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Abstract

The single-molecule accuracy of nanopore sequencing has been an area of rapid academic and 

commercial advancement, but remains challenging for the de novo analysis of genomes. We 

introduce here a novel algorithm for the error correction of nanopore data, utilizing statistical 

models of the physical system in order to obtain high accuracy de novo sequences at a range of 

coverage depths. We demonstrate the technique by sequencing M13 bacteriophage DNA to 99% 

accuracy at moderate coverage as well as its use in an assembly pipeline by sequencing E. coli and 

λ DNA at a range of coverages. We also show the algorithm’s ability to accurately classify 

sequence variants at far lower coverage than existing methods.

DNA sequencing has proven to be an indispensable technique in biology and medicine, 

greatly accelerated by the technological developments that led to multiple generations of low 

cost and high throughput tools1,2. Despite these advances, however, most existing 

sequencing-by-synthesis techniques remain limited to short reads using expensive devices 

with complex sample preparation procedures3.

Initially proposed two decades ago by Branton, Deamer, and Church4, nanopore sequencing 

has recently emerged as a serious contender in the crowded field of DNA sequencing. The 

method uses a small trans-membrane pore whose narrowest constriction is just wide enough 

to allow single-stranded DNA to pass through (Fig. 1a). An applied voltage across the 

membrane sets up an ionic current and electrophoretically draws the DNA into the pore. 

This current is monitored to measure the changes in conductance caused by the presence of 

DNA. An enzymatic motor such as a polymerase5 or helicase is used to ratchet the strand 

through the pore one base at a time and the resulting changes in ionic current can be used to 

deduce the sequence.
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Nanopore research groups have recently demonstrated the feasibility of obtaining long-read 

data with quantifiable accuracy6, and Oxford Nanopore Technologies has released their 

2,048-nanopore USB-powered MinION sequencer to a public open access program7–9. The 

device makes use of integrated current amplifiers and consumable flow cells along with 

biochemical sequence preparation kits in order to collect tens to hundreds of megabases of 

data in a single run. These developments have enabled nanopore sequencing to produce data 

at high coverage and moderate accuracy (Fig. 1b), while also encouraging the creation of 

freely available tools and techniques for subsequent analysis10–12. Such long-read data have 

been used as a scaffold to aid in the assembly of shorter, more accurate reads8,13; however, 

few techniques exist for combining low accuracy reads directly14. Here we show that the 

latent information in the ionic current data from multiple reads can greatly increase the 

accuracy when coupled with proper statistical modeling of the underlying physical system.

The dominant source of uncertainty in nanopore sequencing is the simultaneous influence of 

multiple adjacent nucleotides on the ionic current signal. It has previously been shown that 

up to 5 bases influence the instantaneous current15,16, increasing the number of distinct 

current levels from the ideal of 4 up to as many as 1024 and thus having a deleterious effect 

on the signal-to-noise ratio for base determination (Fig. 1c). The difficulty of extracting the 

sequence is further compounded by the stochastic behavior of the DNA, enzyme, and 

nanopore complex, which can lead both to missing and extra current levels, as illustrated in 

Fig. 1d. The skipped levels can be caused by the enzyme randomly ratcheting past a 

particular base too quickly to be electronically detected, and, as a result, the discretized form 

of the data (Fig. 1a, red line) will have that particular level omitted. Fluctuations or 

conformational changes can also lead to sudden jumps in conductance that could easily be 

mistaken for actual level transitions even though the enzyme stays on the same base, and 

certain enzymes can even exhibit random backwards motion17. These confounding factors 

lead to a problem of alignment: there is no longer a one-to-one correspondence between the 

detected sequence of current levels and the true sequence of bases. The large number of 

possible mappings between levels and bases thus results in many more actual sequences that 

could potentially produce a particular set of observed data.

We introduce a simple statistical model to capture the above effects, composed of both the 

probabilities of observing a current level given a 5-mer sequence (Fig. 1c) and the 

probabilities of skipping or staying on a given current level (Fig. 1d, Supplementary Fig. 

S1). Then, given a sequence, a set of observed current data, and an alignment that maps the 

discretized levels to the positions in the sequence, these probabilities can be multiplied 

together to compute a total observation likelihood for that sequence. The best sequence is 

defined as the one that results in the highest likelihood over the observations being 

considered, whether from one or multiple reads.

Although techniques exist for finding the maximum likelihood sequence using the dynamic 

programming18-based Viterbi algorithm19,20, they are limited to analyzing only one or two 

reads at a time due to the computational complexity of simultaneously aligning the levels 

and finding the sequence (Supplementary Note 1). Other methods such as dynamic time 

warping6,21 can align many sets of levels to one another without prior knowledge about the 

sequence, but in doing so, they sacrifice valuable information contained in the statistical 
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model. The alignment of multiple DNA sequences is a related problem in which various 

iterative optimization approaches have proven useful22,23; we show here that the same 

general class of algorithm can reliably surpass the accuracy of single molecule reads (Fig. 

1b) when the implementation is tailored appropriately to the task of nanopore sequencing.

The base-calling algorithm presented here is designed to accurately determine the de novo 
sequence using the discretized ionic current data from an arbitrary number of independent 

nanopore reads of the same region of DNA, including partial or reverse complement reads. It 

does this by iteratively finding the sequence that maximizes the total observation likelihood 

for all of the reads according to the statistical model. Optimizing the sequence in this 

iterative way requires searching through the vast space of all possible sequences of a given 

length; we limit this search to sequences that could plausibly fit the data by repeatedly 

testing and making only those local changes that are expected to improve the observation 

likelihood.

The components of the algorithm are illustrated in Fig. 2a. The process starts with a 

candidate sequence considered to be an initial best guess for the optimization routine and a 

number of observed nanopore reads that cover some of the region over which we are 

optimizing. A natural choice for the initial guess is one of the read’s single-molecule 

sequences computed via existing Viterbi methods (e.g. as provided by Oxford Nanopore). 

This guess is then gradually improved by introducing artificial mutations into the candidate 

sequence; these mutations are drawn from alternate versions of the candidate sequence, 

generated by a modified single-molecule Viterbi algorithm that deliberately introduces some 

randomness (Supplementary Note 2). Although these alternate sequences globally fit the 

data slightly worse than the best candidate, they may contain a short region (anywhere from 

one to dozens of bases) that has a higher sequence-aligned likelihood in that region 

compared to the current best candidate (Fig. 2a, iii, shaded). This stretch of sequence is then 

locally substituted into the best candidate’s sequence and the full observation likelihood 

recalculated, and the mutated sequence is kept if this likelihood exceeds the current best. 

Once all such mutations have been exhaustively tested, new alternates are generated and the 

procedure repeats until no more changes are found. This technique makes sequence space 

optimization feasible by screening for likely mutations and thus avoiding a prohibitively 

dense search over all possible sequences.

The details of the likelihood calculation are illustrated in Fig. 2b. The matrix depicts the 

alignment of a single read with a candidate sequence and yields the maximum likelihood 

(over all possible alignments) of observing that read given the sequence. The calculation of 

each cell in the matrix proceeds in a similar manner to canonical alignment algorithms 

(dynamic time warping21 or Smith-Waterman24): the row and column coordinates of a single 

cell represent the indices of the current levels and the bases, respectively, and the value 

contained in that cell is the maximum likelihood over all possible paths that can be taken to 

reach that cell. The cells are filled in using the likelihood values from the surrounding three 

cells directly above and to the left, as they correspond to the different possible cases of 

enzymatic motion according to the statistical model (e.g. a step from the left is a skip, shown 

in red, as the sequence advances without a corresponding current level). The resulting 

likelihood value of the new matrix cell is the maximum likelihood out of all of these starting 
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cells multiplied by the probability of the new sequence/observation pair and the skip/stay 

probabilities, if applicable (Supplementary Note 3). At the end of the procedure, the highest 

likelihood in the entire matrix is then the maximum likelihood over all alignments, and the 

best alignment itself can be obtained by tracing the matrix backwards (shaded blue, arrows) 

from the maximum. A separate matrix is calculated for each read and the resulting 

likelihoods are then multiplied together to get the total observation likelihood; the 

computation time hence scales linearly with the coverage depth.

The algorithm’s ability to obtain de novo sequence information using MinION nanopore 

data is shown in Fig. 3a. The data are taken from M13mp18 digested by EcoRI, yielding 

identical double-stranded fragments 7,249 bases long, as well as from λ phage DNA sheared 

to approximately 8 kb fragments (Supplementary Fig. 5) and from a published E. coli 
dataset7. After preparing the molecules as recommended (see Methods), we ran a 24-hour 

sequencing protocol. The initial sequence analyses were done using Oxford Nanopore 

Technologies’ cloud-based Metrichor service, which computed the sequence corresponding 

to each detected molecule separately. The models (internally trained on the E. coli 
genome25) used by Oxford to map 5-base sequences to observed current levels were also 

stored, and these models were used in this work without modification along with the offsets 

and scaling provided. The additional skip and stay parameters for the model were trained 

using the results of a sequencing run of identical 3.6kb fragments of λ DNA that ship with 

the MinION device for calibration (see Methods).

The de novo sequence accuracies of M13mp18 are shown in Fig. 3a as a function of single-

molecule coverage, with each molecule consisting of both a template and complement read. 

The error bars represent the minimum and maximum accuracy obtained from trials using 

different random subsets of molecules at the specified coverage. We emphasize that no 

information about the true sequence was used, nor any information (e.g. statistics or fit 

parameters) from molecules outside of those included in a single trial. Due to the higher 

levels of coverage needed to reach a practical 99% accuracy, small DNA samples might 

require the use of PCR, in which case the mutation scoring would be modified to discard the 

lowest-scoring strands so as to account for the errors introduced during replication.

We also demonstrate the algorithm in a standard genome assembly pipeline by assembling λ 

DNA from nanopore reads at a range of coverages and by error-correcting and assembling E. 
coli from a previously published dataset (Fig. 3a). Our technique is similar to the 

Hierarchical Genome Assembly Pipeline (HGAP)14 developed for Pacific Biosciences 

sequence data, consisting of three stages: fragment error correction, assembly, and 

assembled genome refinement. When the existing pipeline is run on MinION sequence data 

directly, the accuracy is limited to around 96% (Fig. 3a, green line); however, replacing both 

the existing fragment error correction and refinement stages with our technique (see 

Methods) increases the accuracy to 99% (Fig. 3a, red line). Importantly, since long 

sequences are split into smaller sections for parallel processing, the technique is inherently 

scalable to larger genomes (see Supplementary Note 7 for a discussion of execution time). 

We show this by running the same pipeline on a published E. coli dataset from the MinION 

sequencer7; only when error-corrected using our algorithm can the fragments be assembled 

into a single contiguous genome. When the algorithm is used to again error-correct the 
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assembled sequence, the final accuracy is 98.5% (Fig. 3a, Supplementary Note 8), which we 

would expect to improve further if more recent MinION data were used.

Another benefit of this approach is that it easily enables sequence variant comparison, as 

shown in Figs. 3b and 3c. It is often necessary to distinguish between known single 

nucleotide variants (SNV) occurring at a low density (approx. 1 SNV per 2 kb in humans26). 

As a test, we took the actual M13mp18 sequence and computationally mutated it in one 

position (replacing, inserting, or deleting a single base) to generate an SNV of the original 

sequence. The observation likelihood feature was then used to compute the likelihood score 

of both the original and mutated sequences in order to call the correct variant as the higher 

of the two likelihoods. As can be seen in Fig. 3b, even at low coverages the correct 

unmodified sequence is accurately identified as having a higher likelihood score. This 

variant calling feature outperforms de novo sequencing at lower coverages because the vast 

majority of single nucleotide-mutated sequences would yield a considerably different current 

signature, making them easy to distinguish.

We also compare our approach to previous sequence-based variant calling analyses using 

nanopore data12 (Fig. 3c). Substitution errors are introduced into the M13mp18 sequence at 

a rate of 1%, and we then attempt to correctly identify them and recover the original 

sequence. By setting a threshold on the difference in observation likelihood when calling 

each base variant, we study the probability of false positives and false negatives (referred to 

as precision and recall, respectively) at a range of coverages, in order to find the maximum 

classification accuracy. We find a peak F-score accuracy of 99.1% at a coverage of only 16×, 

demonstrating similar performance to previous results12 but at an order of magnitude lower 

coverage.

Following the submission of this manuscript, a related approach by Loman et al33 was 

submitted and published. Both methods employ a similar error model, but differ in that 

Loman et al. use only sequence information for the initial pre-assembly error correction, 

while our approach also uses nanopore current data for both the initial correction and the 

final refinement pass (made possible by the mutation finding process in Fig. 2). This allows 

us to find the consensus sequence and analyze the error across a wider range of coverages 

from as low as 4× and 8×, as shown in Fig. 3. Our demonstration of variant calling 

additionally provides valuable insight into the capabilities and limitations of these methods.

The results in this work show that multiple nanopore reads can be combined to reach 

accuracies over 99%, compared to the approximately 85% seen with single molecules7, and 

many further improvements are expected both in the nanopore biochemistry and the physical 

models capturing their behavior. In particular, the inclusion of current level durations will be 

necessary in dealing with homopolymer DNA regions, which we have found are responsible 

for over half of the errors at 99% accuracy (Supplementary Note 5). The model can also be 

extended to detect base methylation, the identification of which requires an estimated 5–19 

repeated reads27,28. Other improvements are possible through better control of enzymatic 

ratcheting29 or the inclusion of a wider variety of pore mutants30–32 to obtain pore-specific 

current data on the same sequence. The code was designed to be flexible in handling such 

modifications with far fewer constraints than Viterbi-based approaches, and we have made 
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all code publicly available at http://github.com/tszalay/poreseq in the hope that others will 

make use of it as a framework for future development.

Online Methods

M13 Restriction Digest

Four micrograms of M13mp18 RFI (New England Biolabs, cat. no. N4018S) DNA were 

digested with EcoRI restriction enzyme in a 100 microliter reaction volume for 2 hrs at 37C, 

and then heated for 30 min at 65C to inactivate the enzyme. The digested DNA mix was 

applied to Micro Bio-Spin 30 chromatography columns (Bio-Rad Laboratories Inc., cat. no. 

732–6223) equilibrated with molecular grade water, centrifuged according to the 

manufacturer’s instructions, and a column flow-through volume containing one microgram 

of desalted DNA was adjusted to 85 microliters with water for subsequent library 

preparation.

Lambda DNA Shearing

Lambda genomic DNA for sequencing was prepared by shearing the DNA using the Covaris 

g-TUBE (Covaris, Inc., cat. no. 520079) to generate targeted DNA fragment sizes of 

approximately 8kbp. One microgram of Lambda DNA (New England Biolabs, cat. no. 

N3013S) in a total volume of 80 microliters water was applied to a Covaris g-TUBE and 

centrifuged, according to manufacturer’s instructions, for one minute at 7,200 RPM in a 

Heraeus Biofuge fresco (Kendro Laboratory Products) with temperature set at 30C. Five 

microliters of DNA CS (ONT) was added to the sheared DNA and the sample prepared for 

sequencing following the Oxford Nanopore MAP Genomic DNA Sequencing Kit protocol 

(ONT prod. Code SQK-MAP003).

Sequence Library Preparation

End repair of the digested DNA samples was performed using NEBnext End Repair module 

(New England Biolabs, cat. no. E6050S) by adding 10 microliters of reaction buffer and 5 

microliters of enzyme mix and incubating at room temperature for no longer than 30 

minutes. To purify the end-repaired DNA, 100 microliters (1× volume) of Agencourt 

AMPure XP beads (Beckman Coulter Inc., cat. no. A63880) were gently mixed in, 

incubated at room temperature for 15 min, and the beads separated from the reaction 

supernatant using a magnetic rack. DNA was eluted from the beads in 25 microliters of 10 

mM Tris-HCl pH 8.5 and dA-tailing performed at room temperature for 60 min by adding 3 

microliters of reaction buffer and 2 microliters of enzyme supplied in the NEBNext dA-

Tailing module (New England Biolabs, cat. no. E6053S).

The Oxford Nanopore MAP Genomic DNA Sequencing Kit (ONT prod. Code SQK-

MAP004 for M13, SQK-MAP003 for lambda) was used to further prepare the DNA samples 

for sequencing. Kit reagents were thawed and stored on ice (HP adaptor, adaptor mix, and 

fuel mix), or at room temperature (2× wash buffer, elution buffer, and EP buffer) before use. 

Following the manufacturer’s protocol, a ligation step was performed by combining (in 

order) 30 microliters of dA-tailed DNA, 8 microliters of water, 10 microliters of Adaptor 

mix, 2 microliters of HP adaptor, 50 microliters of Blunt/TA Ligase Master Mix (New 
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England Biolabs, cat. no. M0367S), and incubating the mixture at room temperature for 10 

minutes. Ten microliters of His-Tag Dynabeads (Life Technologies, cat. no. 10103D) were 

washed twice with 250 microliters of 1× wash buffer and suspended with 100 microliters of 

2× wash buffer. This volume of washed His-Tag beads was added directly to the ligation 

mixture, incubated for 5 min at room temperature, and the beads collected using a magnetic 

rack. Once separated from the reaction supernatant, the pelleted beads were carefully rinsed 

twice (without suspension) using 250 microliters of 1× wash buffer. All wash buffer was 

subsequently removed and the DNA Library eluted from the beads with 25 microliters of 

elution buffer. Prior to sequencing on the MinION, 140 microliters of EP buffer was added 

to a 6 microliter aliquot of the DNA library, followed by 4 microliters of fuel mix and 

thorough mixing.

Data Acquisition

Data was acquired with an Oxford MinION device connected to a sufficiently capable 

computer (Windows 7; MinKNOW software; USB3; SSD; i7 processor). A new version 

R7.3 flowcell was used for each run; the flowcell was initially primed with two injections of 

150 microliters of EP Buffer, spaced 10 minutes apart, after which the MinKNOW software 

was used to measure pore quality and activity. The 150 microliters of previously prepared 

sequencing mix was then loaded into the MinION flowcell as specified by the manufacturer. 

A 24-hour sequencing protocol was selected in the software and the device was allowed to 

run until all pores and sample were exhausted.

Data Analysis

Initial data analysis was performed by Oxford Nanopore Technologies’ cloud-based 

Metrichor service, which runs proprietary versions of the Viterbi algorithm similar to those 

described in the Supplementary Information. The service uploads the basic HDF5 (‘.fast5’) 

files generated by the sequencing software and returns the files with additional processed 

data appended. A number of these analyzed features were used in the present work: the 

parsing of each molecule to separate the current levels corresponding to the template and 

complement strands in each double-stranded molecule (and the removal of hairpin/adapter 

levels); the Oxford-trained statistical models used to map 5-mers to current levels; the offset 

and scaling between the molecule and model current levels; estimates of the skip and stay 

probabilities per molecule; and the two 1D Viterbi and one 2D Viterbi-computed sequence 

for each molecule. The details of the extraction and use of each of these features is well-

documented in Supplementary Note 6 and the provided source code. Only the models and 

scaling are required; the Viterbi sequences were merely used to help speed up convergence 

of the algorithm.

Model Training

The skip, stay, and insertion parameters of the model were trained using a sample of ONT-

provided “DNA CS” (calibration sample) prepared in the same manner as the M13mp18 

post-digest using the material supplied with the SQK-MAP004 kit. Of the 907 molecules 

sequenced, a subset of 20 was selected at random and de novo sequencing performed. The 

parameters were arbitrarily seeded to 5% for skips/stays and 2% for insertions 

(Supplementary Note 3), then randomly perturbed and the change kept if they increased the 
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resulting DNA CS sequence accuracy. After a few hundred iterations, the parameters had 

converged and no improvements were found; these were the parameters used in the final 

analysis used to generate Fig. 3. The authors acknowledge that more precise means of 

training the parameters are possible, but it was found that the de novo accuracies are fairly 

insensitive to small (<20%) changes in the parameters, and as a result the present method 

was found to be sufficient.

Accuracy Calculation

When the term “accuracy” was used to refer to a DNA sequence relative to the M13mp18 

reference (Figs. 1b, 3a), this accuracy was calculated as follows: first, the optimal alignment 

between the candidate sequence and a reference was found using Matlab’s swalign function 

(Smith-Waterman alignment) using default parameters, which uses a match score of +5, a 

mismatch penalty of −4, and a gap/extend penalty of −8. The alignment is assumed to be 

good enough to cover all of the candidate sequence unless otherwise noted. Next, the 

accuracy was computed as the number of matching bases divided by the total number of 

bases in the alignment, defined as matches + mismatches + insertions + deletions. For the 

variant calling and de novo sequencing trials of M13, the accuracy was calculated in the 

region covered by at least 75% of the strands, to compensate for end-trimming in the data. In 

the case of λ DNA, the accuracy reported is % identity as calculated by MUMmer34, which 

was found to not differ significantly from other definitions at the error rates shown.

M13 de novo Sequencing

To reconstruct the original sequence from nanopore reads of M13 bacteriophage DNA, the 

code was executed on a specific number of fragments as shown in the coverage plot of Fig. 

3. Suitable fragments were defined as those with double-stranded information available 

whose 2D basecalls had between 5000 and 8000 bases (compared vs. the full M13 with 

7249), in order to filter out partial or repeated molecules. Optimization was then run using 

each molecule’s own 2D Viterbi sequence generated by Metrichor as the alternate sequence 

inputs to the algorithm, until no mutations were found, typically taking around 3 iterations 

(with up to a thousand mutations possible in each iteration). Once this phase completed, 

alternate sequences were generated as described in Supplementary Note 2, to find likely 

mutations that did not appear in any of the individual 2D sequences. In each iteration, 12 

alternate sequences were generated with identity/similarity to the candidate ranging from 

60% to 100%, and these iterations were alternated with the testing of every possible single-

base mutation (Supplementary Note 6) to ensure that no mutations were missed; this was 

repeated at most 5 times and found to sufficiently capture all mutations.

Lambda Assembly

The code was used to error-correct each individual read as follows: first, the 2D-basecalled 

sequences of all reads were extracted from the returned ONT files. LAST was then used to 

perform overlap alignment of each read’s sequence to all other sequences, and these 

alignments were used to seed the algorithm and improve the accuracy of each fragment 

sequence. The latest Celera assembler (r4638 from SVN) was then used to assemble the 

corrected sequences into a single contig. All reads were re-aligned with the contig once 

again using LAST, and corrected in 6000-base fragments which were finally reassembled 
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into a single, high-accuracy sequence. All commands and parameters used can be found in 

the Supplementary Code. Each point in Fig. 3a is from a single random subset of all reads, 

and the coverage shown is the theoretical maximum value of (total bases in reads) / 48502. 

The specifics of the iterations for the correction are the same as that described in the 

previous section.

E. coli Assembly

We also used the algorithm to error-correct and assemble a previously published E. coli 
MinION dataset7 using a similar procedure to that for λ-DNA. Briefly, pre-correction was 

done with our code using all of the 2D data but limited to 10× coverage for speed, followed 

by PBcR/Celera assembly of the corrected reads, and finished with a final refinement pass of 

our code at a 25× coverage limit. The assembled and refined de novo genome is 4.584 Mb 

long and covers 99.65% of the E. coli reference at an identity of 98.48% (see Supplementary 

Note 8 for more details). Due to the lower accuracy inherent in the older data and 

chemistries used, we were not able to assemble the sequences without using our code for 

pre-correction, as the self-correction pipeline in PBcR was unable to improve the 2D 

sequences beyond 87%.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
a) Illustration of the DNA-enzyme complex captured in a nanopore (left). The base-by-base 

processive behavior of the ATP-fueled ratcheting enzyme leads to the depicted ionic currents 

(right) which are discretized to facilitate subsequent analysis (red line). b) Summary analysis 

of a sequencing run of M13mp18 DNA on an Oxford MinION device demonstrating the 

available depth of coverage at moderate accuracy. Each data point represents an entire M13 

DNA molecule. c) A plot of the mean currents and standard deviations of the 1024 distinct 

5-mer sequences, with the full Gaussian distributions of a few example 5-mers shown in 
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blue. d) Depiction of the alignment issues caused by possible detection errors in multiple 

reads (grey) against the expected ideal current levels (black), including missed levels (red) 

and extra levels (green).
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Figure 2. 
a) A high-level overview of the algorithm. The process starts with multiple nanopore reads 

and a single candidate sequence shown in blue (i). Aligned alternate sequences from which 

mutations are drawn are shown in red with a specific one highlighted (ii). The alternates 

must be similar enough to the candidate that their sequences can be aligned, but otherwise 

vary throughout their full length. The plot contains the aligned local likelihood scores across 

all reads (calculated as in 2b) for the candidate and each alternate (iii). Local regions where 

an alternate's likelihood score exceeds the candidate’s are shaded and correspond to a short 

region where the alternate sequence is likely more accurate than the best candidate. The 

alternates’ local sequence from this region is substituted into the best candidate and the full 

maximum likelihood score is recomputed (iv), at which point the higher-scoring sequence 

becomes the new best (v). The vertical dotted lines denote a specific mutation taken from the 

highlighted red strand in parts (i) through (iv). b) The maximum likelihood over all possible 

alignments of a single read and sequence is computed using a Smith-Waterman24-style 

dynamic programming approach. The values of the matrix elements are the maximum 

likelihood over all valid paths to that element while the lightness of the color represents the 

local probability of that particular sequence/current pair according to the statistical model. 

The maximum likelihood score is the highest value in the whole matrix and the full best 

alignment can be found by backtracking through the matrix as illustrated by the arrows. The 

local probabilities of each aligned read can be mapped back to the sequence and combined 

(bottom), at which point they can be compared to the scores from other sequences (2a, iii, 

comparison between red and blue lines).
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Figure 3. 
a) Accuracy results of running our code on nanopore data from M13, λ, and E. coli DNA to 

obtain complete de novo sequences. For M13, error bars indicate the upper and lower 

bounds for accuracy across 20 random subsets at the given coverage. The green line is the 

result of error correction and assembly with PBcR using only the 2D basecalled sequences; 

the red line shows the improvement when we error-correct with the raw data. b) Fraction of 

single-base variants of M13mp18 correctly called as a function of coverage. Variant 

sequences were generated by computationally making every possible insertion, deletion, or 
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mutation in the original sequence of M13. A correct call is defined as the original M13 

sequences' likelihood being larger than the variant in question. Error bars denote the 

deviation across 20 random subsets of molecules. c) Variant calling performance of our code 

on substitution mutations introduced in M13 at a higher frequency of 1%, at a range of 

coverages. Precision and recall denote the probabilities of false positives and negatives, 

respectively. The maximum F-score accuracy shown is 99.1% at 16× coverage.
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