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We thank Dr. Fried & Dr. Kievit, and Dr. Malhi and colleagues for
their insightful comments. Here we further clarify the design and
outcome of our meta-analysis of subcortical volume differences
between patients with major depressive disorder (MDD) and
controls.
Fried and Kievit1 and Malhi et al.2 commend the collaborative

achievement of the Enhancing NeuroImaging Genetics through
Meta-Analysis (ENIGMA) MDD consortium in analyzing sample
sizes unprecedented in neuroimaging of depression. They also
raise some concerns and provide additional interpretations of our
results. Malhi et al. suggest that we should better exploit this vast
data set to study the heterogeneity of MDD. MDD is a
heterogeneous disorder, and the scope and extent of brain
alterations depends on specific clinical characteristics of the
sample studied. That is why we reported meta-analytic results of
subcortical volume differences in depressed patients stratified by
stage of illness (first episode versus recurrent) and age of onset
(early versus late).3 Compared to controls, hippocampal volume
was lower in recurrent and early-onset patients, on an average,
but not in first-episode patients or patients diagnosed after age
21. These findings indeed raise interesting questions: for instance,
whether hippocampal volume reductions are detectable in early-
onset first-episode patients. Malhi et al. suggest partitioning our
sample into finer subgroups to study these interactions. We agree
that it is important to analyze between-subject differences across
these complex interactions, but our study design did not allow for
delineating these more complex interactions (for example,
diagnosis x recurrence x age of onset). Our meta-analysis
comprised standardized processing, statistics and quality control
to harmonize methods in a sample of unprecedented size. In a
mega-analysis, one can access all participant-level data. By
contrast, our initial meta-analysis distributed work efficiently
across many sites, and we meta-analyzed summary statistics at a
central site. Coordinated analyses at this scale must consider what
is feasible and achievable, to motivate more fine-grained analysis.
So far, partitioning patients into fine-grained subgroups has not
been feasible in most individual samples, as the numbers per cell
quickly become too small to assess more complex clinical
interactions. As ENIGMA grows, several analyses are showing

consistency worldwide. A mega-analysis may be feasible with a
subsample of participating sites who meet legal and ethical
requirements for the sharing of individual subject data to a
central site.
Our study is the largest meta-analysis to date and reveals the

profile of subcortical volume alterations in MDD, and some factors
that affect it. Brain structure was consistently altered across:
(1) MDD patients residing in the community or primary care, and
(2) patients recruited from specialized mental health services,
many of whom had more severe and recurrent MDD. Unlike
smaller studies, we found no consistent subcortical brain
alterations beyond the hippocampus, and even this was observed
only in specific patient subgroups: this is, unquestionably, new
information from a worldwide sample offering very high power. As
Fried and Kievit note, subcortical abnormalities in MDD are
moderate, but consistent. Past claims reporting smaller volumes of
(for example) the amygdala in MDD patients were not robust
across the cohorts we analyzed. As with any other study, ours has
limitations. Not all individual studies had detailed information on
duration, number of episodes and treatment history. When
combining already collected data across worldwide samples, data
collection protocols are not prospectively harmonized. Clinical
assessments therefore differed across studies, which limits the
analysis of sources of heterogeneity. For instance, different
instruments were used to assess depression symptom severity
across the studies included in the meta-analysis. New subprojects
were recently initiated within our ENIGMA MDD consortium
specifically focused on how severity impacts neural changes in
MDD, which intend to (1) establish a common metric for
depressive symptoms for various questionnaires, and (2) explore
different ways of defining symptom and disease severity and their
association with brain measures. Regarding the effects of
antidepressants (cf., the letter to the editor by Malhi et al.), a
cross-sectional study design such as ours cannot determine how
antidepressant medication affects brain structure. Interventional
studies comparing patients pre- and post-treatment are required
to establish how antidepressants affect brain structure.
Fried and Kievit rightly note that hippocampal volume reduction

in the MDD group and its subgroups is known to be small (Cohen’s
d between − 0.14 and − 0.21) and not specific to MDD. As our
colleagues found in the ENIGMA Schizophrenia Working Group,4

larger effects are observed in schizophrenia, motivating cross-
disorder comparisons across ENIGMA eventually. However, our
finding is robust: the hippocampus was consistently smaller, on
average, across a large number of samples encompassing the broad
heterogeneity of MDD (I2 scores showed low heterogeneity of
findings across studies). Smaller hippocampal volume has been
associated with executive function impairments,5 learning and
memory deficits6 and poorer treatment response7 in MDD; so the
hippocampal volume reduction is important despite its small effect
size. Establishing the degree of hippocampal volume difference in
MDD, and its modulators, with this precision is crucial, as the
disorder affects billions of people worldwide.
Indeed we did not estimate any form of classification accuracy.

Researchers in the field of neuroimaging already realize that no
single univariate data point differentiates MDD patients from
controls. If classification were the goal, one could include other
subcortical regions whose effects do not reach the significance
threshold, but within a multivariate analysis could boost
classification accuracy. Moreover, cortical regions or other imaging
measures could be included. Ultimately, consortia such as ENIGMA
may discover multivariate patterns predictive of diagnosis, but
progress is unlikely without first publishing studies of measures
that are easier to harmonize. It is widely known that findings
based on group-level (univariate and mass-univariate) approaches
may not offer sufficient predictive value for individual patients
within a multivariate classification approach. Measures from future
ENIGMA MDD projects studying cortical thickness, surface area,
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shape, hippocampal subfields, diffusion tensor imaging or
functional measures may help multivariate prediction methods,
eventually.8 Moreover, the harmonization of processing, statistics
and quality control protocols across ENIGMA disease working
groups will eventually allow classification across different
psychiatric disorders.9

Fried and Kievit discuss some alternative mechanisms that may
drive hippocampal volume reduction in MDD. In our original paper,
we did not claim 'that depression causes structural changes'
(cf. letter to the editor by Fried and Kievit). In fact, not only patients
with recurrent episodes, but also the group with early age of onset
(consisting of almost 50% of first-episode patients) showed smaller
hippocampal volumes; so structural changes are not merely a
consequence of depression. We speculated that hippocampal
volume reductions may be promoted by a chronic hyperactivity
of the hypothalamic−pituitary− adrenal axis via remodelling and
downregulation of growth factors including brain-derived neuro-
trophic factor, associated with (chronic) stress.10 Stressors include
multiple episodes of depression, early-life stress and a family history
of depression, which are all linked to early-onset depression,11–13

higher risk for recurrent depression,14–16 an overactive
hypothalamic−pituitary− adrenal axis17,18 and smaller hippocam-
pal volume.19 As we stated in our article, smaller hippocampal
volume may even be a risk factor for depression: 'morphological
hippocampal alterations may represent risk markers for depression,
recurrence and chronicity' and 'Clearly, there is a continued need
for longitudinal studies tracking hippocampal volume changes over
the disease course, to further elucidate whether hippocampal
abnormalities result from prolonged duration of chronic stress (i.e.
'scarring'), represent a vulnerability factor for MDD, or both', which
agrees with Fried and Kievit.
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Advanced paternal age is a well-established risk factor for the
development of schizophrenia (SZ),1–3 and an increased rate of de
novo mutations with increasing paternal age has been proposed
as the chief explanation for this association.4 However, the
paternal age effect could also be as a result of other potential
explanations. For example, analyses of Danish registry data
revealed that the paternal age effect was attributable to paternal
age at birth of the first child in the sibship, rather than to age at
birth of the child with SZ,5 which suggests that some explanation
other than de novo mutations may explain the reported paternal
age association with SZ. Furthermore, advanced maternal age,
that has also been implicated in the risk of neurodevelopmental
disorders (NDDs) via unknown mechanisms (that is, not de novo
mutation), should also be incorporated in this conceptualization.6,7

Therefore, findings regarding de novo mutations as the explana-
tion for the association between advanced paternal age and SZ
are inconclusive because covariates, such as maternal age8 and
family size,9 which may index other potential mechanisms than
paternally derived de novo mutations, have not been simulta-
neously considered in most prior analyses.
Studies of birth order effects in SZ in both population-based

samples10,11 and clinical samples12,13 have yielded conflicting
findings. Nevertheless, Jaffe et al.14 consider affected proband
birth order as a proxy for de novo mutations. Their analyses did
not support an association between paternal age and birth order
as an index of de novo mutations in a SZ data set after controlling
for maternal age and family size. In order to determine if this was a
robust finding, we attempted to replicate this work in our local SZ
data using similar methods to those described by Jaffe et al.14

Furthermore, because both advanced paternal age and increased
de novo mutations have also been reported among cases of
autism spectrum disorder (ASD)15 and other NDDs,2 we examined
whether the paternal age/proband birth order association is
specific to SZ or is more broadly related to NDDs by extending the
analyses to an ASD sample.
The study samples included in these analyses were cases with SZ

from an Irish collection (N=264, 69% male)16 and cases with ASD
from the Simons Simplex Collection (SSC, version 14, N=2539, 87%
male).17 Cases were limited to those with available data on birth
order of the proband, and either maternal or paternal age at the
proband‘s birth (see Supplementary Information for further details
on the Irish SZ collection, and see Figure 1 for proband birth order
and parental age distributions). We hypothesised that the results of
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