optimality of their

designed sequences without an exhaustive search over sequence space.

Methods that consider each candidate sequence explicitly are another important and highly versatile

category of computational protein design methods. However, the computational costs can be very high—

linear in the number of sequences, and thus exponential in the number of simultaneously mutable positions.

Molecular dynamics can be applied for single-sequence analysis in protein design (Leech et al., 1996;

Zheng et al., 2008), using simulations over time to investigate the properties of a candidate sequence.
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Molecular dynamics readily models all types of protein flexibility with many different energy functions,

including effects like solvent polarization (Sitkoff et al., 1994) or explicit solvent. It also allows the user to

account for entropic contributions to binding energies. More recent algorithms account for entropy without

the steep costs of simulation over time. The K* algorithm in osprey (Lilien et al., 2005; Georgiev et al.,

2008; Gainza et al., 2012; Gainza et al., 2013) predicts the binding of a mutant protein sequence to a ligand

by computing an ensemble of low-energy protein states to provably approximate the binding constant Ka

within a desired relative error for the user-specified flexibility model and energy function. Though it

provides a vast speedup relative to exhaustive search over all conformations at each sequence, it does require

explicit consideration of each sequence sufficient to bound the energies in its ensemble. K* in osprey (Gainza

et al., 2013) has yielded several multistate protein designs that were successful experimentally. The calcu-

lations have involved both comparisons of the bound and unbound states of a single complex (Rudicell et al.,

2014; Roberts et al., 2012; Gorczynski et al., 2007) and of multiple complexes (Chen et al., 2009; Frey et al.,

2010; Stevens et al., 2006; Georgiev et al., 2012), and the osprey-designed proteins have performed well

in vitro (Rudicell et al., 2014; Roberts et al., 2012; Gorczynski et al., 2007; Chen et al., 2009; Frey et al.,

2010; Stevens et al., 2006; Georgiev et al., 2012) and in vivo (Rudicell et al., 2014; Roberts et al., 2012;

Gorczynski et al., 2007; Frey et al., 2010) as well as in nonhuman primates (Rudicell et al., 2014).

We now present an algorithm distinct from these three traditional strategies that combines advantages

from all three: comets. Like other multistate methods, it optimizes an energy measure that considers

multiple states: for example, it can directly optimize the binding energy (the difference in energy between

the bound and unbound states), or the difference in binding energy between two different ligands. Like

single-sequence analysis, it allows consideration of a wide variety of stability, affinity, and specificity

requirements during sequence selection. This is facilitated by its accommodation of optimization con-

straints: for example, it can optimize binding to one ligand while constraining binding energy for other

ligands. It provably returns the best sequence for its specified optimization problem, without performing an

exhaustive search over the possible sequences. Some previous methods can do this for single-state design

problems, but before comets it was impossible for most multistate problems. As a result, comets provides

a vast performance improvement over the previous state-of-the-art for provable multistate design, which is

exhaustive search over sequence space.

By presenting comets, this article makes the following contributions:

1. A novel and versatile framework for multistate protein design, allowing constrained optimization of

any linear combinations of state energies.

2. An algorithm to solve problems in this framework that provably obtains the same results as ex-

haustive search over sequences but is combinatorially faster than this exhaustive search, as shown by

empirical measurements on 52 protein design problems.

3. Support for continuous sidechain and backbone flexibility in comets.

4. The ability to enumerate as many constraint-satisfying sequences as desired, in a gap-free list in

ascending order of the desired objective function.

5. An implementation of comets in our laboratory’s open-source osprey protein-design software

package (Frey et al., 2010; Chen et al., 2009; Georgiev et al., 2008), available for download at our

website (Georgiev et al., 2009) as free software.

2. METHODS

2.1. Problem formulation

Let us consider a protein design problem where we wish to consider mutating n residues. The output of

our calculation will be a sequence s: an ordered list of n amino acid types. We have a set A of states. Each

state is a protein structure containing our n mutable residues, along with a (possibly continuous) confor-

mation space for each sequence assignment, which we call the flexibility model for the state. We consider

functions of the form

f (s) = c0 +
X

a2A

caEa(s) (1)

where the ca are real coefficients. We call these functions linear multistate energies (LMEs). comets is an

algorithm to minimize any LME f (s) with respect to sequence s, under constraints of the form ci(s) < 0,
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where each ci is also an LME. LMEs are suitable for representing stability, affinity, and selectivity

requirements in protein design. For example, to optimize a binding energy, we set A = {b, u} to consist of

the bound state b and the unbound state u, and optimize f (s) = Eb – Eu. That is, we set cb = 1, cu = -1 and

c0 = 0 for our objective function. A highly simplified, ‘‘toy’’ example of this setup is in Supplementary

Material A (available online at www.liebertpub.lcom/cmb).

The choice of objective function and constraints defines the physical problem we wish to solve. We

require a computational model of proteins to convert this into a computational problem. To model protein

flexibility, we use the very general model of the DEEPer algorithm (Hallen et al., 2013) in osprey. The

protein in each state is allowed to have any number of degrees of freedom, which can be either continuous

or discrete, and which fully specify both the sequence and conformation of the protein. Each residue in each

state has a set of ‘‘residue conformations’’ (RCs) (Hallen et al., 2013). An RC is a portion of conforma-

tional space defined by bounds on every conformational degree of freedom available to the residue. These

bounds must be tight enough that once a residue conformation is assigned to every residue, the energy

minimum over this limited conformational space can be found by local minimization. Thus, RCs define a

partitioning of conformational space that allows local minimization to be used as a subroutine in our global

search. A residue conformation is associated with a specific amino acid type. This framework is suitable for

accommodating both continuous sidechain and backbone flexibility, but it reduces to the model of con-

tinuous sidechain flexibility of Georgiev et al. (2008) and Gainza et al. (2012) if only sidechain dihedrals

are used as continuous degrees of freedom. If each sidechain dihedral is confined to a single value within

each residue conformation, then this special case is just the commonly used rigid-rotamer approximation

(Desmet et al., 1992; Leach and Lemon, 1998). In both of these special cases, each residue conformation

represents a single sidechain rotamer.

The model of flexibility may differ between states; in fact, different residues may be made flexible. For

example, in a calculation with a bound and an unbound state of a protein, the ligand will have flexibility in

the bound state, but will be absent from the unbound state (Fig. 1). But all states have the same set of

mutable residues, and the same set of allowed amino-acid types at each mutable residue. This way, comets

outputs a sequence applicable to all states.

To model energy, we must have an ‘‘energy function’’ that estimates the energy of a given sequence and

conformation. Our implementation of comets uses a pairwise additive energy function, i.e., a sum of

FIG. 1. Flexible and mutable residues in a design for specificity. The apoptotic regulator CED4 forms two different

dimers, one to block apoptosis (left; PDB id 2a5y [Yan et al., 2005]) and one to induce it (right; PDB id 3lqr [Qi et al.,

2010]). We want to design for specificity (to block apoptosis), so we allow mutations to some residues in the binding

site (blue). To accurately model the conformational changes induced by the mutations, we also model as flexible the

residues on the opposite side of each interface that interact with the mutable residues (orange, pink). Analysis of this

calculation and others is described in section 3.
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energy terms that each depend on the conformations of at most two residues. This property is only used in

the computation of lower bounds for LMEs over subsets of the sequence space and state conformational

spaces (section 2.2.2; Supplementary Material B), so a non-pairwise energy function that admits such

lower-bound computations would also be compatible with comets. comets will return optimal results for

the given model of flexibility and energy function.

2.2. A* over sequences

comets uses the A* (Hart et al., 1968) search algorithm to search sequence space. In most previous

applications of A* to protein design (Leach and Lemon, 1998; Georgiev et al., 2008), nodes of the tree

correspond to partially defined conformations. Each partially defined conformation is specified by RC

assignments for one or more residues. Thus, each node corresponds to the conformational space made up of

all conformations consistent with the partial definition. A node’s score is a lower bound on all the con-

formational energies in this space. comets is similar, but nodes correspond to partially defined sequences

and thus to a sequence space. A node’s score is a lower bound on the objective function for all sequences in

the node’s sequence space (Fig. 2).

In A*, we repeatedly process the lowest-scoring node in the tree. Processing a node means either splitting

it into several nodes that partition its sequence space, or computing a higher score (i.e., tighter bound) for it

(that is still a valid lower bound). Score computation may involve conformational search (Fig. 2), and some

nodes will be processed until their sequence is fully defined and the optimal conformation for each state is

fully determined. These nodes are termed fully processed, and their objective function and constraint LMEs

can be evaluated exactly. When the lowest-scoring node is fully processed, we can return its sequence as

optimal, because its objective function value (at optimal conformations for each state) is better than any

sequence in any of the sequence spaces of the other nodes in the tree. This is because the other nodes’

scores are lower bounds on their optimal objective function values.

2.2.1. Types of nodes. We will store two types of nodes in our tree (Fig. 2). Examples of each type of

node in the toy example are given in Supplementary Material A.

FIG. 2. Expansion steps during node processing generate nodes

with partially (e.g., VXXXX or AXXXX) and then fully (e.g.,

VFYWI) defined sequences. Once a node has a fully defined

sequence, conformational trees are built for it for all states. Then

conformational tree expansions lead to fully processed nodes. X,

unassigned amino acid or RC; V, Val; A, Ala; F, Phe; Y, Tyr; W,

Trp; I, Ile.
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The first type has a sequence that is not fully defined: Not all mutable residues have an assigned amino-

acid type. At these nodes, we store information on which RCs are pruned at each residue in each state (for

the assigned amino-acid types if assigned; for all amino acid types if not assigned). The pruned RCs are

those that cannot be part of the optimal conformation for that state for any sequence in the sequence space

of the node. We store pruned pairs of RCs as well as individual pruned RCs.

The second type of node has a fully defined sequence: an amino-acid type assigned for each mutable

residue. At each such node, for each state, we store an A* tree expanding the conformational space for that

sequence. These trees are identical to those used in DEEPer in osprey (Hallen et al., 2013): Their nodes

each represent a subset of conformational space, defined by RC assignments to some of the residues, which

restrict the values of the proteins’ degrees of freedom to the bounds associated with the assigned RCs. The

score of each node is a lower bound on the energy of all conformations in its allowed conformational space.

2.2.2. Node-processing operations. For either type of node, node processing consists of two steps: an

‘‘expansion’’ step and a ‘‘bounding’’ step (Fig. 3). Every time we extract a node from the priority queue, meaning

it is the lowest score in the tree, we choose the appropriate processing operation and perform it (Fig. 3).

Expansion step. For a node without a fully defined sequence, the expansion step splits the node n into

several nodes whose sequence spaces partition the sequence space of n. If the first mutable residue without

an amino acid type assigned in n is residue r, then this partition can be performed by creating a node for

each amino acid type a allowed at r. These child nodes will each have a sequence space identical to that of

n, except with the amino acid a assigned to residue r. For a node n with a fully defined sequence, we split

the lowest-scoring node in one of n’s conformational trees: Each child node has a different RC assignment

for a residue whose RC is not assigned at the parent node. This is the same type of split used in DEEPer

(Hallen et al., 2013), and essentially as in previous protein design applications of A*.

Bounding step. In the bounding step, a lower bound is computed for the objective function and for each

of the constraint LMEs. If the lower bound for any of the constraint LMEs ci is greater than 0, then we

know all sequences at the node violate that constraint, and we eliminate the node. Otherwise, the node score

is set to be the lower bound on the objective function. Details of the method for computing lower bounds

are provided in Supplementary Material B.

For nodes without fully defined sequences, we update the list of pruned RCs for the child node before

computing bounds. Pruning is performed by type-dependent DEE (Yanover et al., 2007)—in our im-

plementation, the various pruning algorithms available in osprey (Georgiev et al., 2008; Gainza et al.,

2013; Georgiev et al., 2006) are used.

2.3. Starting and finishing the calculation

Hence, to perform comets, we create a priority queue of A* tree nodes and initialize it with a node

representing the entire sequence space we are searching. We then repeatedly extract the lowest-scoring

node from the priority queue and process it with the appropriate node-processing operation.

FIG. 3. comets is a sequence of node-processing operations.
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Each operation will define either the sequence or the conformation in one of the states at a residue where

it was previously not defined, so in a finite number of steps, we will achieve a node whose sequence and

optimal state conformations are fully defined, that is, a fully processed node. If our lower-bounding

techniques are adequate, very few sequences will need to be fully processed, so this sequence A* tree will

return the optimal sequence with great efficiency compared to exhaustive search over sequences. Running

comets until n sequences have been returned will yield the n sequences that have the lowest objective

function values among all sequences satisfying the constraints.

3. RESULTS

Protein design calculations were performed in order to measure the efficiency of comets and its ability to

design proteins with properties undesignable by single-state methods. Systems of four types were used:

designs for specificity on a protein that can form two or more different complexes; optimization of the

binding energy for a single complex; stabilization of a single protein robust to choice of force field; and

stabilization of the reduced form of angiotensinogen relative to the oxidized form or vice versa. Details of

these test cases are in Supplementary Material C.

3.1. Measurement of efficiency

comets was run on 52 protein design test cases to measure its efficiency advantages across a range of

different objective functions and constraints. The test cases used 44 protein structures, and 25 modeled

flexibility using rigid rotamers while the other 27 used continuous flexibility.

Exhaustive search, the only other provable algorithm for multistate design, must calculate the GMEC for

each sequence in each state. For an s-state design space with N sequences, this means that N sequences

must be considered explicitly and sN state GMECs must be calculated—a formidable proposition, since N

grows exponentially with the number of mutable residues and each state GMEC calculation is NP-hard

(Pierce and Winfree, 2002). To measure the ability of comets to avoid these calculations, the number g of

state GMECs calculated by each run of comets was measured and compared to sN. Also, comets provably

need not even consider each sequence explicitly, even briefly. To determine if this reduced consideration of

sequences provides a significant advantage in efficiency, the number m of sequence tree nodes created in

each comets run was measured and compared to N. Hence, m is the number of partial sequences explicitly

considered in a comets run.

Many provable algorithms, including A* (Leach and Lemon, 1998) and integer linear programming

(Kingsford et al., 2005), and non-provable methods like Monte Carlo (Kuhlman and Baker, 2000) can

minimize an LME using (a) an exhaustive search over sequences without (b) also exhaustively searching

over conformations. So even without comets there is no need for an exhaustive search over conformational

space. However, all previous provable methods for typical (non-sequence-based) energy functions must

still compute the GMEC of each state for every sequence when performing multistate design, because they

are intended to calculate the minimum of an energy function (with respect to sequence and conformation).

In contrast, comets calculates the constrained minimum (over all sequences) of a linear combination of

minima (over all conformations) of energy functions. Hence, in this article, we measure the ability of

comets to avoid computing GMECs for most of the sequences, and sometimes even to avoid any explicit

consideration of most of the remaining sequences. These are the main novel abilities of comets.

3.1.1. Reduction in number of state GMECs calculated. comets calculates only a very small

portion of state GMECs (Fig. 4)—often only the state GMECs for the sequences being returned as optimal.

To calculate the best sequence in rigid designs, the average run needed to calculate only 0.05% of the state

GMECs in the design space. This portion increased to 0.1% for enumeration of the best five sequences. For

continuous designs (Gainza et al., 2012; Hallen et al., 2013), 2% of the state GMECs were calculated for

runs finding only the best sequence, and 4% were calculated for runs enumerating the best five sequences.

3.1.2. Reduction in number of sequences considered explicitly. Reduced explicit consideration

of sequences was found to provide a significant combinatorial speedup in comets runs without continuous

flexibility. For calculation of the best sequence in these rigid designs, the median m/N was 0.02, and many
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runs with larger design spaces generated significantly fewer sequence tree nodes relative to the design space

size (Fig. 5)—the largest sequence space to return a constraint-satisfying sequence had 47 million se-

quences with m/N = 2 · 10-6 (i.e., a 5 · 105-fold speedup). The median increased to 0.03 for enumeration of

the best five sequences. For continuous designs, the median m/N values were 0.63 for the best sequence and

0.69 for the best five.

3.1.3. Provably finding unsatisfiable constraints. The statistics above exclude runs for which no

sequences can satisfy the constraints. comets can provably verify when no satisfying sequences exist and

did so for 8 of the 27 continuous runs and 5 of the 25 rigid runs.

3.2. Differences in sequences returned by multistate designs and single-state proxies

Single-state design is often used as a proxy or a ‘‘first step’’ in multistate design. To test whether this

approximation yields sequences similar to the optimal ones from multistate design, sequence divergences

FIG. 4. Number g of state GMECs calculated in comets runs with (A) rigid or (B) continuous flexibility, compared to

the number sN of state GMECs in the entire design space (sN is the number of sequences in the design space times the

number of states). Results are shown both for calculation of the best sequence and for enumeration of the best five,

when possible under the design constraints. Exhaustive search would have to calculate all state GMECs (green curve).

FIG. 5. Speedup due to reduced explicit consideration

of sequences in comets, compared to exhaustive search

(green line), for designs with rigid rotamers. m: number

of sequence tree nodes created in comets; N: number of

sequences in the design space. Magnifying this speedup,

comets handles sequences that it considers explicitly

very efficiently (Fig. 4).
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were calculated between optimal sequences from multistate design and optimal sequences from corre-

sponding proxy single-state designs.

Our results indicate that single-state approaches are likely to yield sequences far from the optimal one.

For specificity design problems favoring a complex P:A over a complex P:B, mutable-residue sequence

divergence between the single-state optimal sequence for complex P:A and the multistate optimal sequence

was 33% (averaged over 13 designs). Similarly, for multispecificity designs (optimizing the sum of binding

energies for complexes P:A and P:B), the best sequence averaged 36% sequence divergence from the

single-state optimum for complex P:A (10 designs). These divergences are nearly as high as the 39% (8

design pairs) average sequence divergence between comparable specificity and multispecificity designs—

that is, between a protein optimally designed to bind A while not binding B, and a protein optimally

designed to bind both A and B. So the difference is quite functionally significant.

Further details on the test cases are provided in Supplementary Material C.

These results show that explicit, provable multistate design provides significant advantages in the cal-

culation of optimal sequences for a wide range of problems, and that comets provides an efficient way to

perform such designs. The number of sequences and of state GMECs considered could likely be reduced

substantially further using improved energy bounds. Thus, comets liberates provable multistate protein

design from the efficiency barrier imposed by exhaustive search.

4. CONCLUSIONS

comets fills an important lacuna in protein design. A designer can now optimize any linear combination

of optimal state energies, using constraints to ensure the desired combination of stability, affinity, and

specificity. This can all be done with provable guarantees of optimality, both for the output sequence and

for the state conformational energies of each candidate sequence. A wide range of conformational flexi-

bility, both continuous and discrete, can be accommodated. Thus, comets offers a wide range of advan-

tages to the molecular design community.
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