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Study Objectives: The purpose of this study was to introduce a novel statistical technique called the location-scale mixed model that can be used to analyze 
the mean level and intra-individual variability (IIV) using longitudinal sleep data.
Methods: We applied the location-scale mixed model to examine changes from baseline in sleep efficiency on data collected from 54 participants with 
chronic insomnia who were randomized to an 8-week Mindfulness-Based Stress Reduction (MBSR; n = 19), an 8-week Mindfulness-Based Therapy for 
Insomnia (MBTI; n = 19), or an 8-week self-monitoring control (SM; n = 16). Sleep efficiency was derived from daily sleep diaries collected at baseline (days 
1–7), early treatment (days 8–21), late treatment (days 22–63), and post week (days 64–70). The behavioral components (sleep restriction, stimulus control) 
were delivered during late treatment in MBTI.
Results: For MBSR and MBTI, the pre-to-post change in mean levels of sleep efficiency were significantly larger than the change in mean levels for the 
SM control, but the change in IIV was not significantly different. During early and late treatment, MBSR showed a larger increase in mean levels of sleep 
efficiency and a larger decrease in IIV relative to the SM control. At late treatment, MBTI had a larger increase in the mean level of sleep efficiency compared 
to SM, but the IIV was not significantly different.
Conclusions: The location-scale mixed model provides a two-dimensional analysis on the mean and IIV using longitudinal sleep diary data with the potential 
to reveal insights into treatment mechanisms and outcomes.
Keywords: sleep variability, insomnia, mindfulness meditation, cognitive-behavior therapy, location-scale mixed model
Citation: Ong JC, Hedeker D, Wyatt JK, Manber R. Examining the variability of sleep patterns during treatment for chronic insomnia: application of a 
location-scale mixed model. J Clin Sleep Med 2016;12(6):797–804.

INTRODUCTION

The sleep disturbance experienced by individuals with insom-
nia tends to have considerable variability across nights.1,2 This 
experience is not captured by the mean level of sleep across 
nights, but instead requires examination of the intra-individual 
variability (IIV), or night-to-night variability of sleep. A recent 
review revealed inconsistent methodology among studies that 
examined IIV in sleep. The authors found that most studies of 
IIV used methods such as within-subject standard deviations, 
coefficient of variance, or mean square of successive differ-
ences. Furthermore, these analyses frequently did not control 
for the mean values when examining IIV.3 Therefore, the au-
thors recommended a two-dimensional approach when ana-
lyzing longitudinal sleep data that includes the mean as one 
dimension and the IIV as a second dimension.3

Recently, a novel statistical technique called the location-
scale mixed model has emerged which appears particularly 
well-suited for examining the mean and IIV as different di-
mensions of the sleep experience. This model was developed 
for the analysis of intensive longitudinal data, and is an ex-
tension of a traditional linear mixed model (aka multilevel or 
hierarchical linear modeling; HLM) that accounts for the clus-
tering of observations within subjects, but additionally allows 
the between-subjects (inter-individual) and within-subject 
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(intra-individual) variances to be modeled in terms of covari-
ates. In contrast to previous approaches that quantified IIV by 
calculating a within-subject standard deviation as the outcome 
in a second-stage analysis,4,5 the location-scale mixed model 
can be used to simultaneously examine the effect of covari-
ates on the mean and variance of an outcome. This approach 
has two advantages. First, by allowing subjects to have differ-
ent numbers of observations, the degree of precision of each 
person’s mean and variance is directly taken into account in 
the location-scale mixed model. The second stage approach of 
calculating within-subject standard deviations assumes that 

BRIEF SUMMARY
Current Knowledge/Study Rationale: Sleep disturbance can vary 
considerably across nights but traditional statistical methods are not 
optimized to examine both the mean and variability of sleep patterns. 
We used a novel statistical technique called the location-scale mixed 
model to simultaneously analyze the mean and intra-individual 
variability (IIV) on sleep diary data collected for a randomized 
controlled trial for chronic insomnia.  
Study Impact: Mindfulness-based stress reduction (MBSR) and 
mindfulness-based therapy for insomnia (MBTI) exhibited different 
patterns of change on mean levels and IIV of sleep efficiency during 
the course of treatment compared to the control condition.  The 
location-scale mixed model can serve as an efficient statistical 
technique for analyzing intensive longitudinal sleep data.
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each person’s variability is known with the same degree of 
precision, which can be violated with missing data. Second, 
by modeling the mean and variance simultaneously, the loca-
tion-scale mixed model provides an estimate on the variance 
that is adjusted for the effects on the mean structure. This at-
tribute makes it possible to examine the effect of a covariate 
(e.g., treatment condition) on the IIV of an outcome measure, 
over and above the effect of the covariate on the mean of the 
outcome measure. Whereas the traditional HLM model only 
allows subjects to influence their mean (i.e., random intercept 
or random location effect), the location-scale mixed model also 
accounts for how subjects influence their variance (i.e., ran-
dom scale effect).6 The location-scale mixed model has been 
used to examine the relationship between variability and out-
comes in other areas using ecological momentary assessment 
data,7–11 but has not yet been applied to sleep research.

Similar to the concept of frequent sampling in ecological 
momentary assessments, sleep diaries assess daily sleep/wake 
patterns and are typically collected throughout the course of 
behavioral treatments for insomnia. The large number of re-
peated measures per subject is an example of intensive longitu-
dinal data and provides an opportunity to apply sophisticated 
modeling techniques, such as the location-scale mixed model, 
which can examine IIV of sleep as it relates to treatment pro-
cess and outcomes. Such analyses can be used to examine 
whether behavioral treatments improve the stability of sleep 
(i.e., decrease IIV) above and beyond the improvements in the 
mean level of sleep. Also, these analyses can be used to in-
form treatment process by examining changes in IIV during 
different stages of treatment that correspond to the delivery of 
various treatment components (e.g., sleep restriction therapy, 
stimulus control).

The purpose of this paper is to introduce the location-scale 
mixed model as a potential tool for examining the variability 
of sleep patterns in longitudinal data. As an illustration, we 
applied the model to data collected from sleep diaries during 
a three-arm randomized controlled trial for chronic insom-
nia. The study compared Mindfulness-Based Stress Reduc-
tion (MBSR), a standard meditation-based program designed 
to reduce stress, Mindfulness-Based Therapy For Insomnia 
(MBTI), a tailored intervention integrating mindfulness medi-
tation and behavior therapy for insomnia, and a self-monitor-
ing (SM) control.12 Mindfulness meditation is a self-regulation 
technique that uses focused, present-moment awareness to 
promote mind-body calmness and relaxation. While our pre-
vious paper reported on the changes in mean levels of the a 
priori main outcomes, total wake time and pre-sleep arousal,12 
this report applied the location-scale mixed model to exam-
ine the mean and IIV of sleep efficiency (i.e., percent of time 
asleep relative to the time in bed), a commonly used index of 
sleep quality that has also been used as a primary outcome 
variable for self-reported sleep in behavioral clinical trials on 
insomnia.13–15 The data analyses were guided by two research 
questions. First, do mindfulness meditation programs (stan-
dard or tailored) have an impact on sleep efficiency? It was hy-
pothesized that participants receiving MBSR and MBTI would 
show higher mean levels and less IIV at post-treatment rela-
tive to baseline levels. Second, do the behavioral components 

delivered in MBTI have an impact on sleep efficiency com-
pared to a control group receiving no treatment? It was hypoth-
esized that participants in the MBTI group would show higher 
mean levels and lower IIV following delivery of the behavioral 
components compared to the control group at the same time 
point.

METHODS

We used the location-scale mixed model to conduct second-
ary analyses on sleep diary data from a three-arm random-
ized controlled trial conducted at Rush University Medical 
Center between November 2008 and February 2012. Details 
of the study design and main outcomes have been previously 
reported.12 In brief, 54 adults (74.1% female, 25.9% male, mean 
age = 42.9 years) who met research diagnostic criteria for an 
insomnia disorder16 were randomized to one of three study 
arms: (1) MBSR (n = 19), (2) MBTI (n = 19), or (3) SM (n = 16). 
The MBSR arm consisted of 8 weekly, 150-minute group ses-
sions plus one 6-hour meditation retreat held between the 5th 
and 7th sessions following standard delivery of MBSR.17 The 
MBSR groups focused on mindfulness meditation practice 
and the enactment of mindfulness principles in daily life. In 
addition to the in-class meditation training, participants were 
provided with digital audio materials to practice meditation 
at home for at least 30 minutes per day, at least 6 days per 
week starting from the first session. No specific strategies for 
sleep or bedtime schedules were delivered as part of MBSR. 
MBTI featured mindfulness meditation practice that followed 
the same requirements for home practice starting from the first 
session. MBTI consisted of the same amount of total contact 
and the same in-class and at-home meditation practices as 
MBSR. In addition, MBTI included specific behavioral strate-
gies for insomnia (sleep hygiene,18 sleep restriction therapy,19 
stimulus control20) delivered within the context of mindfulness 
principles. Sleep hygiene was introduced in the second session, 
sleep restriction was introduced in the third session, and stimu-
lus control was introduced in the fourth session. As part of 
sleep restriction, sleep schedules were discussed and modified 
weekly based on standard recommendations,19 starting from 
the fourth session. Each week, participants were provided with 
the instructions for reviewing their sleep diaries and making 
adjustments to their sleep schedules with the MBTI instruc-
tor available for guidance if needed. The SM arm consisted 
of self-monitoring using daily sleep diaries for 8 consecutive 
weeks with no intervention and no regular contact, except for 
occasional telephone or email reminders to complete the sleep 
diaries. Sleep diaries were submitted every 2 weeks, and re-
minders were provided if patients did not submit diaries on 
time. Please see Table 1 for details about each session in the 
MBSR and MBTI arms.

In each of the 3 arms, participants completed prospective 
sleep diaries recorded on paper each morning for a total of 70 
days. These included 7 consecutive days prior to the start of the 
treatment/monitoring period (baseline week assessment), 56 
consecutive days during the 8-week treatment/monitoring pe-
riod, and 7 consecutive days during the post week assessment. 
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Sleep parameters derived from the sleep diaries included sleep 
onset latency, wake after sleep onset, total sleep time (TST), 
and time in bed (TIB). Sleep efficiency (SE) was a percentage 
calculated as (TST / TIB) × 100 served as the dependent vari-
able in this report.

Model Specifications
The location-scale mixed model for sleep efficiency y, of sub-
ject i (i = 1,2,3,…, N subjects) on day j ( j = 1,2,3,…, ni days) 
is given as:

yij = xij β + υi + εij

where xij is a vector of independent variables and β is the cor-
responding vector of regression coefficients. The independent 
variables can be at the subject level, vary across days, or be in-
teractions of the subject-level and day-level variables. The ran-
dom subject effect υi indicates the influence of the subject i on 
her/his sleep measures. These random effects are assumed to 
be normally distributed with zero mean and variance σ2

υ. The 
errors εij are also assumed to be normally distributed with zero 
mean and variance σ2

ε and independent of the random effects. 
Here, σ2

υ represents the between-subjects (BS) variance and σ2
ε 

represents the within-subjects (WS) variance, or IIV. The lo-
cation-scale mixed model allows both of these variances to be 
modeled in terms of independent variables using log link func-
tions, which is identical to the link function used in Poisson 
regression to ensure a positive count outcome from the esti-
mated model. Similar to what is done in Poisson regression, we 
calculated standard deviation (SD) ratios by exponentiating the 
estimated coefficients (note that in Poisson regression, the ex-
ponentiated coefficients represent count ratios) to represent the 
covariate effects on the WS variance. These SD ratios repre-
sented the ratio of within-subject standard deviations (WSSD) 
per unit change of the covariate. As such, an SD ratio greater 
(lesser) than one represented increased (decreased) variability 
with increased levels of the covariate. Additionally, a random 
subject effect is included in the WS variance specification, 
which permits this variance to vary at the subject level, above 
and beyond the influence of regressors.8,10 Thus, an important 
aspect of the model is that it allows independent variables 

(treatment arm) to influence the BS and WS variances of the 
sleep measurements, in addition to their effects on the mean of 
the sleep measurements.

Data Analysis
In all analyses, the daily repeated observations were treated 
as nested within subjects. Treatment condition (i.e., treatment 
arm) and time were entered as the independent variables, and 
sleep efficiency was treated as the dependent variable. Four 
levels were created for the effects of time. The baseline as-
sessment (days 1 to 7) was used as the reference point for the 
other time comparisons. Early treatment/monitoring included 
the first 2 treatment/monitoring weeks (days 8 to 21). Late 
treatment/monitoring included the last 6 weeks (days 22 to 63). 
The post assessment included days 64 to 70, which occurred 
immediately after the last treatment session or last monitor-
ing week. Days 8 to 63 were consecutive but the time interval 
between day 7 (end of baseline) and day 8 (start of treatment/
monitoring) varied for each person based on the time between 
when he/she presented for screening and the start of the group. 
The rationale for dividing early treatment versus late treatment 
was to account for the impact of the main behavioral compo-
nents (sleep restriction and stimulus control). Sleep restriction, 
which involved scheduled bed times and rise times, was in-
troduced at the third treatment session (day 21), and stimulus 
control, which also emphasizes a scheduled rise time, was in-
troduced at the fourth treatment session (day 28). Distinguish-
ing between early and late treatment provided an opportunity 
to examine the trajectory of sleep efficiency before and after 
the delivery of these behavioral components in MBTI.

For the effect of treatment arm, we used SM as the reference 
cell and included indicator variables for the two treatments 
(i.e., MBSR vs. SM and MBTI vs. SM). In addition, we ob-
tained estimates from the model to compare MBSR and MBTI. 
Group × time interactions were also included to examine dif-
ferential patterns of change over time by treatment arm. As 
previously mentioned, in addition to mean levels, the location-
scale mixed model also allows these independent variables to 
influence the within-subject variance in order to assess their 
effects on night-to-night variability. Estimation of the model 

Table 1—Treatment sessions.
Early Treatment Late Treatment
Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 Session 7 Session 8

MBSR Introduction 
and mindful 
eating

Body scan 
meditation and 
automatic pilot

Hatha Yoga 
and body 
awareness

Mindfulness 
meditation and 
stress 

Responding 
versus 
reacting to 
stress

Mindfulness 
and 
relationships

Mindfulness 
and 
attachment to 
outcomes

Review and 
preparing for 
continuing 
meditation

MBTI Introduction 
and mindful 
eating

Sitting and 
body scan 
meditations, 
sleep hygiene

Walking 
meditation, 
sleep 
restriction

Yoga and 
stretching 
meditations, 
stimulus 
control

Mindfulness 
and meta-
cognitions

Breathing 
space; 
acceptance 
and letting go

Self-
compassion 
and 
relationship 
with sleep

Relapse 
prevention for 
insomnia

New activities and themes introduced at each session. In MBTI, sleep restriction is first introduced at Session 3 (Day 21) and sleep schedules are discussed 
and modified at each subsequent session. For data analyses, early treatment includes Sessions 1 to 3 (Day 8 to 21) and late treatment includes Sessions 
4 to 8 (Day 22 to 63).
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parameters was performed using the MIXREGLS program 
(Information on running the Location Scale Mixed Models 
using MIXREGLS can be found at: http://www.jstatsoft.org/
article/view/v052i12).21 All analyses were conducted on an 
intent-to-treat basis.

In addition to the location-scale mixed model, we also con-
ducted an analysis using the more traditional random-intercept 
mixed model with the same variables as the location-scale 
mixed model above. Results from the random-intercept mixed 
model are presented in Table 2 to provide a comparison to the 
results of the location-scale mixed model.

RESULTS

A total of 2,855 observations were available for the 54 sub-
jects. The median number of daily measurements was 62 (out 
of 70 total), which represents a median percentage of 11.4% 
missing data per subject. The majority of missing data were 
due to 6 participants who did not provide data beyond baseline 
(i.e., randomized, but did not attend treatment sessions). As 
a result, there were more observations per subject in the SM 
control (median = 68.5) compared to MBSR (median = 57) or 
MBTI (median = 57), p < 0.05. However, the model estimates 
the parameters using full information maximum likelihood 
and allows missing data to vary between the groups and any 
other covariates in the model, and therefore provides valid re-
sults under the assumption of missing at random (MAR).22 At 
baseline, the mean (and WSSD) for SE by group was: 78.34% 
(13.81) for MBSR, 76.59% (13.30) for MBTI, 81.69% (11.87) 
for SM (see Figure 1).

Mean Levels
Using the location-scale mixed model, results for the mean 
levels revealed that after adjusting for variance, the MBSR 
group had a larger increase in sleep efficiency from baseline 
(i.e., better sleep) relative to the SM group at early (beta = 4.18, 

p < 0.01), late (beta = 4.65, p < 0.01), and post week (beta = 3.58, 
p < 0.05). Simple effects for MBSR across time revealed sig-
nificant increases in sleep efficiency from baseline at early 
(p < 0.01), late (p < 0.001), and post (p < 0.01). The MBTI 
group did not show a significant change in sleep efficiency 
from baseline relative to the SM group at early treatment 
(beta = −0.36, p = 0.83), but did show a larger increase from 
baseline to late (beta = 6.21, p < 0.0001) and post (beta = 6.53, 
p < 0.001) relative to the SM group. Simple effects for MBTI 
across time revealed significant increases in sleep efficiency 
from baseline at late (p < 0.0001) and post (p < 0.0001) but not 
at early treatment (p = 0.24). When comparing MBSR versus 
MBTI, the MBSR group showed a larger increase in sleep ef-
ficiency from baseline to early treatment (beta = 4.54, p < 0.01) 
relative to MBTI. No significant changes from baseline were 
found between MBSR and MBTI at late treatment (p = 0.32) 
or post (p = 0.12). These results are consistent with the results 
of the random-intercepts mixed model, which assumed a con-
stant within-subject variance. As shown in Table 2, both mod-
els detected a significant increase from baseline (p < 0.05) in 
sleep efficiency for MBSR relative to SM at early, late, and 
post week and for MBTI relative to SM at late and post week. 
Figure 1A presents model-based estimates of the group means 
across the four time periods.

Within-Subject Variance
Results for the modeling of the within-subject variance (i.e., 
IIV) revealed that after adjusting for mean levels, MBSR had a 
significantly larger decrease in IIV (i.e., less variability) from 
baseline to early (SD ratio = 0.70, p < 0.01) and late treatment 
(SD ratio = 0.70, p < 0.01), but not to post (SD ratio = 0.83), 
when compared to SM. The observed SD ratio of 0.70 indicates 
that there was a 30% reduction in the IIV of SE in the MBSR 
group compared to the control group at early and late treat-
ment. Simple effects for MBSR across time revealed signifi-
cant decreases in IIV at early (p < 0.05), late (p < 0.001), and 
post week (p < 0.05). No significant differences between MBTI 

Table 2—Comparison of output for random intercept mixed models versus location-scale mixed model.
Random Intercept Mixed Model Location-Scale Mixed Model

Mean (β) Mean (β) WS (τ)
Intercept 81.73 (2.79) *** 81.69 (2.55) *** 10.24 (1.22) ***
Early Treatment 0.15 (1.32) −1.16 (1.10) 1.17 (0.10)
Late Treatment −0.34 (1.18) 0.05 (0.92) 1.03 (0.08)
Post Week −0.29 (1.56) 0.27 (1.25) 0.94 (0.10)
MBSR −5.47 (3.80) −3.35 (3.52) 1.16 (0.19)
MBTI −5.55 (3.80) −5.09 (3.53) 1.12 (0.18)
MBSR × Early 4.78 (1.92) * 4.18 (1.62) ** 0.70 (0.09) **
MBTI × Early −2.04 (1.89) −0.36 (1.70) 0.96 (0.12)
MBSR × Late 7.71 (1.72) *** 4.65 (1.42) ** 0.70 (0.08) **
MBTI × Late 6.68 (1.71) *** 6.21 (1.47) *** 0.81 (0.09)
MBSR × Post 6.67 (2.26) ** 3.58 (1.80) * 0.83 (0.12)
MBTI × Post 6.98 (2.23) ** 6.53 (1.88) *** 0.84 (0.12)

Data presented are maximum likelihood estimates (standard errors) with self-monitoring (SM) as the reference group and sleep efficiency as the dependent 
variable. Within-subject (WS) estimates are expressed as SD ratios with statistical tests of these ratios equaling one. *p < 0.05, **p < 0.01, ***p < 0.001
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and SM in the changes from baseline were found at early (SD 
ratio = 0.96, p = 0.72), late (SD ratio = 0.81, p = 0.067), or post 
(SD ratio = 0.84, p = 0.23). Simple effects for MBTI across 
time revealed significant decreases in IIV at late (p < 0.05) 
and post (p < 0.05), but not at early treatment (p = 0.23). When 
comparing MBSR versus MBTI, the MBSR group showed a 
larger decrease in IIV (i.e., less variability in sleep efficiency) 
from baseline to early treatment (SD ratio = 1.37, p < 0.05). No 
significant differences between MBSR and MBTI in changes 
from baseline were found at late (p = 0.17) or post (p = 0.20). 
Figure 1B presents model-based estimates of the within-sub-
ject standard deviations for each group across the four time 
periods

Figure 2 illustrates 3 patterns of change in sleep efficiency 
across the entire study period. These 3 subjects (one from each 
arm) were chosen to display examples of a consistently low 
IIV, a change in IIV over time, and a consistently high IIV 
based on their random effect scale estimates (i.e., estimates of 
within-subject variance). Figure 2A displays data from a par-
ticipant in the MBSR arm who has the lowest scale estimate 
and displays low IIV in sleep efficiency across the entire study 
period. This represents a “consistent sleeper” whose sleep ef-
ficiency was generally stable from night-to-night throughout 
the study period. Figure 2B displays data from a participant in 
the MBTI arm with a larger scale estimate who exhibits a pat-
tern of increased levels of sleep efficiency and decreased IIV 
(increased stability) from baseline through treatment and into 
post-treatment. This represents a participant who responded 
to treatment with improvements in both the level and stability 
of sleep efficiency occurring primarily after the initiation of 
sleep restriction on day 21. Figure 2C displays data from a 
participant in the SM control condition with the largest scale 
estimate who has high IIV (low stability) throughout the study 
period. This represents an “inconsistent sleeper” who has high 
night-to-night variability throughout the study period. Al-
though other patterns of change over time are possible, these 
figures illustrate three potential patterns that are likely to arise 
across time and reflect the information captured by the random 
scale effect.

DISCUSSION

The goal of this paper was to demonstrate the application of the 
location-scale mixed model for conducting two-dimensional 
analyses on mean levels and IIV using daily sleep diary data. 
We selected sleep efficiency data from a recently completed 
randomized controlled trial for chronic insomnia to demon-
strate how this statistical technique can be applied to these two 
dimensions to examine treatment outcome and process. Com-
pared to traditional statistical methods, this method can yield 
greater precision and efficiency as an analytic tool for inten-
sive longitudinal sleep data.

In our example, the location-scale mixed model provided 
estimates on mean levels that were similar to the random inter-
cepts mixed model, indicating congruence with this traditional 
statistical approach. The findings revealed significant increases 
in the mean levels of sleep efficiency for MBSR, rising from 

78.3% at baseline to 82.2% at post, and for MBTI, rising from 
76.6% at baseline to 83.4% at post. A particular strength of this 
study was the inclusion of the SM arm, which controlled for 
the effects of completing sleep diaries with no active treatment. 
For both treatment arms, the pre-to-post changes in mean lev-
els of sleep efficiency were significantly larger than the pre-
to-post change observed for the SM control. These findings 
provide evidence to support the efficacy of MBSR and MBTI 
on improving the level of sleep efficiency at post-treatment.

A unique advantage of the location-scale mixed model is the 
simultaneous modeling of mean and variance, providing an es-
timate of the IIV after adjusting for the mean structure. Both 
MBSR and MBTI showed significant pre-to-post decreases in 

Figure 1—Sleep efficiency.

Model-based estimates of group means (A) and within-subject standard 
deviations (B) for sleep efficiency across the 4 time periods. Note that 
the location-scale mixed model compares the change from baseline as 
opposed to the values at each time point. (B) Significant interactions can 
be seen as the differential change in within-subject standard deviations 
from baseline to early treatment between MBSR vs SM and MBSR vs 
MBTI and from baseline to late treatment between MBSR vs SM.
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IIV, which is similar to two previous studies on CBT-I that 
found significant pre-to-post reductions in night-to-night vari-
ability of sleep patterns.23,24 However, when these two treat-
ment groups were compared to the SM control, the pre-to-post 
changes were not significantly different. Although the pattern 
was in the hypothesized direction, the decrease in IIV from 
baseline to post for the two treatment arms was not significant, 
above and beyond the effects of completing diaries without 
treatment. This finding indicates the importance of interpret-
ing the change in IIV relative to a control condition. In terms 
of treatment outcomes, it appears that MBSR and MBTI have 
a greater magnitude of effect on the mean levels of sleep ef-
ficiency compared to the IIV.

Another advantage of the location scale mixed model is 
the precision gained by generating estimates based upon all 
available data collected during the entire study period. By al-
lowing for different number of observations per subject (i.e., 
using all available data), intent-to-treat analyses are able to be 
conducted and missing data did not seem to have an adverse 
impact on the model. Unlike previous studies that only exam-
ined pre-to-post comparisons, the location scale mixed model 
can generate estimates of sleep efficiency during the course of 
treatment. This provides an opportunity to examine changes in 
sleep patterns during the course of treatment, potentially yield-
ing insights into treatment mechanisms. Between group com-
parisons revealed that MBSR was associated with more rapid 
effects on sleep efficiency compared to both MBTI and the 
SM control. Specifically, MBSR was associated with a greater 
increase in mean levels of sleep efficiency and a reduction of 
30% in IIV of sleep efficiency relative to the SM control, which 
emerged early in treatment and continued during the late treat-
ment period. MBSR also showed a greater increase in mean 
levels of sleep efficiency and reduction in IIV relative to MBTI 
during the early treatment phase, but not later in treatment. 
These findings point towards different trajectories in sleep pat-
terns that arise during the course of MBSR and MBTI, with 
preliminary indications that MBSR produces a stable increase 
in sleep efficiency that begins early in treatment and continues 
into late treatment.

Additionally, we examined the impact of the behavioral 
components of MBTI during treatment. The hypothesized 
pattern of significant increases in the mean levels of sleep ef-
ficiency and significant decreases in the IIV did emerge af-
ter the delivery of the main behavioral components in MBTI 
(sleep restriction and stimulus control), but the changes in IIV 
were not significantly different compared to the SM control. 
One possible explanation for the lack of significant findings 
is that sleep restriction, which aims to optimize mean levels 
of sleep efficiency, involves weekly modifications to the sleep 
schedule. These weekly adjustments might have led to the null 
findings on IIV during late treatment. Furthermore, stimulus 
control was introduced the following week and both behavioral 
strategies could have been used by participants in subsequent 
weeks. Although it is typical in behavioral treatments for in-
somnia to add stimulus control to sleep restriction, the study 
design precluded the ability to examine the impact of each 
treatment component independently. Notably, the overall pat-
tern of changes in sleep efficiency for MBTI shown in Figure 1 

Figure 2—Daily sleep efficiency data for three individual 
participants across the entire study period.

(A) Subject in MBSR condition with low variability (high stability) in sleep 
efficiency. (B) Subject in MBTI with decreased variability (increased 
stability) in sleep efficiency during treatment. (C) Subject in SM condition 
with high variability (low stability) in sleep efficiency. The baseline period 
is from day 1 to the first line marked (day 7). Early treatment/monitoring 
is from day 8 to the second line marked (day 21). Late treatment/
monitoring period is from day 22 to the third line marked (day 63). The 
post treatment/monitoring period is from day 64 to day 70. 

A

B

C
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(mean levels increasing during late treatment) is similar to the 
patterns commonly observed for CBT-I, whereby sleep may 
initially worsen before there is improvement later in treatment 
and beyond treatment termination.

The present report was intended to provide an example of 
how the location scale mixed model could be applied to sleep 
diary data. We selected a simple model for illustrative purposes, 
but more sophisticated models can include covariates (e.g., age, 
partner status, BMI) to examine the impact of these variables 
on the mean and IIV of sleep efficiency or other sleep param-
eters. Such analyses can be used to test specific hypotheses and 
develop a theoretical framework for the antecedents and con-
sequences of IIV, as recommended by Bei et al.3 Furthermore, 
the model could be used to explore different trajectories of 
change in IIV over time by treating time as a polynomial factor 
rather than a linear factor. This could yield important patterns 
regarding the patient’s sleep experience during the course of 
treatment. One limitation of the location-scale mixed model 
is that it does not take into account the impact of poor sleep 
efficiency on one night relative to sleep efficiency on the fol-
lowing night. Therefore, examining the temporal relationship 
between good nights and bad nights of sleep would require 
other statistical methods, as demonstrated by Perlis et al.2,25 
Also, the present analyses were conducted on self-report data, 
but the model can also be applied to objective longitudinal data 
collected from actigraphy or consumer-based wearable tech-
nologies. Finally, the power to detect significance is not yet 
established for the location-scale mixed model. The sample 
size in this example was relatively small for between subjects-
comparisons (i.e., comparisons between treatment conditions) 
and the number of within-subject observations at baseline and 
post week (7 days) were smaller than the number of within-
subject observations for early (14 days) and late treatment (42 
days). These factors might have led to reduced power to de-
tect differences between groups in the change from baseline to 
post-treatment. Further work is needed to develop a method for 
conducting power analyses for the location-scale mixed model.

In summary, the location-scale mixed model is a novel sta-
tistical tool that can be applied to longitudinal daily sleep dia-
ries collected as part of a randomized controlled trial or in a 
clinical case replication series. The present findings provide 
preliminary support for the hypothesis that mindfulness-based 
interventions can lead to increased levels and stabilization of 
sleep efficiency. Further research is needed in larger samples 
to confirm these findings and examine mechanisms through 
which standard mindfulness programs (i.e., MBSR) and tai-
lored mindfulness programs (i.e., MBTI) lead to improvement 
in sleep patterns. Research using a priori hypotheses that in-
cludes the location-scale mixed model with a study design 
that isolates treatment components could clarify the impact 
of sleep restriction and stimulus control on the variability of 
sleep patterns in the context of MBTI or CBT-I. In addition, as-
sessing IIV of sleep during treatment for insomnia has impor-
tant clinical implications. For example, when delivering sleep 
restriction, modifications to the sleep schedule are currently 
informed only by the mean level of sleep efficiency. How-
ever, consideration of IIV in addition to mean level of sleep 
efficiency merits further investigation as a potential measure 

of treatment response and decision-making in the context of 
behavioral treatments for insomnia. The location-scale mixed 
model could provide a novel statistical tool for further research 
in this area.

ABBRE VI ATIONS

CBT-I, cognitive-behavioral therapy for insomnia
HLM, hierarchical linear modeling
IIV, intra-individual variability
MBTI, Mindfullness-Based Therapy for Insomnia
MSBR, Mindfullness-Based Stress Reduction
SD, standard deviation
SM, self-monitoring
TIB, time in bed
TST, total sleep time
WS, within-subject
WSSD, within-subject standard deviation
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