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Abstract

In light of a detailed characterization of genetic aberrations in cancer, nucleic acid targeting 

represents an attractive therapeutic approach with significant translational potential. Head and 

neck squamous cell carcinoma (HNSCC) is a leading cause of cancer deaths worldwide with 

stagnant 5-year survival rates. Advances in conventional treatment have done little to improve 

survival and combined chemoradiation is associated with significant adverse effects. Recent 

reports have characterized the genetic alterations in HNSCC and demonstrated that mutations 

confer resistance to conventional and molecular targeted therapies. The ability to use specific 

nucleic acid sequences to inhibit cancer-associated genes including non-druggable targets 

facilitates personalized medicine approaches with less adverse effects. Additionally, advances in 

drug delivery mechanisms have increased the transfection efficiency aiding in greater therapeutic 

responses. Given these advances, the stage has been set to translate the information garnered from 

genomic studies into personalized treatment strategies. Genes involved in the tumor protein 53 

(TP53) and epidermal growth factor receptor (EGFR) pathways have been extensively investigated 

and many promising preclinical studies have shown tumor inhibition through genetic modulation. 

We, and others, have demonstrated that targeting oncogene expression with gene therapy 

approaches is feasible in patients. Other methods such as RNA interference have proven to be 

effective and are potential candidates for clinical studies. This review summarizes the major 

advances in sequence-specific gene modulation in the preclinical setting and in clinical trials in 

head and neck cancer patients.
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 Introduction

Head and neck squamous cell carcinoma (HNSCC) is a leading cause of morbidity and 

mortality worldwide and is primarily associated with tobacco and alcohol use.1 Due to late 

clinical presentation and advanced stage, HNSCC leads to over 300 000 deaths annually. 

Most patients require extensive, multidisciplinary treatment. However, even with aggressive 

treatment, the five-year survival rate in the United States is only around 40% primarily due 

to the lack of effective therapeutic options for advanced-staged cancers. 2

In patients with locally advanced disease, relapse is common despite early therapeutic 

intervention. In these patients, prognosis is poor and conventional treatment yields only 30% 

to 40% response rates with a median survival between 6 and 9 months.3 Traditional 

chemotherapy has low tumor specificity leading to significant adverse effects in patients. 

Further, a wide array of gene aberrations in HNSCC are implicated in therapeutic failure to 

conventional therapy.4 While some mutations are etiologic, others confer sensitivity or 

resistance to chemotherapy.5-7

Expression of the variant III form of epidermal growth factor receptor (EGFR vIII) confers 

resistance to EGFR inhibitors and may explain the modest clinical response with these 

agents.8-10 Conversely, nearly one third of HNSCC tumors harbor mutations in PI3KCA 
gene.11 The oncogenic PIK3CA (E542K) mutation confers exquisite sensitivity to PI3K 

pathway inhibitor BEZ-325.12 Given the heterogeneity in mutations, it would be difficult to 

develop small molecules or antibodies that specifically target each oncogenic 

mutation.11, 13, 14 In this scenario, the use of targeted nucleic acid therapy to mitigate 

expression of mutated genes with high sequence specificity would facilitate personalized 

cancer therapy and combat treatment failures. In this manuscript, we discuss advances in 

gene delivery systems, and preclinical and clinical studies using nucleic acid targeted 

therapy for HNSCC.

 Gene Delivery Systems

Direct intratumoral administration of therapeutic nucleic acids for proof-of-concept studies 

is feasible in easily accessible sites such as the oral cavity. However, difficulty in accessing 

deep-seated tumors, low transfection efficiency, and susceptibility to nuclease degradation 

are major limitations with injection of naked DNA or RNA.15 In order to facilitate systemic 

delivery and improve transfection efficiency, significant advances have occurred in vector 

development including liposomes, nanoparticles, and viral vectors (Figure 1). Liposome 

complexes protect nucleic acids from degradation and improve uptake in cells. A spherical 

lipid bilayer encapsulating the nucleic acid cargo fuses with the plasma membrane of cells, 

releasing the contents into the cytoplasm. In vitro studies show a transfection efficacy of up 

to 70%, however the presence of serum components can decrease this by 35% to 45%.16 

Despite the increase inefficacy, hematologic toxicity, hepatotoxicity, and innate immune 

responses have been associated with systemic therapy.17-19 In order to reduce toxicity and 

facilitate tumor specificity, next-generation liposomes carry tumor-targeted peptides in the 

lipid bilayer. For instance, liposomes conjugated to the transferrin ligand have a higher 

affinity for HNSCC cells with upregulated transferrin receptors than non-malignant cells. In 
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vitro results suggests an increase in transfection efficiency from 10% to 50% when using 

transferrin ligand attachments.20 Alternatively, the use of anti-transferrin receptor single-

chain antibody on the surface of cationic liposomes can increase specific uptake in tumor 

cells on systemic administration.21 The major challenge that persists with liposomes is 

hepatotoxicity upon clearance from circulation.

In an effort to decrease toxicity and increase transfection efficiency, other methods of gene 

delivery have been developed. Synthetic polymer-nucleotide complexes can diffuse across 

the plasma membrane or enter cells through endocytosis. Nucleotides dissociate from the 

polymer and exert their action within the cytoplasm or the nucleus. Common polymers used 

in HNSCC include polyethylenimine (PEI) and glucosylated PEIs.22-24 A challenge to the 

widespread use of these agents is the formation of complexes with blood components due to 

the high cationic charge.25 Conjugation with hydrophilic polymers reduces this positive 

charge, increasing bioavailability. In vitro gene transfection efficiency can reach up to 47% 

while retaining in vivo antitumor efficacy.26 Another novel mechanism for delivery involves 

systemically administered, ultrasound-guided microbubbles targeting HNSCC tumors. 

Vigorous mixing of aqueous solutions of lipid and nucleic acid generates microbubbles with 

a lipid shell and perfluorobutane gas interior. The average diameter of the microbubbles is 1 

to 8 μm. Intravenously administered microbubbles are visualized using ultrasound imaging. 

As they perfuse the tumor, destruction of microbubbles with high frequency ultrasound 

waves releases the nucleic acid cargo near tumor cells. Several preclinical studies 

demonstrated successful microbubble-mediated transfer of nucleic acid to the tumor 

site.27-29 Cellular uptake of nucleic acids is facilitated by lipids in the shell, and by the 

acoustic frequency and force of cavitation of microbubbles.30 In comparison to direct 

inoculation of tumors with antineoplastic agents or nucleic acids, this technique shows 

greater delivery efficiency and cellular uptake in in vivo models with HNSCC tumors.31, 32 

However, the use of microbubbles is limited to tumors that can be easily visualized using 

ultrasound imaging.

Significant advances in molecular engineering of viruses enable highly efficient transfer of 

transgenes into tumors. Adenoviruses and retroviruses are the two main classes of viral 

vectors tested in HNSCC. Adenoviruses are DNA viruses that infect both dividing and non-

dividing cells. Exogenous DNA remains episomal without integrating into the genome. In 

contrast, retroviruses primarily infect actively dividing cells and stably integrate transgenes 

into the host genomic DNA with high efficiency. In addition to high efficiency of gene 

transfer, cell lysis during viral replication potentiates the therapeutic benefit of viruses. 

Wild-type adenoviruses have a low transfection efficiency,33 however modifications to the 

viral genome or surface structure have been employed to increase effectiveness.34 In order to 

increase tumor specificity, oncolytic viruses are biochemically modified to target and 

replicate only within tumor cells or in cells expressing specific genes. In the following 

sections, we describe the use of gene delivery vectors in preclinical and clinical studies using 

nucleic acid-based therapy approaches in HNSCC.
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 DNA-Based Approaches

There are over 1 000 cancer clinical trials testing gene therapy approaches in various 

cancers. In the following sections, we describe preclinical and clinical studies utilizing gene 

therapy for treatment of HNSCC.

 Plasmid DNA

 Preclinical studies—Plasmid expression vectors that knockdown oncogenes or restore 

tumor suppressor genes demonstrate antitumor efficacy in HNSCC preclinical models. 

Liposome-encapsulated antisense plasmid DNA reduced EGFR mRNA levels and inhibited 

HNSCC tumor growth35 and angiogenesis when used in combination with antiangiogenic 

agent, endostatin.36 The formulation was safe in animal models despite long-term 

persistence of exogenous plasmid DNA in plasma and organs distant from the injection 

site.37, 38 Plasmid expression vector-mediated restoration of tumor suppressor p53 levels in 

HNSCC cell lines activated pro-apoptotic proteins, promoting tumor death and increased 

radiosensitivity.20, 21 Immune-mediated antitumor effects are observed when human IL-2- 

and IL-27-encoding plasmid were transfected into HNSCC tumors.39, 40 In another 

approach, toxin-conjugated IL-13 demonstrated specific tumor cell kill in cells transfected 

with exogenous interleukin-13 receptor α2.41 Although, plasmid expression vectors 

demonstrate feasibility, systemic delivery continues to be a major challenge in the 

widespread use of this approach.

 Human trials—The majority of HNSCC clinical trials report use of plasmid expression 

vectors injected intratumorally using cationic liposomes (Table 1). A phase I clinical trial 

assessing the intratumoral injection of naked plasmid DNA with an antisense sequence 

targeting EGFR, demonstrated a clinical response in 29% of patients, well above the 

response rate seen with other EGFR inhibiting agents.42 The highest dose administered (1 

920 μg DNA) was well tolerated with no dose-limiting toxicities. Similar efficacy and safety 

profiles have been demonstrated with intratumoral injection of naked heat shock protein 65 

(Hsp65) DNA.43 Hsp65 DNA produced a partial response in four of 14 HNSCC patients 

with minimal adverse effects. Although there is evidence of efficacy in both these clinical 

trials, tumors inaccessible for direct injection continued to grow.42 In order to protect DNA 

from serum nucleases and improve cellular uptake, several trials have tested cationic 

liposomes as carriers for gene delivery.

Intratumoral injection of cationic liposomes carrying plasmid DNA encoding E1A, an 

adenoviral gene with antineoplastic activity, in HNSCC tumors was well tolerated, 

demonstrated transgene expression and moderate tumor response with one of 24 patients 

experiencing complete remission.44 Allovectin-7, a DNA-lipid complex containing human 

leukocyte antigen B7 (HLA-B7)-encoding plasmids, has shown modest clinical response and 

minimal toxicity with intratumoral injection.45, 46 HLA-B7 is a major histocompatibility 

complex class I antigen that elicits a broad antitumor immune response. Although results 

from phase II trials were encouraging, failure to meet key endpoints in a subsequent trial 

resulted in the discontinuation of Allovectin-7. Thus, although the proof-of-concept 
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demonstrating antitumor efficacy by plasmid DNA expression vectors is established, the 

major limitation of susceptibility to serum nucleases remains.

 Oligonucleotides

Oligonucleotides are short, single-stranded, 15 to 20-base sequences that bind 

complementary mRNA inhibiting translation primarily through RNase H-mediated 

degradation. Ideally, the complementary sequence needs to be unique to facilitate specific 

target modulation. Frequently oncogenic mutations differ from wild-type sequences by a few 

bases. Development of oligonucleotide chemistries such that mismatch of even a single base 

pair would abrogate binding of antisense oligonucleotide to its target would be ideal for 

cancer therapeutics and personalized medicine.

 Preclinical studies—Antisense DNA oligonucleotides (ASO) targeting EGFR 

demonstrate antitumor efficacy in HNSCC on intratumoral administration.47 Further, the 

observed effects were sequence specific with lack of antitumor effects in control (sense) 

oligonucleotide treated tumors. Substitution of nuclease-resistant phosphorothioate (PTO) 

groups to alternate bases on the DNA backbone, increases the serum half-life from 

approximately 5 min to up to 60 min.48 PTO-modified EGFR ASO potentiated the effects of 

docetaxel in HNSCC xenografts on systemic administration.49, 50 However, the antitumor 

effects were modest given the relatively short serum half-life.

In order to increase the serum stability of ASOs, peptide nucleic acids (PNAs) were 

developed.51 These are nucleotide analogues containing N-(2-aminoethyl) glycine units in 

place of the sugar phosphodiester backbone. Despite longer serum half-lives, there is low 

cellular uptake due to the neutral charge of the backbone. In order to improve intracellular 

uptake, positively charged guanidinium residues were covalently linked to the PNA 

backbone (Figure 3). Uptake of guanidinium peptide nucleic acid (GPNA) oligomers was 

detected in tumors up to 4 h after systemic administration.49 GPNA designed to target EGFR 

has demonstrated sequence specific target reduction and cytotoxicity in HNSCC cells. 

Further, the antitumor effects observed are comparable to that of clinically relevant EGFR 

inhibitors. Changes in the position of the guanidinium group on the PNA backbone 

facilitated the development of GPNA that are conformationally preorganized into right 

handed helices with higher target binding affinity and sequence specificity than earlier 

versions.52 This increased oligonucleotide serum stability makes systemic delivery of 

specific nucleic acid sequences for cancer therapy a possibility.

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that is 

upregulated in HNSCC and facilitates tumor progression by binding to specific promoter 

sequences of several tumorigenic genes. Leong and colleagues developed a double-stranded 

DNA oligonucleotide based on the STAT3-high serum inducible element (HSIE) promoter 

sequence.53 The STAT3 decoy sequestered activated STAT3, preventing binding to the 

promoter of target genes.54 When tested as monotherapy or in combination with erlotinib, 

STAT3 decoy has anti-angiogenic and antitumor effects in xenograft tumors.55, 56 In another 

study, guanine-rich oligonucleotides with the HSIE element, formed G-quartet DNA 

structures with potent affinity for activated STAT3.57 Further, intraperitoneal injections of 
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PEI copolymers complexed to G-quartet oligomers, induced antitumor effects in HNSCC 

xenografts. More recently, a third-generation ASO targeting Hsp27 was designed using 

locked nucleic acid (LNA) technology modified with a ribose oxymethylene bridge to 

prevent serum degradation.58 Intraperitoneal injection of Hsp27 LNA led to increased 

radiosensitivity in HNSCC xenografts through dysregulation of DNA double-stranded break 

repair mechanisms.

 Human trials—Clinical trials testing oligonucleotides in HNSCC treatment are in their 

infancy. The eukaryotic translation initiation factor 4e (eIF-4E) binds the 5’ cap structure of 

cellular mRNA and is associated with tumor progression.59 Intravenous administration of 

PTO ASOs with flanking methoxyethyl groups targeting eIF-4E-(LY2275796) was tested for 

toxicity in a phase I trial for multiple cancers including HNSCC.60 One patient experienced 

grade 2 fatigue at the maximum dose tier of 1 200 mg. The study defined the maximum 

tolerated dose as 1 000 mg administered intravenously as a loading dose over 3 days 

followed by a weekly maintenance dose. Although a lower level of eIF-4E in the tumor 

indicated a biological response, there were no clinical responses achieved. Pharmacokinetic 

evaluation revealed the majority of ASOs distributed in tissues within 24 h of administration. 

The modifications to the nucleic acid backbone increased the terminal elimination phase 

half-life to 15 days (4% overall plasma exposure). To improve clinical responses, selection 

of patients with high tumor levels of eIF-4E or combined treatment with chemotherapy may 

be necessary.

The biological response of STAT3 decoy was tested in a phase 0, intraoperative trial.61 

Pharmacodynamic studies on intratumoral injection of STAT3 decoy oligomers at three 

doses, revealed modulation of STAT3 target genes within 4 h of administration. There were 

no adverse effects reported. Although the results in human studies are limited, these early 

trials support proof-of-concept that oligonucleotides can be safe and are effective in 

modulating target gene levels in HNSCC.

 RNA-based Approaches

The regulation of translation by small RNA is an evolutionary conserved process. Molecular 

machinery process double stranded non-coding RNA into single stranded fragments that 

bind to specific target sequences inhibiting mRNA translation. Initial studies primarily 

focused on use of RNA interference (RNAi) for knockdown of gene expression in order to 

determine the role of specific genes or pathways in tumorigenesis. However, the specificity 

and efficiency of target inhibition, has made this an attractive therapeutic modality for 

cancer.

The most wildly used classes of RNAi for translational repression of single genes in 

HNSCC, are small interfering RNA (siRNA) and short hairpin RNA (shRNA). The main 

difference between siRNA and shRNA is that siRNA regulate gene expression transiently 

(knockdown-duration less than 2 weeks) while shRNA vectors are expressed after genomic 

integration.62 Within the cell, molecular machinery process shRNA and siRNA to generate 

single stranded RNA fragments that bind complementary sequences on mRNA, leading to 

their degradation. Multiple cancer-associated genes can be simultaneously downregulated by 
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microRNA (miRNA). The extent of homology of miRNA to its target dictates the 

mechanism of translation repression with highly homologous binding triggering target 

mRNA cleavage. Partial complementarity would inhibit translation of non-target mRNA 

through several mechanisms including inhibition of translation initiation (interfering with 

ribosome recruitment) and deacetylation of mRNA.63 Similar to miRNA, several reports 

demonstrate non-specific modulation of cellular mRNA by siRNA with partial sequence 

homology to the target indicating that siRNA may have off-target effects.64-66 Nevertheless, 

a deeper understanding of the mechanisms of translation inhibition could result in improved 

specificity of RNAi approaches. Here we discuss use of these approaches in HNSCC 

preclinical models.

 Small Interfering RNA

Several reports describe siRNA modulation of target genes reduced HNSCC invasion, 

proliferation, metastatic dissemination and enhanced response to therapy (Table 2). Invasion 

and motility of HNSCC cell lines was significantly decreased using protein kinase Cε 

(PKCε) siRNA.67 Further, the use of hypoxia inducible factor-1α (HIF-1α) and aurora A 

kinase (AURKA) siRNA induced apoptosis and reduced cell proliferation.68, 69 Other factors 

have also been the target of treatment, notably the NF-κB family of proteins, which control 

gene expression in response to several stimuli including cytokines, growth factors, and 

infection. NF-κB is an important target in HNSCC due to its implication in tumor growth 

and survival.70 It is constitutively expressed in HNSCC and contributes to cisplatin 

resistance by preventing chromatin condensation through histone acetylation.71 When used 

in combination with histone deacetylase inhibitors, systemic administration of siRNA 

targeting NF-κB p65 (RelA), increased antitumor efficacy of cisplatin.72 Further, in 

combination with the proteasome inhibitor bortezomib, NF-κB siRNA reduced tumor 

growth.73

EGFR-targeted siRNA showed a 90% reduction in EGFR expression in vitro and enhanced 

sensitivity to cisplatin, 5-fluorouracil, and docetaxel.74 To facilitate systemic administration, 

siRNAs conjugated to nanoparticles were tested in preclinical models of metastatic HNSCC. 

Ribonucleotide reductase subunit M2 (RRM2)-targeted siRNA conjugated to nanoparticles 

produced apoptosis in metastatic models on systemic delivery.75 In a recent report, calcium 

phosphate-based nanoparticles with a hollow lipid-coated core and outer shell, conjugated to 

anisamide ligands successfully delivered HIF1α siRNA to sigma receptor expressing 

HNSCC cells on intravenous administration.76 In combination with a photosensitizer 

photosan, HIF1α siRNA potentiated the effects of photodynamic therapy in xenograft 

tumors. This study represents a significant advance in siRNA-mediated gene regulation as a 

therapeutic approach. However, addressing challenges associated with siRNA therapy 

including off-target effects, inflammation, and non-specific cytotoxicity would make this 

approach more feasible for therapeutic use.77 While siRNA has not been used in human 

trials, repression of target protein expression using siRNA has been achieved in vitro, and in 
vivo studies have demonstrated biologic activity. These results suggest feasibility for their 

use with reasonable transfection efficiency and significant biological response.
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 Short Hairpin RNA

Transfection or viral transduction of shRNA expression vectors results in integration into 

genomic DNA and RNA polymerase III-mediated transcription.78 The double stranded RNA 

fragments are transcribed in the nucleus with a short hairpin sequence at one end and 

transported into the cytoplasm where they follow the same molecular processing as 

siRNA.62 Several reports on HNSCC cells expressing target-specific shRNA describe the 

molecular mechanisms regulating tumor progression and response to therapy.

Reports on shRNA-mediated inhibition of several proteins including CD74 and the SET 

(suppressor of variegation, enhancer of zeste, and trithorax) oncogene demonstrate anti-

proliferative effects in HNSCC.79-81 Further, local invasion can be controlled by targeting 

extracellular matrix modulators including metalloproteinase-9 and -11.79, 82 While 

monotherapy has been efficacious in preclinical models, combination therapy may have 

synergistic effects. The use of three shRNAs targeting telomerase reverse transcriptase 

(TERT), proangiogenic vascular endothelial growth factor (VEGF), and antiapoptotic Bcl-

XL genes decreased HNSCC xenograft growth, demonstrating the feasibility of a 

multitarget-approach.83

Several reports demonstrate the role of oncogenes and oncogenic-mutations in resistance to 

therapy. Cisplatin therapy is a vital component of current chemotherapy for HNSCC. 

However, patients frequently develop resistance to cisplatin. Recent studies have shown that 

shRNA-mediated downregulation of glucose transporter GLUT1 and cell cycle regulator 

cyclin-D1 increase sensitivity to cisplatin.84-86 Additionally, targeting sphingosine kinase 1 

(SPHK1) increased tumor sensitivity to doxorubicin with a significant reduction in SPHK1 

expression after transfection.84 Similarly, the use of shRNA targeting mutant-tumor 

suppressor p53 conferred sensitivity to radiation in radio-resistant HNSCC.5 Although these 

studies are in preclinical development, developments in vectors including viral vectors 

would facilitate translation to the clinic. Together these studies provide insight into future 

applications for therapeutic gene targeting in HNSCC.

 Viral Methods

Viruses are effective transgene delivery agents in treatment of many disease processes 

ranging from metabolic disturbances to cancer. Of the several classes of viruses used to 

deliver transgenes, several reports use adenoviruses and herpesviruses in HNSCC preclinical 

models. While viruses are effective vectors for delivery of genetic material, their lytic 

lifecycles confer the added advantage of tumor cell destruction. In this section, we discuss 

the use of viruses for gene delivery in HNSCC and advances in oncolytic viruses for targeted 

destruction of cancer cells.

 Viral Vectors

Viruses are frequently used to transduce human cells due to their high efficiency of gene 

transfer. Depending on the type of virus, the exogenous nucleic acid either integrates into the 

host genome or remains episomal. Viruses used for gene transfer are generally replication-

incompetent though there are exceptions.
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 Preclinical studies—Adenoviral vectors are the most widely used viral vectors for 

gene transfer in in preclinical studies and clinical trials. Wild-type p53 delivered using 

recombinant adenoviruses, lead to apoptosis in HNSCC tumor cells with up to 60% response 

in 48 h.87, 88 This allows for reestablishment of the G1 block, increasing sensitivity to 

radiation and chemotherapy.89-91 Further, adenoviruses and adeno-associated viruses were 

used to deliver herpes thymidine kinase to tumor explants.92-94 Treatment with prodrug 

ganciclovir not only killed the transduced cells but also the adjacent bystander cells. In a 

recent study, recombinant vaccinia virus encoding the oncogene erbB2 was tested in a 

vaccination approach in a mouse model of salivary gland carcinoma.95 Activation of 

antibody-dependent cellular cytotoxicity on intratumoral injection of the recombinant virus 

resulted in antitumor efficacy.

 Human trials—Clinical trials have primarily focused on the use of adenoviruses for 

treatment of HNSCC (Table 3). Gene therapy using adenoviruses encoding wild-type p53 

(Ad-p53) was tested in phase I human trials. In patients with incurable recurrent HNSCC, no 

dose limiting toxicities or significant adverse events were observed using a single 

preoperative intratumoral injection of 1011 plaque forming units (pfu). Additionally there 

was a modest response in a number of patients with non-resectable tumors and one patient 

with resectable cancer showed complete response. Furthermore, there was an increase in 

survival rate by approximately 60% of individuals treated with combination Ad-p53 and 

chemotherapy.91 A small-scale phase II trial assessing the efficacy of Ad-p53 in patients 

with resectable cancer demonstrated increased disease-free survival rates one year after 

resection.96 The study enrolled thirteen patients who received direct injection of 1012 viral 

particles (vp) into the surgical margins intraoperatively and postoperatively via catheter 

instillation. There were minimal adverse events and 92% of patients were disease free after 

one year. Increased survival and improved response rates were reported in phase III clinical 

trials as well. The intra-arterial administration of combination Ad-p53 and chemotherapy 

improved survivability in patients with stage 3 HNSCC.97 Response rates significantly 

increased in comparison to treatment with methotrexate for patients with either wild-type 

p53 or low-level expression of mutated p53.98 Ad-p53 vectors are currently being tested in 

phase IV clinical trials.

 Oncolytic Viruses

Oncolytic viruses preferentially replicate in and lyse tumor cells that express or lack specific 

targetable genes. In theory, these agents lead to tumor destruction with minimal bystander 

damage. Newer generation oncolytic viruses carry exogenous genes that elicit antitumor 

effects or sensitize tumors to therapy.

 Preclinical studies—Modified herpes simplex viral (HSV) and adenoviral vectors can 

carry up to 50 Kb of DNA transgene, and can preferentially replicate in and lyse tumor cells. 

Several HSV-based viral vectors were tested in preclinical models of HNSCC. HF10, 

HSV1716 and G207 vectors shows anti-tumor efficacy alone or with concomitant cisplatin 

in HNSCC preclinical models.99-101 Both in vitro and in vivo studies showed biologic 

activity and destruction of all tumor cell lines. Further, mice with HNSCC xenografts had a 

statistically significant increase in survivability at 100 d.100 The ONYX class of viruses are 
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E1B-gene-deleted adenoviruses that selectively replicate within cells lacking wild-type 

tumor suppressor p53 and have demonstrated anti-tumor efficacy in vitro and in vivo.102 

Intravenous injection of ONYX-015 leads to tumor localization and produces antitumor 

effects in nude mice bearing xenograft tumors with a viral replication reported in 100% of 

tumors. Furthermore, there was a reduction in tumor growth up to 50% though no 

appreciable effect on the growth of distant established tumors was observed.103 The main 

obstacle to HSV and adenoviral vectors lie in the endemic nature of the viruses with more 

than 70% of the population having a pre-existing immune response that specifically 

inactivates viral particles and cells that express viral proteins.104 Preclinical studies with 

other classes of oncolytic viruses are underway.

In order to facilitate antitumor immune-mediated tumor kill, a fusogenic vesicular stomatitis 

virus encoding murine IL-12 was developed that lysed HNSCC more effectively than virus 

lacking the transgene leading to significantly increased survival of mice.105 Another study 

with measles virus engineered to replace the viral attachment protein with a single-chain 

antibody targeting EGFR demonstrated increased tumor specificity.106 In addition, the virus 

carried the cytosine deaminase/uracil phosphoribosyltransferase (CD/UPRT) gene. CD/

UPRT converts prodrug 5-fluorocytosine to 5-fluorouracil, which can diffuse from dying 

cells, significantly increasing antitumor effects in non-infected bystander replicating tumor 

cells. HNSCC xenograft tumors responded well to intratumoral injections of the 

recombinant viral particles followed by prodrug treatment. These studies demonstrate 

efficacy of transgene expression by oncolytic viruses for added therapeutic benefit.

 Human trials—Multiple human trials using oncolytic viruses have shown biologic or 

clinical response (Table 3). Intratumoral injection into subcutaneous nodules of a 

conditionally replication-competent HSV vector called HF10 in 2 patients with metastatic 

HNSCC demonstrated antitumor response with minimal adverse effects.101 Although 

preoperative intratumoral injection of 105 pfu of another HSV vector, HSV1761, was well 

tolerated with no serious adverse effects, there was no biological effect of therapy.107 

ONYX-015 has demonstrated safety with injection of 1011 pfu.108 Stable disease and 

modest antitumor activity was achieved with intratumoral administration of ONYX-015. In a 

small-scale trial of nine patients, 1010 pfu of ONYX-015 was administered intratumorally 

with systemic cisplatin and 5-FU leading to complete or partial regression in all subjects. 109 

The study was expanded to a larger phase II trial that reported 63% of individuals with 

regression.110 The commercial version of ONYX-015 (ONYX-H101) has been tested in 

humans and is approved for human use in China.111

Significant advances in the development of oncolytic viruses have enabled the expression of 

transgenes that trigger antitumor responses in addition to cell lysis. The granulocyte 

macrophage colony-stimulating factor (GM-CSF) recruits and activates leukocytes including 

neutrophils and monocytes to elicit potent antitumor effects. GM-CSF was the first cytokine 

incorporated into an oncolytic virus in order to harness the both immune and virus-mediated 

tumor cell kill. OncoVEXGM-CSF is a modified HSV-1 encoding GM-CSF tested in several 

clinical trials.112-114 In a phase I/II trial, intratumoral injections of OncoVEXGM-CSF in 

combination with chemoradiotherapy demonstrated a pathologic complete response rate of 

93% (N=17) in late stage HNSCC.115 Pharmacodynamic analyses demonstrated virus 
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replication in injected and uninjected tumors. This study is the first to demonstrate the 

efficacy of using transgene-expressing oncolytic viruses in combination and standard 

curative therapy.

In another study, tumor necrosis factor alpha (TNF-α) an immune system stimulator, 

chemotherapy and radiation sensitizer expressed by an oncolytic virus was tested for 

antitumor effects in recurrent previously treated HNSCC patients. AdGV.EGR.TNF.11D 

(TNFerade™ Biologic) is a replication-deficient adenovirus encoding TNF-α under the 

control of radiation-inducible Egr-1 promoter.116 Dose limiting toxicity in 3 of 14 patients 

experiencing thrombotic events on intratumoral injections of TNFerade™ Biologic at a 

maximum dose of 4×1011 pfu combined with chemoradiotherapy helped establish the 

maximum tolerated dose.117 Although phase I trials are not designed to assess efficacy, the 

response rate of 83%, with one patient surviving for 3 years underscores the therapeutic 

potential of this approach. Further developments facilitating systemic administration and 

tumor-specific targeting would facilitate the use of oncolytic viruses in the treatment of 

inaccessible metastatic disease.

 Conclusions

HNSCC remains a major cause of mortality despite advances in treatment. As more 

therapeutic targets are identified through cancer genome sequencing studies, nucleic acid 

targeted therapy has the potential to decrease mortality, increase survival rates, and improve 

quality of life in patients with HNSCC. The field of nucleic acid targeting is rapidly 

advancing with new avenues of treatment unfolding. A variety of delivery techniques have 

been employed for multiple therapy modalities with positive results in both preclinical 

studies and human trials. Most methods of nucleic acid delivery have been safe in human 

trials with reduction in target gene expression and evidence of antitumor efficacy.

While there have been clinical trials assessing safety and efficacy of viral vectors, less 

clinical data is available for the use of antisense oligonucleotides and RNAi methods. The 

development of oligonucleotides that target specific gene mutations within a given tumor 

could provide a patient-centered approach to therapy. At the very least, nucleic acid targeting 

has a crucial role in adjunct treatment for HNSCC.
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Figure 1. Summary of the delivery vectors primarily tested for nucleic acid therapy in HNSCC
Naked DNA in the form of plasmids or oligonucleotides can freely diffuse across the plasma 

membrane and may enter the nucleus for expression. Microbubbles carrying nucleic acids 

ruptured at the tumor site by ultrasound, release nucleic acids cargo that diffuses into tumor 

cells. Liposomes with or without targeted peptides fuse with the plasma membrane and 

deliver cargo into the cell. Polymer vehicles diffuse across the plasma membrane and release 

the payload into the nucleus or cytoplasm. Viral vectors can efficiently deliver exogenous 

nucleic acids into tumor cells. Oncolytic viruses specifically replicate and lyse target tumor 

cells.
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Figure 2. Summary of the methods used for targeting gene expression in the treatment of 
HNSCC
Exogenous plasmid or viral DNA can stably integrate into the genomic DNA or exist as an 

episome within the nucleus. RNA polymerases (RNA pol) transcribe the foreign DNA into 

RNA fragments. Antisense RNA binds to target mRNA in the cytoplasm inhibiting 

transcription. RNAi-mediated translation inhibition is achieved after processing of double 

stranded shRNA, siRNA, or miRNA precursor molecules by molecular machinery. Precursor 

miRNA, are processed in the nucleus and subsequently exported into the cytoplasm. Dicer 

cleaves shRNA, siRNA, and miRNA precursors into 21-25 base oligomers that are loaded 

onto the RNA-induced silencing complex (RISC) loading complex, which consist of Dicer, 

argonaute (Ago), and a dsRNA-binding protein. The guide strand (blue) binds 

complementary mRNA while the passenger strand is discarded. Perfect homology with the 

guide strand triggers target mRNA cleavage. Mismatch in a few bases results in translational 

repression through inhibition of ribosomal function.
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Figure 3. Chemical modifications of oligonucleotide backbones
Phosphorothioate-modified oligonucleotides (PTO) are formed by creating phosphorothioate 

bonds through the substitution of a sulfur atom for a non-bridging oxygen in the phosphate 

backbone. Peptide nucleic acids (PNAs) are DNA analogues with backbones consisting of 

N-(2-aminoethyl)-glycine units linked by peptide bonds. The addition of a positively 

charged guanidinium group to the PNA backbone (GPNA) facilitates oligomer uptake across 

cell membranes.
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Table 1

Published clinical data on nucleic acid targeting in the treatment of HNSCC.

Phase Technique Target Gene Action Vector Biological Response Clinical Response Ref

0 Oligonucleotide STAT3 Inhibition - Reduced levels of STAT3 target 
genes

- 61

I Plasmid Hsp65 Expression - Increased monocyte proliferation PR in 4 of 14; SD in 
1 of 14

43

I Plasmid HLA-B7 Expression Liposome Expression of HLA-B7 with 
increased apoptosis

PR in 4 of 9 45

I Plasmid EGFR Inhibition Plasmid Decreased EGFR and STAT3 in 
vitro

29% with 2 CR, 3 
PR, and 2 SD

42

I ASO eIF-4E Inhibition - Reduction in cytoplasmic eIF-4E in 
9 of 12 and 3 of 6 had reduced 
nuclear eIF-4E protein

22 patients assessed; 
15 had PD, 7 had SD

60

II Plasmid E1A Expression Liposome E1A expression in 14 of 15 
specimens via RT-PCR

CR in 4.2%, PR in 
8.3%, SD in 29.2%

44

II Plasmid HLA-B7 Expression Liposome - SD or PR in 33% 46

Abbreviations: ASO, antisense oligonucleotide; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease.
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Table 2

Putative RNAi targets associated with sequence-specific nucleic acid targeting in HNSCC.

Putative Target Effects in HNSCC Agent Ref

AURKA Increased apoptosis, paclitaxel sensitivity siRNA 69

CD74 Decreased VEGF and MMP-9 expression, decreased cell proliferation shRNA 79

Cyclin-D1 Decreased cell cycle progression, increased cisplatin sensitivity shRNA 86

EGFR Decreased cell proliferation, increased 5-FU and cisplatin sensitivity siRNA 74

GLUT1 Decreased cell proliferation, increased apoptosis, increased cisplatin sensitivity shRNA 85

HIF-1α Increased apoptosis, decreased cell proliferation siRNA 68

NF-κ B Decreased cell proliferation siRNA 70, 73

NTSR1 Decreased invasion and migration siRNA 118

PKCε Decreased invasion and motility siRNA 67

RelA Cell cycle arrest, increased sensitivity to HDI siRNA 72

RRM2 Decreased tumor proliferation, increased apoptosis siRNA 75

SET Decreased E-cadherin and pan-cytokeratin, increased MMP-9 and -2 expression, decreased 
proliferation and increased cisplatin sensitivity

shRNA 80

SPHK1 Increased doxorubicin sensitivity, decreased AKT activation shRNA 84

TERT/VEGF/BCI-XL Increased apoptosis shRNA 81, 83, 119
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Table 3

Published clinical data on viral vectors in the treatment of HNSCC.

Phase Technique Target Gene Virus Dose Biological Response Clinical Response Ref

I Adenovirus p53 Ad-p53 1×1011 pfu P53 expression detected PR in 2, SD in 6, 
PD in 9

120

II Adenovirus + XRT p53 Ad-p53 1×1012 vp - Tumor reduction 121

II Adenovirus + CRTX p53 INGN 201 (Ad-p53) 1×1012 vp - 92% 1-year 
progression free 
survival

96

III Adenovirus + CTX 
vs CTX

p53 Ad-p53 1×1012 vp Increased p53, Bax and 
decreased Bcl-2

82% RR with 48% 
CR

97

I OV TNF-α TNFerad e™ Biologic 4×1011 pfu TNF-α expression in all 
biopsy specimens

83.3% RR: CR in 
5, PR in 5, SD in 
2, PD in 3

117

I OV - ONYX-105 1×1011 pfu - No objective 
clinical response

108

I OV - HSV1716 1×105 or 
5×105 pfu

HSV DNA in tissue 
biopsy of 2 patients

- 107

II OV - ONYX-015 2×1011 vp PCR detected virus in 
41% of patients 24 h 
after injection and 9% 
after 10 d in first cycle

Regimen 1 -SD in 
41%, PD in 45% 
PR/CR in 14% 
PR/CR Regimen 2 
– CR in 10%, SD 
in 62%, PD in 
29%

109

II OV + CTX - ONYX-015 1×1010 pfu - CR in 33%, PR in 
33%, mR in 11%, 
SD in 22%

110

I OV GM-CSF OncoVE XGM-CSF 1×106 pfu GM-CSF detected 48 h 
after injection;

SD in 3 of 17 115

II OV GM-CSF OncoVE XGM-CSF 1×106 

pfu/mL 
(up to 6 
mL)

Seroconversion of all 
patients after injection

26% RR; CR in 8 
of 50, PR in 5 of 
50

113

Abbreviations: OV, oncolytic virus; XRT, radiotherapy; CTX, chemotherapy; CRTX, chemoradiotherapy; pfu, plaque forming units; vp, viral 
particles; RR, response rate; CR, complete response; PR, partial response; mR, minor response; SD, stable disease; PD, progressive disease;
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