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Abstract

Burst suppression is actively studied as a control signal to guide anesthetic dosing in patients 

undergoing medically induced coma. The ability to automatically identify periods of EEG 

suppression and compactly summarize the depth of coma using the burst suppression probability 

(BSP) is crucial to effective and safe monitoring and control of medical coma. Current literature 

however does not explicitly account for the potential variation in burst suppression parameters 

across different scalp locations. In this study we analyzed standard 19-channel EEG recordings 

from 8 patients with refractory status epilepticus who underwent pharmacologically induced burst 

suppression as medical treatment for refractory seizures. We found that although burst suppression 

is generally considered a global phenomenon, BSP obtained using a previously validated 

algorithm varies systematically across different channels. A global representation of information 

from individual channels is proposed that takes into account the burst suppression characteristics 

recorded at multiple electrodes. BSP computed from this representative burst suppression pattern 

may be more resilient to noise and a better representation of the brain state of patients. 

Multichannel data integration may enhance the reliability of estimates of the depth of medical 

coma.
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I. Introduction

Burst suppression is a stereotypical time domain EEG pattern characterized by high voltage 

activity alternating with periods of low-voltage activity (‘suppressions’). It generally reflects 

a state of profound brain inactivation and unconsciousness, associated with various normal 

developmental (early development), pathological (hypothermia, diffuse anoxic brain injury) 

and therapeutic (deep anesthesia) scenarios. While the neurophysiology of burst suppression 

remains an area of active investigation, current theories suggest that it arises from a 

nonlinear interaction. This consists of a ‘fast’ dynamical process that generates background 

EEG activity, and a ‘slow’ process that periodically interrupts the fast process, leading to 

suppression of background activity. The slow process is thought to be a depletion-recovery 

cycle in which some energy resource (such as ATP stores) necessary for maintenance of 

background activity is periodically depleted during high-voltage EEG ‘bursts’, and 

regenerated during suppressions [1]. Significantly for medical engineers, this process 

exhibits robust parametric sensitivity to the depth of anesthesia. That is, the duration of 

suppressions becomes progressively longer and bursts become progressively briefer as the 

concentration of anesthetic in the brain increases. This makes burst suppression a 

neurophysiology-based EEG signature that can be used to non-invasively monitor the depth 

of pharmacologically induced coma in real-time.

Pharmacologically induced coma is currently used in clinical settings as treatment for 

patients with high risk of brain injury either from physical trauma, drug overdose or disease 

such as intracranial hypertension and status epilepticus. In the case of refractory status 

epilepticus, defined as ongoing seizure activity resistant to first line and second line anti-

convulsant agents and lasting more than 30 min, burst suppression-targeting 

pharmacologically induced coma over extended periods of time is the standard of care [2]. It 

is thought to stop seizure activity and thereby achieve neuroprotection [3].

A standard medical goal in such pharmacologically induced coma is to maintain the brain in 

a burst-suppressed state with less than 1 burst per 10 seconds for 12–24 hours or more. This 

duration is significantly longer than any human operator can maintain tight control over. 

Therefore, defining a precise quantitative target level of burst suppression and maintaining 

the target automatically using a closed-loop feedback system would be a much more 

efficient and pragmatic approach.

Over the past years, there has been tangible effort by researchers to advance towards this 

goal. A statistically-rigorous algorithm based on Bayesian estimation and pharmacokinetic 

and pharmacodynamic models to compactly quantify the state of burst suppression as the 

burst suppression probability (BSP) has been developed for real time quantification, and 

models have been developed to relate BSP to the underlying anesthetic states [4]. This has 

enabled real-time monitoring of coma depth and has allowed rapid advances in design of 

closed-loop anesthetic delivery systems (CLAD) to control burst suppression. Such systems 

have been built and shown to work in rodent experiments with high reliability and precision 

[5]–[7].
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Furthering the work to translate these research devices into a clinical tool requires 

considerable effort to adapt and account for the difference between laboratory rodent 

experiments and real clinical applications. Two such differences in terms of data collection 

are 1) rodent experiments use a single intradural electrode for recording while multichannel 

scalp EEG is often collected in the clinical setting; and 2) rodent experiments are conducted 

in a controlled environment with the electrode affixed to the scalp for a short duration of 1–4 

hours. With rodent recordings, there is thus less concern for movement artifacts, dislodged 

electrodes and other disruptions in recording; these issues can be significant in a clinical 

setting with extended recording periods and can affect detection of burst suppression 

patterns.

Many groups have discussed methods of automated burst suppression detection but no work 

to our knowledge has explicitly addressed how multi-channel EEG data affects burst 

suppression detection and monitoring [8]–[12]. Research effort has been directed at 

describing how suppression patterns can be successfully extracted automatically, usually by 

first identifying one or more features that distinguish bursts from suppressions (e.g. 

instantaneous variance, amplitude, median, standard deviation, entropy, 95% edge 

frequency, non-linear energy operator, etc.) followed by some form of classification (e.g. 

segmentation using hard and soft thresholds, classification by artificial neural networks, 

etc.). None of these studies explicitly addressed how data from multiple channels are 

optimally combined. In work that did utilize EEG signals across multiple channels, the 

authors described integrating instantaneous amplitude across all channels, stating that a 
priori, this should help to overcome contamination of channels by artifacts, but no further 

systematic analysis of the impact on detector behavior was performed [8], [12].

In the following study we explore the spatial characteristics of single channel BSP 

recordings and explore the impact and potential value of using multi-channel data in burst 

suppression monitoring. We hypothesized that different channels may capture different local 

information while having multiple channels may facilitate artifact rejection.

II. Method

A. EEG Recording and Patient Profile

EEG data was recorded from 8 patients with refractory status epilepticus (RSE) who were 

placed under pharmacologically induced burst suppression with either propofol or 

midazolam or both in the Neurosciences Intensive Care Unit of Massachusetts General 

Hospital (MGH). The retrospective analysis in this paper was performed with the approval 

of the Institutional Review Board. Three of the 8 patients had a period of cardiac arrest 

before the onset of RSE (post-anoxic RSE, pRSE). Retrospective data collection was done 

under an MGH IRB approved protocol. All EEGs were recorded using 19 silver/silver 

chloride electrodes, affixed to the scalp according to the international 10–20 system. Data 

were recorded at 512 or 256 Hz, using XLTEK clinical EEG equipment (Natus Medical Inc., 

Oakville, Canada), and subsequently down-sampled to 200 Hz.
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B. Preprocessing and Burst Suppression Detection

To precondition the data for analysis, a sliding window of 1 sec is used to remove regions 

where the average power is >40dB, to remove high voltage artifacts with frequent zero-

crossing such as due to loose electrodes. Further artifact removal is done by rejecting 

instantaneous high amplitude data (>500uV) and electromyography artifacts (>5 SD in the 

15 – 30 Hz band). Finally the data is put into average montage and band-pass filtered at 3 – 

35Hz. The lower bound of this filter is higher than conventionally used for EEG analysis but 

is well suited for burst suppression detection.

Next, a previously validated algorithm for burst suppression segmentation is used to 

generate the binary signals representing suppressions [8]. This algorithm detects suppression 

by thresholding a recursive estimate of the local signal variance as expressed in the 

following equations:

(1)

(2)

(3)

where xt is the EEG signal at time t, μt is the mean, σt is the variance, zt is the current value 

of the binary signal produced, β is a parameter called the “forgetting factor”, δ[․] is the 

indicator function (equal to 1 if the inequality is satisfied and 0 otherwise) and θ is the 

classification threshold. We set the forgetting factor to the globally optimal value reported in 

the referenced paper. The threshold θ is set to 1.75, which was determined by visually 

scoring the performance of 6 candidate thresholds (1.4 – 3.5) in 93 30-sec single channel test 

segments randomly extracted from the recording.

C. Burst Suppression Probability (BSP)

The BSP is a compact representation of the burst suppression pattern that allows for second-

to-second analysis and across-time comparison. It defines the brain’s instantaneous 

propensity for being in the suppressed state, using a link function to map the amount of 

anesthetic in the brain onto a well-defined probability as shown in Fig 1 [4]. Here we used a 

real-time binary filter to calculate the BSP from the binary signal obtained in the previous 

step [5].

D. Global Representation of Binary Data

To provide a basis for comparing BSP values between channels, we designed a simple global 

representation of binary data. This is formulated by implementing a voting system among 

the binary data obtained from individual channels whereby for any instance in time at least 

60% of the valid (i.e. artifact free) channels have to agree on the observation of suppression 

for it to be considered a ‘true’ suppression. This scheme is motivated by the observation in 

previous studies that burst suppression is a global phenomenon [13]. The new binary signal 

summarizes the data from all channels considered. From it, a global representation of the 

An et al. Page 4

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



burst suppression probability (BSP) is found using the binary filter algorithm described 

earlier. To distinguish this BSP from the BSP calculated from data from just one channel, 

hereafter we refer to the former as the global BSP and the latter as single channel BSP.

III. Results

A total of 210 hours of recording were analyzed, with 20–25 hours of data coming from 

each patient. Overall, patients had BSP>0.1 for 91 hours or 43% of the total recording time. 

Patients with post anoxic refractory status epilepticus (pRSE) accounted for about 67 hours 

of the total recording and had BSP>0.1 for 27.8 hours or 41.5% of this time.

A. Significant Differences in Burst Suppression Probability Obtained from Data in Different 
Channels

To study spatial variation in single channel BSP values we first studied the evolution of BSP 

for individual patients over time. Fig. 2AI shows a set of 5 representative 12-hour single 

channel BSPs estimated from an EEG recording of one pRSE patient. As in most other 

patients, it is evident from visual inspection that single channel BSP varied substantially 

between channels and the differences were consistent over time. Taking 1 min segments and 

comparing the variance signal obtained from processed EEG in the burst suppression 

detection algorithm (see example in Fig. 2AII) shows that while bursts can be seen globally, 

their magnitude can vary substantially and systematically. Some bursts are detected similarly 

across all channels while others are only registered by the automated detection algorithm in 

certain channels. This explains the source of variation in single channel BSP estimation 

among different channels.

B. Global Representation and Associated Burst Suppression Probability (BSP)

A global representation of the binary signals is obtained from multi-channel EEG recording 

by the voting method described earlier. The same binary filter algorithm applied to 

individual channels can then be used to estimate BSP from the global BSP. Fig. 2BI shows 

the global BSP overlaid on single channel BSPs from all 19 channels in the same pRSE 

patient. It can be seen that the global BSP tracks the overall trend of single channel BSPs. In 

a similar plot for a different patient (Fig. 2BII), we highlight that the global BSP remains 

relatively unaffected by an outlier BSP in one electrode.

This global representation also allows us to further investigate the extent of the variation in 

single channel BSP estimation as described in part A. We compared the single channel BSP 

estimates in each of the 19 channels with the global BSP for time points where the global 

BSP ≥ 0.1 and plotted the mean difference and standard deviation topographically (see Fig. 

2C). pRSE and non-anoxic RSE (npRSE) patients are handled separately. In both groups, the 

frontal and temporal leads tend to report lower single channel BSP while the occipital and 

central leads tend to report higher single channel BSP. The expected deviation of single 

channel BSP from global BSP in pRSE patients is (0.13 ± 0.11), while that in npRSE 

patients is (0.06 ± 0.04). These findings suggest that (a) burst amplitudes tend to be higher in 

frontotemporal regions, leading to increased probability of burst detection and lower BSP 

values when using identical threshold values at all scalp locations, and (b) the degree of 
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spatial heterogeneity in burst amplitude tends to be greater in patients with pRSE, at least in 

this cohort.

IV. Discussion

Developing quantitative, real-time algorithms to monitor the pattern of EEG burst 

suppression is a medical innovation necessitated by the need to safely and effectively 

maintain medically induced coma at a desired depth for extended periods. Burst suppression 

is quantified in real time using the burst suppression probability (BSP), which has been 

shown to have parametric sensitivity to the depth of coma. Although burst suppression is 

generally considered to be a spatially homogeneous phenomenon in scalp EEG, herein we 

observed that when a validated segmentation algorithm is applied significant differences 

between the burst suppression probabilities can result in different channels. A close analysis 

of the burst suppression detection procedure reveals that there are different types of bursts in 

the burst suppression state. Some bursts, although they visually seem to occur in all 

channels, have characteristically smaller amplitudes in certain channels such that the 

segmentation threshold is less often crossed or often crossed only briefly. This leads to 

systematic spatial differences in BSP estimated from different channels.

These spatial differences likely reflect the well-known functional differences that exist 

between regions of cortex, which are well described outside of burst suppression. These 

differences can manifest, e.g. in the relatively high amplitude of alpha (8–10 Hz) activity in 

posterior head regions during resting awake state, and the centrotemporal location of vertex 

waves in sleep. That such spatial differentiation persists in burst suppression is in keeping 

with recent theoretical work which views bursting activity as a continuation of processes 

active in the pre-burst-suppression state [1], [14].

The difference between single channel BSPs means that the location on the scalp where we 

collect data for monitoring matters. Using only forehead electrodes, such as in Bispectral 

Index monitoring, is likely to result in administering more anesthetic than if the patient is 

monitored with the global BSP summarized from a standard full scalp EEG, as the former 

would report a lower BSP than the latter.

Our observations on the use of a global representation of data obtained from individual 

channels by means of channel ‘voting’ indicates that this method may be more resilient to 

noise than single channel BSP. This method is therefore an improvement on previous 

methods for utilizing multichannel data. In those methods, signals from individual channels 

are simply integrated and would have resulted in data from the electrode with aberrant 

behavior being still included in the final result. Alternative enhancements to be explored in 

future work include using thresholds that vary as a function of head location, and the use of 

more sophisticated probabilistic detection methods as opposed to our current hard 

thresholding method of detecting suppressions.

Overall, we observed significant variation in the BSP recorded from different channels of a 

standard clinical EEG system. The variation follows a specific spatial pattern and is 

consistent over time. A global representation of information from individual channels that 
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takes into account the burst suppression pattern recorded from multiple electrodes is likely 

to be useful for providing a more noise-resilient and accurate representation of the 

underlying brain state. Further work can be done to develop more robust ways of combining 

information from multiple electrodes for this purpose.

Acknowledgments

Funding: NIH-NINDS K23 NS090900, Rappaport Foundation, Andrew David Heitman Neuroendovascular 
Research Fund (MBW); DP2-OD006454 (to PLP), TR01-GM104948 (to ENB).

References

1. Ching S, Purdon PL, Vijayan S, Kopell NJ, Brown EN. A neurophysiological–metabolic model for 
burst suppression. Proc. Natl. Acad. Sci. 2012 Feb.109(8):3095–3100. [PubMed: 22323592] 

2. Brophy GM, Bell R, Claassen J, Alldredge B, Bleck TP, Glauser T, LaRoche SM, R JJ Jr, Shutter L, 
Sperling MR, Treiman DM, Vespa PM. N. C. S. S. E. G. W. Committee. Guidelines for the 
Evaluation and Management of Status Epilepticus. Neurocrit. Care. 2012 Apr.17(1):3–23. [PubMed: 
22528274] 

3. Amzica F. Basic physiology of burst-suppression. Epilepsia. 2009 Dec.50(Suppl 12):38–39. 
[PubMed: 19941521] 

4. Chemali J, Ching S, Purdon PL, Solt K, Brown EN. Burst suppression probability algorithms: state-
space methods for tracking EEG burst suppression. J. Neural Eng. 2013 Oct.10(5):056017. 
[PubMed: 24018288] 

5. Ching S, Liberman MY, Chemali JJ, Westover MB, Kenny J, Solt K, Purdon PL, Brown EN. Real-
time Closed-loop Control in a Rodent Model of Medically-induced Coma Using Burst Suppression. 
Anesthesiology. 2013 Oct.119(4)

6. Liberman MY, Ching S, Chemali J, Brown EN. A closed-loop anesthetic delivery system for real-
time control of burst suppression. J. Neural Eng. 2013 Aug.10(4):046004. [PubMed: 23744607] 

7. Shanechi MM, Chemali JJ, Liberman M, Solt K, Brown EN. A Brain-Machine Interface for Control 
of Medically-Induced Coma. PLoS Comput Biol. 2013 Oct.9(10):e1003284. [PubMed: 24204231] 

8. Brandon Westover M, Shafi MM, Ching S, Chemali JJ, Purdon PL, Cash SS, Brown EN. Real-time 
segmentation of burst suppression patterns in critical care EEG monitoring. J. Neurosci. Methods. 
2013 Sep.219(1):131–141. [PubMed: 23891828] 

9. Liang Z, Wang Y, Ren Y, Li D, Voss L, Sleigh J, Li X. Detection of Burst Suppression Patterns in 
EEG Using Recurrence Rate. Sci. World J. 2014 Apr.2014:e295070.

10. Särkelä M, Mustola S, Seppänen T, Koskinen M, Lepola P, Suominen K, Juvonen T, Tolvanen-
Laakso H, Jäntti V. Automatic Analysis and Monitoring of Burst Suppression in Anesthesia. J. 
Clin. Monit. Comput. 2002 Feb.17(2):125–134. [PubMed: 12212991] 

11. Löfhede J, Löfgren N, Thordstein M, Flisberg A, Kjellmer I, Lindecrantz K. Classification of burst 
and suppression in the neonatal electroencephalogram. J. Neural Eng. 2008 Dec.5(4):402. 
[PubMed: 18971517] 

12. Wang Y, Agarwal R. Automatic detection of burst suppression. Conf. Proc. Annu. Int. Conf. IEEE 
Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf. 2007; 2007:553–556.

13. Brenner RP. The electroencephalogram in altered states of consciousness. Neurol. Clin. 1985 Aug.
3(3):615–631. [PubMed: 3900683] 

14. Lewis LD, Ching S, Weiner VS, Peterfreund RA, Eskandar EN, Cash SS, Brown EN, Purdon PL. 
Local cortical dynamics of burst suppression in the anaesthetized brain. Brain. 2013 Sep.136(9):
2727–2737. [PubMed: 23887187] 

An et al. Page 7

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Burst Suppression Probability Model Used in Analysis
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Figure 2. 
AI) Illustration of Variation in Single Channel BSP. Data from Fp1, F3 C3, P3 and O1 (left 

side medial anterior to posterior) channels of a patient with post-anoxic refractory status 

epilepticus. AII) Demonstration of Suppression Pattern Detection. This is a 1 min segment 

taken from the location of the vertical dashed line in Fig. 2AI. Note that the green box 

highlights a burst that is only observed in frontal lead Fp1 but not C3 or O1 while the orange 

box encases a burst that is similarly detected across all three channels. BI) Demonstration of 

Global BSP overlaid on all Single Channel BSP. Data from post anoxic RSE patient 

described in Fig 2AI and 2AII. BII) Demonstration of Global BSP Overlaid on All Single 

Channel BSP. Data from a non-anoxic RSE patient. Blue block indicates a location where 

one of the electrodes was an outlier. Global BSP was not affected by this outlier. C) 

Summary of Mean and Standard Deviation of Single Channel BSP difference from Global 

BSP Averaged Across pRSE and npRSE Groups. Note that pRSE patients have higher mean 

differenace and standard deviation in comparison to the npRSE group
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