
Lung xenotransplantation: a review

Chris Laird, MD1, Lars Burdorf, MD1, and Richard N Pierson III, MD1,2

1Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, 
Baltimore, MD

2VA Maryland Health Care System, Baltimore, MD

Abstract

Purpose—To review recent progress in the field of lung xenotransplantation, including 

mechanisms of xenograft injury, and the influence of mechanism-directed genetic modifications 

and other interventions that may soon enable therapeutic use of pig lungs in humans.

Recent findings—An extensive series of lung xenotransplantation experiments demonstrates 

that multiple genetic modifications targeting known xenogeneic lung injury mechanisms are 

associated with incremental improvements in lung survival or function. Addition of human 

complement (hCD46, hCD55), coagulation (hEPCR, hTBM, hTFPI, hCD39), or anti-

inflammatory pathway regulatory genes (HO-1, HLA-E), and GalT and Neu5Gc gene knockout 

has each demonstrated protective effects on lung survival or function. In addition, drug treatments 

targeting key inflammatory and clotting pathways have been shown to attenuate residual 

mechanisms of lung injury. Work with other pig organs in primate models show that regimens 

based on costimulatory pathway blocking antibodies prolong xenograft function for months to 

years, suggesting that once initial lung inflammation mechanisms are fully controlled, clinically 

useful application of pig lung xenografts may soon be feasible.

Summary—Genetic modification of pigs coupled with drugs targeting complement activation, 

coagulation, and inflammation have significantly increased duration of pig lung function in ex 
vivo human blood perfusion models, and life supporting lung xenograft survival in vivo .
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Introduction

Each year, hundreds of people die on lung transplant waiting lists due to the shortage of 

human organs available for transplant. Xenotransplantation, the use of organs from other 

species such as pigs, could offer predictable, timely availability of physiologically normal, 

certifiably disease-free organs. Significant progress has been made to overcome the biologic 

barriers to use of pig organs in preclinical models, with sustained organ function and 
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recipient survival reaching months to years in some heart and kidney series (1–3). However 

pig lung injury remains problematic in human blood perfusion and non-human primate 

xenogeneic models, and life-supporting lung xenograft survival has been limited to days. 

Here we review the progress that has been achieved, and residual barriers that have been 

identified that currently impede clinical lung xenograft application.

Text of Review

Xenogeneic lung injury

Compared with other organs, the unique anatomic structure of the lung, with a large surface 

area of vascular endothelium intimately associated with alveolar epithelium and a robust 

immune surveillance and rapid response system, are primed to trigger inflammation and are 

extremely susceptible to its consequences (4,5). As a result, only 30–40% of human lungs 

are harvested and transplanted from consented organ donors, a rate much lower than for liver 

(about 80%) and kidney (over 90%) (6). This increased relative vulnerability to injury is 

paralleled for lung xenografts in comparison to other organs. A complex interplay of 

inflammation, coagulation, and tissue injury leads to relatively rapid lung xenograft failure 

both ex vivo during perfusion with human blood and in non-human primate transplant 

models.

Perfusion of wild type porcine lungs with human blood causes intense coagulation and 

complement activation, leading to graft failure (“hyperacute rejection”) within minutes. 

Binding of preformed antibodies directed towards the α,1,3-galactose (Gal) epitope has been 

identified as one main trigger (7,8). Knockout of the galactosyltransferase enzyme 

(GalTKO) eliminates the carbohydrate antigen from porcine cells and was a key step to 

overcome hyperacute rejection of other organs (9–11). However, innate (mainly preformed 

antibody directed against other targets) and adaptive immune responses still persist in 

recipients of GalTKO organs and tissues (9, 12–15). The adaptive response to lung 

xenotransplants has not yet been studied since they have not yet reached a relevant duration 

of survival; accordingly, most lung xeno research has been focused towards early 

inflammation. Nonetheless, substantial progress to control adaptive anti-xeno immunity has 

been reported using costimulation pathway-based immunosuppressive regiments for islets 

(16), kidneys (3), and hearts (1,17–18), offering hope that adaptive immunity can be 

controlled effectively and safely for lung xenografts once initial barriers are surmounted.

Triggered at least in part by preformed anti-non-Gal antibodies, activation of human 

complement coupled with the absence of human complementary regulatory proteins lead to 

complement activation and contribute significantly to failure of GalTKO lungs within hours 

(9). These non-Gal antigens include carbohydrate, glycolipid, and perhaps protein structures. 

The most significant xenoantigen in GalTKO organs has been identified as N-

Glycolylneuraminic acid (Neu5Gc).

Leukocyte and platelet sequestration occur even in experimental systems where antibody 

binding and complement activation are minimized, suggesting that both non-physiologic as 

well as physiologically appropriate adhesive mechanisms are likely to contribute to the 

problems observed with lung xenografts. Cytokine elaboration, cellular desialylation, and 
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species incompatibilities between cell activation and regulatory pathways each contribute to 

sequestration and activation of circulating pig leukocytes and platelets by porcine 

endothelial cells (19–20).

Pulmonary vasculature and alveolar epithelium contain resident macrophages, including 

pulmonary intravascular macrophages that contribute significantly to injury of pig lungs 

perfused with human blood (21–22). In addition to releasing pro-inflammatory and pro-

coagulant factors, pig alveolar lung and spleen macrophages and liver Kuppfer cells bind to 

and phagocytose human blood cells through innate cellular carbohydrate recognition by the 

porcine lectin sialoadhesin (23).

The signal regulatory protein alpha (SIRPα), an immune inhibitory receptor on 

macrophages, and CD47, a ubiquitously expressed ligand for SIRPα, serve to prevent 

autologous phagocytosis by providing a “don’t eat me” signal. Incompatibility in the CD47/

SIRPα system across species may contribute to activation of circulating human monocyte-

lineage cells and graft endothelial damage; phagocytosis of porcine cells released from the 

transplanted organ or infused systemically as part of a tolerance induction strategy appears 

to activate recipient monocytes (24,25). Species discordance of regulatory proteins similarly 

causes sequestration of circulating human natural killer (NK) cells: lack of negative 

regulatory signals such HLA-E on porcine endothelial cells, for example, leads to NK-

mediated cytotoxicity through antibody-dependent and -independent mechanisms (26–28).

Physiologically inappropriate coagulation is observed in association with transplantation of 

pig organs or cells in multiple preclinical xeno models. Prolific coagulation pathway 

activation occurs at least in part as a result of inefficient inhibition or down-regulation of 

activated primate clotting factors due to incompatibilities between the pig and human 

thromboregulatory pathways. For example, porcine Tissue Factor Pathway Inhibitor (pTFPI) 

is a significantly less potent inhibitor of human Factor Xa than is hTFPI (29–30). In 

addition, although pig thrombomodulin is perfectly capable of binding human thrombin, the 

resulting thrombomodulin-thrombin complex is only about 10% as effective as an activator 

of Protein C (31); because activated Protein C (aPC) has both direct anticoagulant properties 

as well as potent anti-inflammatory effects on endothelial cells by activation of the 

endothelial protein C receptor (EPCR)/protease-activated receptor pathway, this cross-

species incompatibility has both procoagulant and proinflammatory consequences. In 

addition, GPIb on quiescent human platelets binds weakly to human von Willebrand Factor, 

but undergoes conformational change to a high affinity state under flow shear stress. In 

contrast porcine vWF binds to and directly activates even human platelets in the absence of 

elevated shear stress, resulting in “non-physiologic” platelet activation and aggregation (32), 

thus contributing significantly to the prothrombotic milieu often observed with the 

vasculature of organ xenografts (33).

Experimental Models

Several models have been created to study lung xenotransplantation. In vivo lung 

xenotransplant experiments using non-human primates are particularly informative but 

extremely resource intensive and difficult to conduct. We use a pig-to-baboon model in our 

experiments, transplanting the left lung of a pig into the left thoracic cavity of a baboon (34). 
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Flow probes on the pulmonary artery and ascending aorta allow for monitoring of flow 

through each lung. Transient occlusion of the right pulmonary artery diverts all the cardiac 

output through the left lung xenograft, and thus rigorously tests life-supporting capability of 

the xenograft.

Our ex vivo “paired” lung perfusion model has several benefits that can overcome the 

limitations of live animal studies (34). It allows us to compare results between the right and 

left lungs exposed to fresh human blood and efficiently determine the effect of a drug or 

other treatment added only to one side. In these experiments, blood is perfused by pump 

through a ventilated lung; treatments can be added to the blood or ventilation gas (35–36). In 

addition to being relatively cost-efficient and limiting non-human primate use to critical 

survival studies, perfusion with human blood is particularly valuable to study several 

situations where the antigenicity between humans and pigs is not accurately modeled in non-

human primates; for example, humans have antibodies against Neu5Gc whereas pigs and 

non-human primates do not.

Several in vitro models have also been described to evaluate interactions that take place at 

the endothelial surface between porcine cells and human blood components. One versatile 

model uses microfluidic channels which can be coated with any number of ligands or 

cellular monolayers (37). Perfusates such as blood or blood components are flowed through 

the channels during microscopic observation under controlled shear stress conditions. The 

technique is significantly enhanced by the use of fluorescent staining to visualize adhesion, 

activation, or injury events involving the endothelium or blood cells.

Genetic modifications

Genomic editing is the foundation of recent progress in xenotransplantation. Numerous 

pathways have been successfully altered, and other targets have been proposed (38) (Figure 

1). Most notably, key known porcine molecular targets of primate innate or adaptive immune 

mechanisms (Gal, Neu5Gc, β4Gal2NT) have been successfully “knocked out” (39). 

Recently we and others have shown that the GalTKO.Neu5Gc “double KO” is associated 

with prolonged pig lung physiology and survival during ex vivo perfusions (40–42). In 

addition key human regulatory genes have been inserted to overcome molecular 

incompatibilities in the inflammatory and coagulation cascades. For example human 

complementary regulatory proteins hCD46 (Membrane Cofactor Protein), hCD55 (Decay 

Accelerating Factor), and hCD59 (Membrane Attack Complex inhibitory protein) are 

associated with attenuated complement pathway amplification and prolonged lung survival. 

Human tissue factor pathway inhibitor (TFPI), thrombomodulin (TBM), and endothelial 

protein C receptor (EPCR) have been successfully introduced into pigs, generally with 

promising results (38, 43–51). In addition, hCD39 (an integral membrane protein expressed 

in endothelial and immune cell populations), and hHO-1 (Heme oxygenase-1, an anti-

oxidant) have also been transfected into the pig genome; preliminary evidence with other 

organs and in the lung suggest that these modifications may reduce inflammation and 

improve function in ex vivo perfusion models (46–48). Finally, expression of the HLA-E 

transgene appears to limit endothelial damage by preventing NK-cell activation and resulting 

cytotoxicity (52–53). As deletion of vWF results in a pig with high risk of bleeding (54), 
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current efforts seek to replace key segments of pvWF with the analogous human vWF 

epitope (38). We monitor platelet and neutrophil sequestration and activation, and thrombin, 

thromboxane, and histamine generation, as well as lung survival or pulmonary vascular 

resistance; we find that each of the genetic modifications discussed here is associated with 

some improvement in one or more of these parameters (47).

As each gene by itself has only limited effect, multigene targeting will be necessary for 

clinically meaningful lung xenograft outcomes. For this reason, perhaps the most important 

recent development in genetic engineering is the use of CRISP-Cas9 technology (55). In the 

past year this approach was used to inactivate all 62 copies of the porcine endogenous 

retrovirus (PERV) pol gene, which is universally integrated into the pig genome and has 

hypothetical risk of human transmission (56). The same group of investigators that 

inactivated PERV has used the same technique to simultaneously modify more than 20 other 

genes which regulate inflammation or coagulation pathways, although this data is not yet 

published (55,57).

Inducing systemic or organ-targeted expression in the mature pig is an alternative approach, 

allowing genetic engineering of specific donor animals as a proof-of-principle, or to apply 

beneficial interventions that prove deleterious when performed at the germ line level. For 

example, bronchoscopically delivered adenovirus containing human IL-10 during ex vivo 
porcine lung perfusions has promoted prolonged porcine lung allograft acceptance (58).

Targeted drug therapies

At present, recipient-directed therapeutic modalities are necessary to modulate the especially 

intense inflammatory response exhibited by lung xenografts which persists despite extensive 

genetic modifications tested to date (59). Approaches targeting innate immunity have shown 

some benefit in wild-type pig lungs; for example, liposomal clodronate has been used to 

deplete resident macrophages in the donor lung and found to aid in preventing hyperacute 

rejection (21, 22). In addition, thromboxane synthase inhibitors and histamine receptor 

blockers have also been found to decrease the inflammatory response with increased graft 

survival and improved function compared to untreated controls (21,60). Recently, 

pretreatment of hEPCR-expressing porcine endothelial cells with aPC has been shown to 

reduce endothelial damage as well as platelet adhesion and aggregation in vitro (43). 

Investigation is ongoing into the use of alpha-1-antitrypsin (AAT), a circulating anti-

inflammatory glycoprotein which inhibits many proteases released by inflammatory cells, 

especially neutrophils. AAT has been used in other organ models and has been shown to 

decrease inflammatory gene expression and may inhibit xenograft rejection or even promote 

immunologic tolerance. Additional research is exploring blockade of selectins and integrins, 

cell adhesion molecules expressed on endothelial and inflammatory cells as well as platelets, 

to inhibit the early overwhelming platelet and neutrophil sequestration, which persists 

despite existing genetic and drug therapies.

Immunosuppression is another key arm of the long-term strategy to accomplish pig-to-

human lung xenotransplantation. As evident from work in other organ xenograft models, 

immunosuppression of lung xenograft recipients will likely involve some standard clinically-

used medications but also must effectively target the adaptive response to the xenograft. 
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Antibodies directed against CD40 (anti-CD40) and CD154 (anti-CD154) appear to be 

particularly effective to prevent delayed xenograft rejection when used in the correct dose 

and with additional agents such as anti-CD20 or CTLA4-Ig (61). Anti-CD40 antibody 

2C10.R4 significantly prolongs survival of xenografts and allografts in other organs, in some 

cases to over two years (3,17,18). An ultimate goal would be immune tolerance induction, 

and several approaches have been studied including induced mixed chimerism by infusion of 

hematopoietic stem cells, and T-cell “re-education” with donor thymic transplantation; both 

approaches show promise, and further research is ongoing in these areas (25).

Drug interventions aimed at coagulation dysregulation have also been associated with 

improved outcomes. We have used des-deoxy arginine vasopressin (DDAVP) administered 

to the pig prior to harvest, intending to reduce endothelial porcine vWF content by triggering 

exocytosis of Weibel-Palade bodies (62). This may, however, also sensitize the endothelium 

to injury, since P-selectin, the vasoconstrictor endothelin-1, the chemokine IL-8, and other 

pro-inflammatory and pro-coagulant molecules are also released. Replacement of the sites in 

porcine vWF that bind to human GP1b with the analogous human vWF regions may render 

this therapy moot, however. Meanwhile, treatment with GP1b antagonists is clinically 

feasible around the time of surgery, and partially attenuates platelet sequestration and 

activation driven by this cross-species incompatibility (63).

Conclusion

Although many challenges still abound, xenotransplantation of the lung and other organs has 

made great strides, and future developments are likely to further advance the field. The 

implications of successful clinical transplantation into humans would be transformative. 

Patients who are less sick at transplant would likely achieve greater benefits with less 

morbidity. Transplants could also be made readily available to patients with high titers of 

anti-human antibodies, as these rarely cross-react with pig antigens, and the pig organs will 

most likely be genetically engineered to modulate antibody-mediated injury. As we are 

better able to understand the residual mechanisms of lung xenograft injury, and alter the 

genome wherever possible to targeting known pathways and create more sophisticated 

“human-compatible” multigene swine, evaluating pig lungs’ potential for use in humans is 

likely to evolve from a formidable scientific puzzle to a surmountable technical challenge.
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Key Points

While functioning heart and kidney xenografts have survived for over one year after 

transplant in animal models, lung xenograft survival has been limited to days owing to 

particular organ-specific vulnerabilities arising from the lungs anatomy, perhaps 

confounded by additional physiologic or molecular characteristics.

Improvements in genetic engineering, including gene knock-out technology, cloning, 

TALENs, and especially CRISPR-Cas9, have allowed for many more and more rapid 

alterations to donor animal genetics than was previously possible, and greatly increased 

expectations for significantly accelerated advancement in this field.

Administration of targeted drugs pre- and post-transplant will almost certainly be 

necessary for optimal lung xenograft outcomes, and improvements in immunosuppressive 

strategies are showing great promise for other organ xenografts.
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Figure 1. 
Known xeno lung injury pathways, and proposed strategies to prevent or attenuate them

1. Genetic replacement of incompatible porcine vWF domains with analogous human 

epitopes

2. Inhibition of Weibel-Palade body exocytosis and pulmonary vascular vasodilation 

using nitric oxide

3. Pre-transplant depletion of Weibel-Palade bodies using exocytosis inducer DDAVP

4. Selective or pan-selectin blockade

5. Genetic knockout of porcine antigens (αGal, Neu5GC, β4GalNT2)

6. Genetic knockout of porcine endogenous retroviruses, receptors involved in cellular 

recognition (ASGR1, sialoadhesin), or proteins necessary for expression of major 

histocompatibility antigens (CIITA)

7. Genetic modification of donor to express human proteins, including surface 

complement regulatory molecules (hCD46, hCD55, hCD59) and anti-inflammatory 

proteins (hCTLA4-Ig, hHO-1, hTRAIL, hA20, hTNFRI-Fc);

8. Inhibition of proteases using anti-inflammatory molecule alpha-1 antitrypsin

9. Genetic modification of donor cells to express HLA-E. HLA-E binds the NKG2A/

CD94 complex on circulating NK cells resulting in potent inhibition of NK cell 

cytotoxicity

10. Genetic modification of donor to express coagulation regulatory proteins such as 

hTBM, hEPCR, hTFPI, hCD39

11. GPIb, GPIIb/IIIa antagonists

12. Pre-transplant depletion using liposomal clondronate

13. Pre-transplant recipient antibody screening
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14. Inhibition of thromboxane and histamine mediated inflammation using 

thromboxane synthesis inhibitor 1-BIA and histamine receptor blockers, 

respectively

15. aPC treatment of hEPCR expressing donor endothelium, activating the anti-

apoptotic and anti-inflammatory EPCR/PAR1 pathway

16. Genetic modification of donor to express hCD47

17. Genetic modification of donor to overexpress human anti-inflammatory cytokines 

such as IL-10; antibody blockade of pro-inflammatory cytokines or their receptors 

(aIL-6R)

18. Systemic anticoagulation

19. Systemic immunosuppressants acting through multiple pathways, including 

standard agents such as corticosteroids, ATG, MMF; agents acting at other recipient 

sites such as novel costimulation blockers such as antiCD40 antibody 2C10.R4

20. Desialylation inhibitors such as neuraminidase blockers oseltamivir, zanamivir. 

Alternatively, antibody mediated blockade of pig ASGR1 and sialoadhesin 

recognition receptors.
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