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Abstract

Understanding the drivers of species occurrence is a fundamental goal in basic and applied 

ecology. Occupancy models have emerged as a popular approach for inferring species occurrence 

because they account for problems associated with imperfect detection in field surveys. Current 

models, however, are limited because they assume covariates are independent (i.e., indirect effects 

do not occur). Here, we combined structural equation and occupancy models to investigate 

complex influences on species occurrence while accounting for imperfect detection. These two 

methods are inherently compatible because they both provide means to make inference on latent or 

unobserved quantities based on observed data. Our models evaluated the direct and indirect roles 

of cattle grazing, water chemistry, vegetation, nonnative fishes, and pond permanence on the 

occurrence of six pond-breeding amphibians, two of which are threatened: the California tiger 

salamander (Ambystoma californiense), and the California red-legged frog (Rana draytonii). 
While cattle had strong effects on pond vegetation and water chemistry, their overall effects on 

amphibian occurrence were small compared to the consistently negative effects of nonnative fish. 

Fish strongly reduced occurrence probabilities for four of five native amphibians, including both 

species of conservation concern. These results could help to identify drivers of amphibian declines 

and to prioritize strategies for amphibian conservation. More generally, this approach facilitates a 

more mechanistic representation of ideas about the causes of species distributions in space and 

time. As shown here, occupancy modeling and structural equation modeling are readily combined, 

and bring rich sets of techniques that may provide unique theoretical and applied insights into 

basic ecological questions.
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Introduction

Much of ecology is concerned with explaining and predicting where species occur in space 

and time. While species distributions are directly and indirectly influenced by a diverse suite 

of abiotic and biotic factors, most statistical treatments do not formally differentiate between 

direct and indirect effects (Guisan and Thuiller 2005). Structural equation modeling (SEM) 

provides one means by which to formally represent causal assumptions in the form of direct 

and indirect causal pathways, helping to close the gap between biological mechanisms and 

statistical methodology (Bollen 1989, Grace 2006).

Structural equation models combine causal assumptions with observations to generate causal 

inferences (Pearl 2000). Often, these assumptions are displayed in a path diagram that 

represents model components and causal relationships (i.e. how one variable affects 

another). These path diagrams encode both direct and indirect effects, such as those involved 

in complex processes that structure communities (Clough 2012, Alsterberg et al. 2013). As a 

result, SEM provides a framework for clarifying, representing, and evaluating hypotheses in 

ecology that can outperform traditional associational statistical methods. For example, the 

relationship between productivity and biodiversity has historically been evaluated 

statistically in a bivariate context, despite the multidimensionality of the hypotheses that 

have been put forward to explain the relationship. By explicitly representing causal 

relationships between productivity and diversity, along with disturbance and stressors in a 

SEM, the mechanistic relationship between productivity and biodiversity becomes more 

clear, with more predictive power than bivariate approaches (Grace et al. 2014). In addition, 

SEM is flexible, with recent developments facilitating non-linear effects and a wide range of 

distributions, broadening the potential applicability of SEM in ecology (Lee 2007). Finally, 

SEM differentiates between latent and observable variables. Latent variables cannot be 

observed directly, but observations can provide information on latent quantities. A classic 

example is the presence or absence of a species.

In practice, studies of species occurrence are notoriously plagued by imperfect detection 

because species may be present but unobserved. This can be problematic when trying to 

explain species distributions because false absences create bias in estimated coefficients for 

covariates that explain occurrence. For instance, if turbidity increases the probability of 

occurrence of an aquatic organism, but decreases detectability (i.e. the organism is harder to 

observe), detection events will not appear to be related to turbidity. However, adjusting for 

imperfect detection facilitates unbiased estimation of the true relationship between such a 

factor and species occurrence. Such adjustments can be made via occupancy modeling, a 

method in which repeat surveys are used to estimate probabilities of detection and draw 

inferences on true occupancy states (MacKenzie et al. 2002). Occupancy models are classic 

hierarchical models, where the latent binary occurrence state is partly observed, and the 

extra zeros in detection histories are modeled as potentially arising from a combination of 

true and false absences. As the appreciation and application of occupancy models has 

increased, they have been extended to include multiple species, temporal dynamics including 

colonization and extinction, estimation of species richness, habitat ephemerality, and even 

disease dynamics (Dorazio et al. 2010, MacKenzie et al. 2011, Miller 2012). These 
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developments have been instrumental in improving inferences about the processes that 

govern species distributions. However, many existing models require independent covariates 

for occurrence and detection. This limitation represents a challenge to understanding even 

moderately complex processes that drive species distributions that may include a 

combination of direct and indirect effects on occurrence and detectability.

Here, we show that combining SEM with occupancy models overcomes this limitation and 

provides a means by which to more directly represent processes that influence species 

occurrence. We aim to illustrate the practical and conceptual compatibility of occupancy 

modeling and structural equation modeling by developing a causal model of species 

occurrence and community composition that explicitly accounts for non-detection. We use 

pond-breeding amphibians as an applied case example. First, we outline the logic behind the 

model by summarizing the relevant empirical knowledge for our system in terms of the 

effects of pond permanence, cattle grazing, nonnative fishes, water chemistry, and vegetation 

on amphibian occurrence. We then discuss the data collection scheme and formally relate 

our observations to the processes under consideration by developing observation, process, 

and parameter (prior) models. As a model verification step, we demonstrate the recovery of 

parameters from our SEM using simulation (Rykiel 1996). Last, we present results for the 

case study and discuss the value, limitations, and future directions for this approach.

Study system

The amphibian community in freshwater ponds of the San Francisco Bay Area of California, 

USA includes the Pacific chorus frog (Pseudacris regilla), western toad (Anaxyrus boreas), 

California newt (Taricha torosa), California tiger salamander (Ambystoma cailforniense), 

California red-legged frog (Rana draytonii), and nonnative American bullfrog (Lithobates 
catesbeianus) (Stebbins 2003). Of the native species, two are federally protected and are of 

broad conservation concern (A. californiense and R. draytonii), and A. boreas has declined 

in specific regions (Lannoo 2005). Some populations of these species are currently 

threatened by invasive species including nonnative fishes and bullfrogs, which potentially act 

as predators and competitors for native amphibians (Fisher and Shaffer 1996, Lawler et al. 

1999, Preston et al. 2012). Further, widespread cattle grazing in this region has the potential 

to affect the population dynamics of amphibians at breeding sites directly via trampling, and 

indirectly by removing vegetation and increasing the concentration of nitrogenous 

compounds in wetlands (Robins and Vollmar 2002, Roche et al. 2012). The ponds we 

considered included both temporary and permanent water bodies up to 7 meters in depth.

Data collection

From 2009 to 2013, field crews used standardized methods to assess amphibian site 

occupancy in 171 wetlands in the San Francisco Bay Area, USA (Contra Costa, Alameda, 

Santa Clara, and San Mateo counties) (Johnson et al. 2013). For simplicity, we used only 

one year of data from each site (with years chosen at random). The sites consisted of both 

artificially created livestock ponds and natural wetlands. Crews surveyed wetlands twice per 

summer using a combination of visual encounter, seine, and dipnet surveys (Crump and 

Bury 1994). Visual encounter surveys involved a single observer walking the perimeter of 

Joseph et al. Page 3

Ecology. Author manuscript; available in PMC 2016 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the wetland and recording all species observed. Dipnet sweeps were conducted every 3 m 

around the pond perimeter (1.4 mm mesh and 2600 cm2 net area) and three to four seine net 

hauls were performed in the deepest regions of each pond (4 mm mesh size and 1 × 2 m net 

area). For each survey, we recorded all life stages of each observed amphibian species. We 

considered sites “occupied” if larval amphibians were present, which indicates adult 

presence, successful fertilization, some degree of larval development, and potential for 

metamorphosis (i.e. breeding activity).

We quantified cattle grazing intensity, percentage of shoreline vegetated, pond permanence, 

water chemistry, and the presence of nonnative fish. To measure cattle grazing intensity, we 

recorded the number of cow paddies within three meters of shoreline and recorded shoreline 

perimeter with a handheld GPS unit to quantify cow paddy density at each pond. As a 

second measure of grazing intensity, we made a qualitative judgment of whether the wetland 

was disturbed by cattle based on evidence of tracks and trampling. Water samples were 

collected in acid-washed Nalgene bottles, filtered, frozen, and analyzed for ammonium 

(NH4+) and total dissolved nitrogen (TDN) concentrations using standard protocols (see: 

http://snobear.colorado.edu/Kiowa/Kiowaref/procedure.html). Imagery from Google Earth 

was used to help determine whether wetlands were permanent, based on consistent presence 

of water year round. Last, crews estimated the percentage of pond shoreline that was 

vegetated and recorded whether fish were present or absent using observations from all 

sampling methods. The most common fish species were nonnative, including mosquitofish 

(Gambusia affinis), largemouth bass (Micropterus salmoides), and bluegill sunfish (Lepomis 
macrochirus).

Conceptual model

Drawing upon previous literature, we developed a multivariate hypothesis about the drivers 

of amphibian community composition in this system (Figure 1). We expected fish to 

strongly affect community composition, particularly species with poor avoidance strategies 

and high palatability (Kruse and Stone 1984, Kats et al. 1988, Adams 2000, Welsh et al. 

2006). Further, pond permanence should increase bullfrog occurrence because bullfrogs 

have a multi-year larval development period that is longer than most western native species 

(Collins 1979). We hypothesized that livestock would physically alter wetland ecosystems 

via trampling and grazing, and chemically alter wetlands via inputs of nitrogenous waste 

products in urine and feces (Kauffman et al. 1983, Jansen and Healey 2003, Knutson et al. 

2004, Schmutzer et al. 2008, Adams et al. 2009). Previous studies indicate that 

characteristics of shoreline vegetation influence amphibian breeding and that water 

chemistry can alter reproductive success and occupancy probability (Freda and Dunson 

1986, Rowe and Dunson 1995, Rouse et al. 1999, Jansen and Healey 2003, Brodman et al. 

2003, Egan and Paton 2004, Burne and Griffin 2005, Earl and Whiteman 2009). Separating 

out the causal pathways through which grazing alters amphibian occupancy is important 

from a practical standpoint, as each one might be targeted differently with management 

interventions (e.g., limiting cattle-induced damage to vegetation versus limiting the total 

intensity of grazing).
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Model formalization

To formalize the model of Figure 1, we adopted a hierarchical Bayesian approach, 

developing model components related to observations, processes in the system, and priors 

for unknown parameters (Lee 2007, Cressie et al. 2009, Dorazio et al. 2010).

Observation model

While early structural equation models assumed normally distributed observed indicator 

variables, current methods are extremely flexible in terms of likelihood functions and 

relationships between variables, broadening the applicability of these methods in ecology 

(Grace 2006, Lee 2007). We consider the presence/absence state of a species at a location to 

be a hidden (latent) binary variable which gives rise to imperfect detection/nondetection 

data. The use of a latent state variable is a key conceptual link between the fields of SEM 

and occupancy modeling. The flexibility of this approach is demonstrated in the following 

sections where we apply a variety of observation models from the exponential family, a 

moderately complex finite-mixture distribution, and a combination of continuous and 

discrete latent variables.

We considered grazing intensity by cattle to be a continuous latent quantity that cannot be 

observed directly, whose value is indicated by evidence of disturbance and the density of 

cow paddies in the vicinity of a wetland. Specifically, cattle disturbance was modeled as a 

Bernoulli random variable with latent grazing intensity (ξ) as a continuous covariate:

for the jth site and the kth survey, with square brackets representing indexing. Observed cow 

paddy counts are treated as a second indicator (specifically, a multi-method indicator) 

(Grace 2006) and modeled as a Poisson random variable with an offset for shoreline 

perimeter of site j (μperim[j]) in meters:

Perimeter observations are subject to measurement error and variation within a season. 

Therefore, we modeled latent mean perimeter values for each site (μperim), which represents 

the expected pond perimeter value for site j:

where σw represents measurement error and variation within a season, αperim is the (log) 

average perimeter across all wetlands, and σa is the variability in perimeter among wetlands.
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Shoreline vegetation, v, ranged from 0–100% with a non-negligble number of 0%, 100%, 

and intermediate observations. Therefore, we treated these observations as arising from a 

zero-one inflated beta distribution, which is a finite mixture distribution with a Bernoulli 

component that produces 0’s and 1’s, and a beta component that produces values on the 

interval (0, 1) (Ospina and Ferrari 2012):

Here, α determines the extent to which the beta or binomial mixture components dominate 

the probability density function. The second degree polynomial term with coefficient a2 

causes extreme values of the logit-expected shoreline vegetation cover μv to increase the 

probability of an observer recording either 0% or 100% shoreline vegetation cover. This 

formulation essentially imposes a minimum probability of observers recording a discrete 

value when the true shoreline vegetation is 50%, and increases the probability of 0% or 

100% observations as the true cover approaches those values. Last, f(v; μv, ϕ) is the 

probability density function of the beta distribution, parameterized in terms of its mean (μv) 

and variance (ϕ), which represents the combination of observation error and within-summer 

variation in true shoreline vegetation cover (Ospina and Ferrari 2012).

Log-transformed concentrations of ammonium and total dissolved N in the water were used 

as multi-method indicators of latent N concentration. Because both total dissolved N and 

 concentrations tend to increase over the course of the summer due to exogenous 

inputs and pond drying, we also included an effect of survey number k, coded as an indicator 

variable for the 2nd survey, such that I(k = 2) = 1, and I(k = 1) = 0.

We adopt an occupancy modeling approach for the data model describing amphibian 

detection and non-detection. Observations of the ith species at the jth site on the kth repeat 

survey are represented by Y [i, j, k]. We treated these observations as Bernoulli random 

variables with probability p[i, j, k]z[i, j], where p is the probability of detection and z is the 

latent binary presence/absence state. The true occurrence state z is only partly observed. If 

species i was seen at site j on any survey, it was present, but if it was not seen on any survey, 

it is possible that it was present but unobserved (MacKenzie et al. 2002):
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We treated fish presence and pond permanence as directly observed quantities, which is 

supported by consistency of observations within and across years in this system.

Process model

Our process model represents the latent processes connecting the latent quantities: grazing 

intensity ξ, shoreline vegetation η1, N concentration η2, the true occupancy states z, and the 

probability of detection P (Figure 2). In the SEM lexicon, process models are sometimes 

referred to as structural models. Note that there is an additional pathway from fish to 

nitrogen that was not initially hypothesized, but revealed in the process of model evaluation 

(see Model Assessment below).

We treat grazing intensity as an exogenous latent variable, unaffected by the other latent 

quantities, with mean 0 and standard deviation 1 as an identifiability constraint. Due to cattle 

grazing on and trampling of shoreline vegetation, we modeled a linear effect of cattle 

grazing intensity ξ on shoreline vegetation η1:

where the standard deviation term, similarly set to 1 for identifiability, represents the 

influence of other, unmodeled factors on shoreline vegetation cover. Nitrogenous inputs 

from cattle excretion in and around wetlands are treated similarly. Following a graphical 

check of independence assertions, we included an effect of fish presence (γ3) on nitrogen:

We represented true occupancy states as Bernoulli random variables with probability of 

occupancy ψ[i, j] for the ith species at the jth site, such that z[i, j] ∼ Bernoulli(ψ[i, j]). We use 

a logit-link to model the effects of observed and latent covariates on ψ:

where αspecies accounts for species-specific differences in overall occupancy across the 

entire study area, αregion accounts for regional differences in occupancy rates within each 

species (with region r being indexed by site j). Last, αsite represents the local effects of fish, 

pond permanence, grazing, shoreline vegetation and nitrogen concentrations. These terms 

can be decomposed as follows:

This varying intercept term accounts for among-region variation within species in 

occupancy, with varying species-specific standard deviations, to account for the fact that the 
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degree of regional variation in occupancy rates varies among species. Local covariate effects 

enter the final term:

Species vary in their detection probabilities and p may also vary between first and second 

visits:

where αp is a species-specific mean and the last term represents the effect of early vs. late 

summer surveys.

Priors

We assumed logit-normal species responses to covariates with covariate-specific community 

means and variance parameters that represent among-species variability, such that:

Further, we assumed that for each species, mean detection probabilities would be logit-

normally distributed around community level means:

Hierarchical parameters corresponding to community-level variance terms received semi-

informative half-Cauchy priors that were weighted towards small values to reduce bias 

relative to commonly used uniform priors (Gelman 2006). We adopt vague priors for all 

other parameters except the loading terms for indicator variables which were constrained to 

be positive (e.g., increases in latent grazing intensity ξ correspond to increases in its 

indicators Y1 and Y2). Last, prior information based on previous work has entered the model 

in the form of included effect pathways (e.g., we assume that amphibian community 

composition does not affect grazing intensity).

Estimation

We used Stan, and the R package rstan to draw samples from the joint posterior distribution 

of all parameters (R Core Team 2014, Stan Development Team 2014a, 2014b, 2014c). 

Although this model could be implemented with WinBUGS, OpenBUGS, or JAGS, the 

simultaneous updating of all parameters via the No-U-Turn sampler in Stan results in faster 

convergence and more efficient sampling (Hoffman and Gelman 2014). Running three 

chains in parallel with 30000 iterations took about 80 minutes on a quad-core i7 laptop. 

Convergence was assessed using visual inspections of trace plots and the Gelman-Rubin 

potential scale reduction factor (Gelman and Rubin 1992, Brooks and Gelman 1998).
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Model assessment

As this is a new method, we conducted a simulation analysis to ensure adequate recovery of 

parameter estimates across a range of known values. We simulated approximately 100 

datasets with structure identical to our model, and the same amount of information 

(observations) present in our dataset. We then attempted to recover the known parameters by 

fitting the model to our simulated datasets (Gimenez et al. 2012). Any simulations that did 

not reach convergence at the MCMC step were discarded.

Independence assumptions were evaluated graphically using scatter plots to detect missing 

causal pathways (Grace et al. 2012). This revealed a positive correlation between fish 

presence and N (both total dissolved N and ), leading to the inclusion of an additional 

effect of fish on N that we had not initially hypothesized. Mechanistically, this pathway may 

represent the joint effects of fish locking up N in their tissues, and suppressing zooplankton 

through predation, leading to release of phytoplankton from grazing and greater uptake of N 

from the water (Andersson et al. 1978, Henrikson et al. 1980).

Results

Parameter recovery

Our simulations demonstrated parameter recovery with 95% highest density posterior 

intervals (HDIs) including the true population level parameters over 90% of the time (Figure 

A1). Furthermore, we were able to recover effects of local factors (βψ), identifying large 

effects as being non-zero (Figure A2). These results increased confidence in parameter 

estimates for the empirical data and gave an indication of the power that we might have to 

detect effects of local drivers of occurrence with a dataset of comparable size.

Empirical results

Nonnative fish and pond permanence directly affected amphibian community composition, 

with fish exerting the most consistent and strongest effects. Nonnative fish reduced the 

probability of occurrence for four of five native amphibians (all species except western toads 

and bullfrogs; Figure 3). Species-specific effects were observed for pond permanence, which 

had a strong positive effect on bullfrog and red-legged frog occurrence. Shoreline vegetation, 

nitrogenous compounds, and cattle grazing exerted relatively weak direct effects, with all 

HDIs including zero. Similarly, all HDIs for indirect effects of fish (via nitrogen) and cattle 

(via nitrogen and shoreline vegetation) on amphibian occurrence included zero.

Consistent with our expectations and previous work, cattle grazing decreased shoreline 

vegetation (HDI: (−0.556, −0.206)) and increased nitrogenous compounds in the water 

column (HDI: (0.097, 0.450)). The grazing submodel combined information from cow 

paddy density counts and disturbance classifications to generate values of latent grazing 

intensity for each site (Figure 4A–B). As we expected based on field observations, many 

sites experience moderate to high levels of grazing, while fewer experience very low levels 

of grazing.
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Regionally, some species were far more variable in their distribution among parks than 

others. For example, although local factors tended to have minimal effects on the distribution 

of western toads (Figure 3), among-region variability was quite high for this species (Figure 

A3). In contrast, Pacific chorus frogs had low among-park variability, being nearly 

ubiquitous.

Most amphibian species were easier to detect during the first survey, probably due to 

metamorphosis occurring before or during the late-summer visit when evidence of 

successful breeding is no longer detectable (Figure A4). The inclusion of the visit number 

covariate (first vs. second) accounted for this discrepancy in the sense that species-specific 

covariate effects can still be recovered (Figure A2).

The shoreline vegetation submodel performed well, capturing the fact that some shorelines 

were either devoid or completely covered by vegetation, with variability between these two 

extremes (Figure 4C). The latent N variable and observed log-transformed total dissolved N 

and  concentrations showed good fit, with increasing N concentrations in late summer 

compared to early summer (Figure 4D–E). Graphical checks of independence assertions 

indicated no further causal pathways for inclusion (Figure A5).

Discussion

Our approach demonstrates the integration of SEM with occupancy modeling using a large-

scale survey of pond breeding amphibians to gain a better understanding of the drivers of 

community composition. Importantly, this approach allows for explicit differentiation 

between observed data and underlying processes, accounting for a variety of measurement 

error models including the imperfect measurement process that gives rise to species 

detection data. We also embedded other types of observation models to account for more 

complicated likelihood functions, including the zero-one inflated beta distribution that was 

used to model observations of shoreline vegetation cover. With this approach, latent 

ecological processes hypothesized to drive occurrence can be explicitly represented and their 

direct and indirect consequences formally evaluated.

The potential advantages of integrating occupancy and structural equation frameworks 

include: 1) developing more mechanistic approaches for understanding species distributions 

influenced by simultaneous related processes; 2) inheriting a formal method for evaluating 

potential outcomes that would result from management interventions; and 3) clarifying 

hypotheses by requiring that assumptions be represented in a formal causal model. Unlike 

purely associational methods, the causal assumptions embedded within structural equation 

models facilitate unique predictions that can be used to answer applied management 

questions.

Well-specified SEMs yield unique management insights based on “do” operators, which can 

estimate the consequences of targeted interventions from effect decompositions (Pearl 

1998). “Do” operators could be used to predict changes in occupancy following a 

management intervention that reduces grazing intensity or removes fish. Indeed, this was 

one of the original arguments for the development of structural equation models in the 
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mid-20th century (Marschak 1950, Koopmans 1953). Causal inferences drawn from such 

analyses can be no better than the validity of the assumptions used to construct the model, 

however. Processes that drive the species distributions can be represented best when there is 

substantive knowledge to construct such models. This brings up two issues: how mechanistic 

is “mechanistic enough”, and how valid are the assumed causal relationships? First, it would 

be unreasonable to expect to construct an infinitely accurate and specific causal model for 

the occurrence of any species (Shipley 2002). However, an adequate model may capture the 

most important drivers of occurrence and provide “good-enough” predictions for 

management interventions. This point underlines the role of interventional tests of such 

models - if the true outcome of management intervention deviates from anticipated effects, 

then the validity of the underlying causal model must be questioned.

Although not a substitute for interventions, tests of model fit to observational data can also 

be useful for identifying potentially missing pathways based on independence relationships 

among variables in the causal network. Here, we employed graphical checks of 

independence assumptions for observed variables, but better methods could be developed. 

Information theoretic and d-separation tests exist for path analytic models, and other indices 

of model fit have long been used for traditional linear structural equation models that assume 

multivariate normality of errors (Grace 2006, Shipley 2013). However, methods for 

evaluating occupancy model fit are still relatively new and mostly rely on out-of-sample data 

(Zipkin et al. 2012) or bootstrapping (MacKenzie and Bailey 2004). Developing methods to 

evaluate the fit of hierarchical occupancy-type structural equation models with non-normal 

indicators and binary, partially observed latent variables is a non-trivial task, but one that 

would increase the utility of this method. Advances in the study of probabilistic graphical 

models may provide solutions, but such advances are only just beginning to be applied by 

ecologists (Koller and Friedman 2009, Grace et al. 2012). Aside from d-separation tests, 

management experiments provide another way to test the predictive power of these types of 

models.

Management implications

Our results have direct relevance to the management of threatened amphibian populations 

within lowland wetlands in California, particularly when land managers are faced with 

multiple potential challenges simultaneously. Livestock grazing, which is common 

throughout the western United States (Fleischner 1994), has been a topic of uncertainty with 

regard to amphibian conservation. While several studies indicate negative overall effects of 

grazing on populations of specific amphibian species (Knutson et al. 2004, Schmutzer et al. 

2008), others indicate the potential for positive effects of grazing on diversity and the 

perseverance of native communities (Marty 2005).

Based on our analysis, livestock grazing in the Bay Area of California had minimal effects 

on the occurrence of six amphibian species, two of which are native species of conservation 

concern. This finding suggests that current grazing levels employed on these parks may be 

compatible with management aimed at conserving threatened amphibians. However, we did 

not explore the effects of grazing on amphibian abundance or temporal dynamics such as 
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persistence and colonization. Such approaches may reveal effects of grazing that were not 

seen in this study.

Most ponds in this data set were initially constructed to serve as watering sites for livestock. 

Because most original natural wetlands in California have been destroyed for agriculture and 

development, particularly in the Central Valley (Garone 2011), such livestock ponds may 

now serve as vital habitat refuges for declining species. This trend is particularly important 

for the California tiger salamander and California red-legged frog, which are the focus of 

considerable conservation efforts due largely to habitat destruction (Lannoo 2005).

In sharp contrast to the minimal effects of grazing, we found strong negative effects of 

nonnative fish on native amphibian occupancy for all species except western toads and 

nonnative bullfrogs. This finding supports a large body of research showing that native 

pond-breeding amphibians that lack evolutionary history with fishes are unlikely to persist 

once predatory fish have been introduced to a breeding site. The most common fish species 

at our field sites were mosquitofish and centrarchids (bass, bluegill and other sunfish), which 

are native to the eastern United States. These species likely prevent amphibian reproduction 

through direct predation on multiple life stages of native amphibians. The lack of an effect 

on toads is consistent with prior work showing that toxicity and schooling behavior of toad 

larvae provides resistance to predation by fish (Kruse and Stone 1984, Welsh et al. 2006). 

Bullfrogs, which require permanent water bodies to complete metamorphosis, have co-

evolved with fish in their native range, are unpalatable, and are not strongly affected by fish 

presence (Walters 1975, Kruse and Francis 1977, Szuroczki and Richardson 2011).

Taken together, our results indicate that land management strategies should prioritize 

removal of nonnative fish rather than limitation of livestock grazing. Fish removal via pond 

draining has been shown to be effective in restoring populations of threatened amphibians 

within the study region (Alvarez et al. 2003). Considering the needs of interests groups 

involved and the prevalence of grazing, this strategy is perhaps more feasible than 

dramatically limiting access of livestock to ponds, which may have unintended side effects 

including elimination of pond breeding habitat due to overgrowth by vegetation. While more 

research is needed to evaluate both temporal effects of grazing, and how grazing affects 

amphibian abundance, our analysis indicates that fish introductions have more severe 

impacts than cattle grazing.

Conclusion

Structural equation modeling provides a framework to evaluate why species occur in some 

areas and not others, allowing a more direct confrontation of some of the most fundamental 

questions in ecology. Occupancy modeling provides a solution to the problem of imperfect 

detection and can account for many different processes giving rise to detection data. 

Combining these approaches provides a means to evaluate complex causal processes driving 

occurrence while accounting for false-absences in empirical occurrence data. This 

framework potentially facilitates deeper insights into biological processes, making a clear 

separation between imperfectly observed data and underlying states. From a pragmatic 

standpoint, it is clearly advantageous to be able to represent both direct and indirect 

determinants of species occurrence rather than being limited to treating covariates as being 
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independent. This approach also provides the practical advantage of inheriting a suite of 

methods to anticipate the effects of management interventions (“do” operators), and to 

account for many different sampling schemes in the occupancy modeling literature. Future 

extensions of this method could deepen connections between SEM and other classes of 

occupancy models, including dynamic multi-year occupancy models, models of abundance 

such as N-mixture models, Dail-Madsen models, their multi-species extensions, and spatial 

models (Royle 2004, Royle and Kéry 2007, Dail and Madsen 2011, Dorazio and Connor 

2014, Lamb et al. 2014).

The full value of this approach may be most apparent, and perhaps palatable to individuals 

unfamiliar with SEM, when coupled with controlled field experiments, where the validity of 

the underlying causal model may be tested directly. Compared to fields like sociology and 

economics, ecology as a field is perhaps in a unique position to reap benefits from SEM 

because it is both complex and relatively amenable to experimental manipulation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Conceptual model showing influences on amphibian breeding success. Nodes represent 

concepts of interest, and directional arrows represent causal effects (e.g. grazing intensity 

affects shoreline vegetation)
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Figure 2. 
Directed acyclic graph illustrating relationships between unknown quantities (circles) and 

observed indicator variables (rectangles).
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Figure 3. 
Estimated direct effects on occurrence probabilities for each species. Black corresponds to 

parameters for which HDIs excluded zero, and grey correpsonds to HDIs including zero
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Figure 4. 
Fit of the submodels to the observed indicator variables. Shaded regions encompass the 95% 

HDI, with observed data shown as jittered points (x-axis values represent posterior 

medians).
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