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A B S T R A C T

The scale of tumor genomic profiling is rapidly outpacing human cognitive capacity to make clinical
decisions without the aid of tools. New frameworks are needed to help researchers and clinicians
process the information emerging from the explosive growth in both the number of tumor genetic
variants routinely tested and the respective knowledge to interpret their clinical significance. We
review the current state, limitations, and future trends in methods to support the clinical analysis
and interpretation of cancer genomes. This includes the processes of genome-scale variant
identification, including tools for sequence alignment, tumor–germline comparison, and molecular
annotation of variants. The process of clinical interpretation of tumor variants includes classifica-
tion of the effect of the variant, reporting the results to clinicians, and enabling the clinician to
make a clinical decision based on the genomic information integrated with other clinical features.
We describe existing knowledge bases, databases, algorithms, and tools for identification and
visualization of tumor variants and their actionable subsets. With the decreasing cost of tumor
gene mutation testing and the increasing number of actionable therapeutics, we expect the
methods for analysis and interpretation of cancer genomes to continue to evolve to meet the
needs of patient-centered clinical decision making. The science of computational cancer medicine
is still in its infancy; however, there is a clear need to continue the development of knowledge
bases, best practices, tools, and validation experiments for successful clinical implementation
in oncology.

J Clin Oncol 31:1825-1833. © 2013 by American Society of Clinical Oncology

INTRODUCTION

As the amount of information generated by an indi-
vidual patient’s tumor genomic profiling increases,
clinicians will no longer be able to analyze, interpret,
and act on this information without tools that effec-
tively mine the data for clinical use. This remarkable
increase in scale is due to the increasing number of
altered genes that may portend clinical impact, the
larger number of gene variants being routinely
tested in some tumor types,1-3 and more generally
the explosive growth in clinical knowledge linking
somatic or germline variants to predictive or prog-
nostic information. In the future, providers across
the health care system—from molecular patholo-
gists and oncologists to genetic counselors—will be
challenged to rapidly analyze and interpret the re-
sults of emerging genomic technologies for effective
patient care.

The clinical workflow for analysis and interpre-
tation of the cancer genome (Fig 1) begins with the
genome testing modality, that is, the technology or
platform used to generate raw genetic or molecular
data (modality options are reviewed in detail else-
where4). After the assay has been performed, the
molecular pathologist identifies alterations in the

tumor. Depending on the assay modality, variant
identification may be done by visual inspection by a
trained specialist (eg, ALK fusion detection assays5)
or require the assistance of automated algorithms
(eg, assays that assess the entire sequence of one or
more genes6). Automated methods for variant iden-
tification consist of several processing steps, includ-
ing algorithms for sequence alignment that take as
input a reference sequence, algorithms for compar-
ison of the tumor and normal genome, and molec-
ular annotation of variants. As the scale of data rises
from a few well-defined, commonly mutated altera-
tions (hotspots) to individual whole genes to entire
genomes, several factors make analysis increasingly
difficult. These include artifacts related to sequenc-
ing, overall breadth of coverage across one or more
genes, differences in depth of coverage at a particular
site that affect the power to detect variants, and vari-
ability in the reference genome data set as it relates to
an individual patient.

The clinical interpretation of variants identified
by genomic profiling is a process that includes clas-
sifying the clinical effect of the variant and reporting
the results in ways that are meaningful to practicing
oncologists. The need for robust clinical interpreta-
tion requires considerations that are distinct from
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those of both the assay testing modality and the number of genes or
variants assessed. Unlike many other clinical assays, multiplex or
sequencing-based tumor testing may result in many simultaneous and
significant outcomes per gene that occur in any given tumor sample.
Furthermore, various genetic alterations may predict either sensitivity
or resistance (intrinsic or acquired) to a particular drug. For example,
in non–small-cell lung cancer, some EGFR mutations are associated
with sensitivity to small-molecule epidermal growth factor receptor
(EGFR) antagonists (eg, EGFR L858R mutation7), whereas others
confer primary or secondary resistance to the same drugs (eg, EGFR
T790M8). Furthermore, there are even more variants in EGFR (and
most other cancer genes) whose clinical significance is currently un-
known; that is, there exist no definitive clinical data to suggest sensi-
tivity or resistance to EGFR-targeted therapy for tumors harboring
those particular EGFR alterations.9,10 Similarly, mutations that predict
responsiveness to a therapy in some contexts (eg, RAF inhibitors in
BRAF[V600]-mutant melanoma) may be associated wtih entirely dif-
ferent clinical interpretations in others (eg, RAF inhibitors in
BRAF[V600]-mutant colorectal carcinoma11). In the end, the physi-
cian must interpret the utility of tumor genomic results in the context
of additional clinical, histologic, and molecular information to make
an informed clinical decision.

With hundreds to thousands of tumor variants observed in
the coding region of an individual’s genome and thousands to
millions of variants across an individual’s cancer genome,12 it will
not be possible for molecular pathologists and oncologists to iden-
tify and appropriately annotate the clinical significance of each
variant by manually assigning an individual interpretation to the
variants found in every patient. Although the computational algo-
rithms and knowledge resources available today to assist this pro-

cess are still in their infancy, they demonstrate great potential for
realizing this aim and thus paving the way for widespread applica-
tions of genomic profiling in clinical oncology.

THE PROCESS OF GENOME-SCALE VARIANT IDENTIFICATION

Current clinical genomic testing typically focuses on one or two well-
defined, targetable alterations (hotspots) in a small number of genes,
and the binary presence or absence of single mutational events is often
sufficient to guide clinical decision making. Existing research-grade
algorithms for revealing biologically significant alterations within the
high volume of genomics data, although powerful for discovery pur-
poses, are not sufficient for clinical deployment. To bring genome-
scale data to the clinic, the computational process for variant
identification (variant calling) requires adaptations of existing tools
and the development of new annotation methods to allow for effective
downstream interpretation of these variants.

Sequence Alignment

Large-scale genomics platforms (eg, those that use massively
parallel sequencing) produce data reflecting the raw sequence reads
that emerge from the sequencing instrument used by the clinical
platform. Regardless of whether that output consists of the coding
regions of a subset of genes (targeted sequencing), the entire coding
regions of the genome (exome), the entire genome, or the spectrum of
RNA transcription across the genome (transcriptome), the first step in
computational analysis is aligning the raw data to the reference human
genome to better understand variations (Fig 2). Multiple tools exist for
this process13-21 and can be adapted for clinical use. Critically, depend-
ing on the genomic territory probed with the sequencing modality,
sequence alignment can still be a computationally intensive and
therefore time-consuming process that may challenge existing
clinical informatics infrastructures to ensure clinically useful data
turnaround. In addition, although cross-comparative analysis of
multiple aligners for research purposes has been initiated,22 deter-
mination of the most effective clinical alignment algorithm has not
yet been established. Because alignment to the reference genome is
the foundation for all downstream analysis, clinically focused
cross-comparator studies are needed to determine the optimal
alignment approach, as these may inform understanding of the
sensitivity and specificity of such approaches.

Variant Identification and

Tumor/Germline Comparison

After sequence alignment, several analytic tools are available to
identify variants in the tumor genome. Targeted gene panels that focus
on a subset of highly characterized tumor genes may proceed directly
to variant identification without analysis relative to the patient’s germ-
line data because well-defined germline events may be filtered out.6,23

However, such avenues may have difficulty in distinguishing some
private or low-frequency germline alterations from bona fide somatic
alterations in tumors; parallel analysis of paired germline DNA is
needed to enable the maximal power to distinguish true somatic
events. The variant identification algorithms developed for
exome or genome-wide analyses to nominate putative mutations,24-31

small insertions/deletions (“indels”),30,32-37 and copy number
alterations29,38-44 can be adapted for targeted panels (Fig 2).
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Fig 1. Clinical workflow for tumor genome analysis and interpretation. The
workflow begins with the genome-testing modality that may or may not have
digital output. Variant identification may be done manually or with the assistance
of automated algorithms, depending on the modality. Automated methods for
variant identification include several processes shown at the top, including
algorithms for sequence alignment that take as input a reference sequence,
algorithms for comparison of the tumor and normal genome, and variant
annotation. Clinical interpretation of the variant is a process that includes a
determination of the size of variant effect and its interaction with other variants
as well as an analysis of the strength of the evidence of the effect. These
processes require the use of knowledge bases of variant–drug–disease relation-
ships. Actionable results are reported as well as variants of unknown significance
(VUS). The process culminates with a clinician using the information to make a
clinical decision.
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As noted previously, effective variant identification for an entire
tumor exome or genome always requires direct comparison of the
tumor genome to the patient’s germline to identify somatic variants.
Many variant identification software packages for exome or genome-
level data are specifically primed for use in clinical cancer care (Fig 2).
However, clinical-grade sequencing may require additional quality-
assurance methods to ensure that these variant identification algo-
rithms do not accidentally filter out known, clinically significant
variants. Furthermore, identifying the high-confidence absence of
expected or likely tumor variants that have clinical implications (per-
tinent negatives) will be equally relevant for subsequent clinical inter-
pretation and represents an essential component of clinical variant
identification tasks.

Reliable detection of clinically significant rearrangements (eg,
ALK fusions) can be difficult without genome or transcriptome-level
data, because targeted panels or exome sequencing are unlikely to
capture all intronic regions where rearrangements may occur. In the
future, potential solutions may include concomitant transcriptome
sequencing to capture novel fusion transcripts45,46 or intentional tiling
of baits across high-yield intronic regions as part of a targeted gene
panel.23 Analysis tools to reliably identify fusions in such regions exist

and may be deployed for clinical use once the appropriate platform
is chosen.32,47,48

Molecular Annotation of Variants

The somatic events observed with analysis tools are typically
represented in computer files as genomic coordinates with allele
changes or segments of copy number gain or loss. To proceed with
effective clinical interpretation of these events, translation of these data
for human use with effective molecular annotation is necessary. Pub-
lically available annotation tools exist to convert these data into for-
mats that use gene names and protein changes based on established
public resources.49-54 Salient sequencing data metrics may include
alternative transcripts expressed from query loci, locus-specific cover-
age and the variant allelic fraction (defined as the number of alternate
reads at the site divided by the total number of reads at that site).
Additional resources may link genetic alterations to other databases
that can aid downstream clinical interpretation, including the pre-
dicted effect of the variant on the protein52,55,56 or the frequency of this
event in published cancer genomics research studies.57 At the present
time, these annotations are typically focused on research-oriented
pursuits, and new databases will be needed to frame clinically oriented
molecular annotation.

THE PROCESS OF CLINICAL INTERPRETATION OF
TUMOR VARIANTS

Once all tumor variants in a patient’s genome have been identified,
clinical interpretation of each variant is needed to identify the subset
that may affect medical decision making. The process of clinical inter-
pretation includes classification of the effect of the variant, reporting
the results to clinicians, and enabling the physician to make a manage-
ment decision based on the genomic information integrated with
other clinical features.

Classifying the Clinical Effects of Genomic Variants

Interpretation of the clinical effect of a tumor variant includes
classifying (1) the type of clinical effect, (2) the strength of evidence of
the effect, and (3) the size of the effect. Framing observed variants in
this manner facilitates their clinical interpretation by focusing atten-
tion on variants of different types with the most size and strength of
effect for an individual patient (Fig 3).

Classification of the type of clinical effect. As with other clinical
biomarkers, cancer-related gene variants can be classified by their type
of clinical effect as biomarkers that predict risk of disease, confirm a
diagnosis, predict prognosis, predict response or resistance to treat-
ment, or measure response to treatment.58 For example, deleterious
germline BRCA1 mutations confer increased risk of breast cancer,59

IDH1 mutations may predict favorable prognosis in gliomas,60 BRAF
mutations may predict sensitivity to BRAF inhibitors in melanoma,61

KRAS mutations may predict resistance to anti-EGFR antibody treat-
ment,62 and NPM1 is used to measure minimal residual disease in
acute myeloid leukemia.63 Some tumor variants serve multiple clinical
utilities. For example, BCR-ABL translocations are diagnostic, prog-
nostic, and predictive of response to treatment with imatinib,64 defin-
ing a distinct clinical subtype of chronic myelogenous leukemia.

Likewise, the clinical effect may be influenced by multiple vari-
ants that may be operant simultaneously. In acute myeloid leukemia,
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Fig 2. A representative set of tools for the analysis and interpretation of genome
sequencing data. These include (A) a listing of representative algorithms for
sequencing alignment, (B) variant identification, (C) variant annotation, and (D)
clinical interpretation. Boldfaced entries are those specifically geared toward
tumor versus normal analysis.
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for example, the combination of certain NPM1 mutations without
concurrent FLT3 mutations has been associated with complete remis-
sion and favorable outcomes.65 Similarly, multiple EGFR mutations
may occur simultaneously in EGFR mutant lung adenocarcinoma
that confer opposite sensitivities to EGFR tyrosine kinase inhibitors.66

Initial efforts to computationally represent these complex relation-
ships are underway, including one approach to systematically anno-
tate genomic relationships linked to clinical actions and build a series
of heuristics to score the events relative to one another.67

Classification of the strength of evidence. Large-scale profiles of
tumor gene alterations present several challenges with respect to clas-
sifying and communicating the strength of the evidence underlying a
given clinical effect. Strength of evidence is based on the maturity,
quality, and type of studies that inform the potential clinical utility of a
genomic alteration.68 When reporting clinical significance, it is not
sufficient to simply describe the clinical effect with respect to disease
and treatment. More detailed information on the evidence for those
relationships is typically required for clinical decision making.

Evidence-based approaches to biomarker testing for routine clin-
ical care limit testing to biomarkers with well-established clinical util-
ity. Multiple frameworks have been proposed that classify the evidence
related to the clinical utility of tumor biomarkers, including: (1) the
Tumor Marker Utility Grading Systems,68 (2) levels of evidence for
using archived tissue to determine the clinical validity of tumor mark-
ers,69 (3) levels of evidence combined with tiers to represent different
clinical scenarios for a genomic event (eg, sensitivity, resistance, or
prognostic/diagnostic effect),6 and (4) the National Comprehensive
Cancer Network categories of evidence and consensus.70 These frame-
works provide a consistent language for clinical practice guidelines to
make recommendations on the use of a biomarker or biomarker-
driven therapy in clinical practice. At the present time, however, rela-
tively few tumor genes meet criteria for routine testing.70

As the cost of deep sequencing drops and the clinical utility of
multiple tumor biomarkers is established, it should become increas-
ingly cost effective to perform large-scale cancer gene mutation pro-
filing routinely. The resulting proliferation of cancer genomic data
may present specific challenges with respect to communication of the
strength of evidence for the clinical effects to physicians and patients.
The preceding frameworks rely on clinical evidence from relatively

large populations of patients. Such recommendations are feasible with
variants of relatively high prevalence; however, many tumor variants
occur with a frequency of less than 1% in a particular subpopulation.
For instance, more than 100 different primary and secondary EGFR
mutations have been described in literature case reports for patients
with non–small-cell lung cancer.57 Many of these variants occur with
extremely low frequency and are of unknown clinical significance.
Routine testing of the full gene sequence as opposed to testing strate-
gies that only assess for high-prevalence variants are likely to identify
more of these rare variants of unknown significance in tumor genes
that have well-established clinical utility.

Thus, as genomic testing expands to large numbers of genes,
there will often be no prospective clinical trials with sufficient power to
determine the clinical significance of rare variants. Yet clinicians will
still need assistance to interpret the clinical significance of these vari-
ants. One group describes the evolving evidence perspective leading
toward patient-centered outcomes research.71 This framework de-
scribes levels of evidence ranging from expert opinion (N of 1),
evidence-based medicine (N of many), comparative effectiveness re-
search (N of many), and patient-centered outcomes research (many
N�s of 1). The idea is that for variants of unknown significance,
providers will make recommendations to individual patients based on
as many similar patients that can be found. When such clinical data are
not available, predictive modeling or preclinical data may be the only
evidence of possible clinical effect. Such information may be useful to
guide clinical trial selection in certain research settings, but as yet there
exists no validated framework to incorporate preclinical evidence into
clinical decision making regarding the use of tumor genomic data.
Going forward, a deeper biologic understanding of targetable path-
ways in the appropriate cell or lineage contexts will likely also play a
key role in identifying clinically relevant variants.

Classification of the size of the effect. The size of the effect relates to
the degree of benefit or harm a biomarker predicts.68 The clinical
vernacular for classifying tumor variants based on the type and size of
clinical effect is rapidly evolving. For example, “EGFR mutations sen-
sitive to EGFR tyrosine kinase inhibitors” has become a common
description in clinical trial eligibility criteria. It refers to the known
subgroup of EGFR mutations that are sensitive to drugs such as erlo-
tinib and gefitinib. Binary classifications such as “sensitive” and “re-
sistant” are becoming more common in describing biomarker-related
drug effects. Other frameworks describe the size of the clinical effect on
a continuum from likely benefit versus possible harm.57 Such frame-
works use phrases on a continuum of size of effect such as “treatment
should be administered,” “it is reasonable to consider treatment,”
“treatment may be considered,” and “treatment should not be admin-
istered.” Others have adopted “�” versus “–” classification of the size
of effects such as the framework used in the well-established Sanford
Guide for Antimicrobials,72 which uses “���” to describe the rela-
tive sensitivity of an antimicrobial to treat a particular microorganism.
The clinical vernacular for communicating the effect size of a tumor
variant specifically with respect to treatment choice is still evolving,
but it is expected that binary classifications will not capture the nu-
ances of effect size as more data about variants within a patient’s
genome become available in preclinical and clinical studies.

Reporting Results

Whether testing a single gene variant or the entire cancer ge-
nome, multiple challenges remain in discerning the optimal means to
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Fig 3. Classification of the clinical effect of the variant taking into account the
type of effect, strength of the evidence, and the size of the effect. Variants in the
top right quadrant should have the highest priority with respect to actionable
clinical decisions.
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report results in ways that are clinically useful for practicing oncolo-
gists. Open-ended issues for the clinical audience include (1) what to
report, (2) how to format the report, and (3) if, when, and how to
notify providers when new clinical evidence emerges.

Choosing what to report. After observed variants have been
comprehensively classified with clinical applicability in mind, they
must be reported to the clinician in a manner that enables facile
decision support. Multiple approaches to reporting exist, reflecting
a spectrum of data access or restriction. Approaches favoring full
access report all variants and allow clinicians complete control over
what actions to take. Approaches favoring restricted access only
report variants with well-established size and strength of effects.
Overall, the challenge with reporting is to balance the need for deep
exploration of a tumor genome while simultaneously being user-
friendly to allow for efficient assessment of clinically pertinent
results. It should be noted that the optimal return of genetic results
to clinicians and patients also remains an area of active investiga-
tion from an ethical, legal, and social perspective.73-75

Formatting the report for a clinical audience. Because tumor
variants may be classified in multiple ways, it is important to organize
the content of the reports in multiple ways to facilitate clinical deci-
sions of different types. One common framework is a gene-oriented
approach in which genomic results are organized by their type of
clinical effect (see Classification of the Type of Clinical Effect, earlier).
When large numbers of genes are assessed simultaneously, clinical
decision making may be aided by segregating the results based on the
type of clinical action that may follow. For instance, reports of assays
that assess both tumor and germline variants should draw attention to
variants that may reveal a hereditary cancer syndrome in a separate
section from those that confer sensitivity or resistance to a particular
therapy. Germline variants unrelated to cancer that have clear medical
implications for either the patient or her family should also be noted.

Likewise, it is useful to organize treatment-related results by the
drugs they may affect. This is especially important in the context of
genomic aberrations that confer resistance to drugs, because they can
co-occur with aberrations that confer sensitivity to the same drug (eg,
EGFR T790M).8 A drug-oriented view of the results can thus take into
account multiple findings simultaneously. Such views are often
grouped based on those drugs that are likely to be effective and those
that are not likely to be effective. This simplifying approach can be very
helpful for clinical decision making; however, care must be taken to
ensure that off-label drug associations are clearly stated.

From this perspective, reports of tumor genomic profiles should
include an assessment of the level of evidence and strength of the effect

with reference to the primary literature. Ideally, content should like-
wise be formatted in such a way as to draw the clinician’s attention to
those results with the highest level of evidence and strength of effect
(Fig 3).

Several groups that perform tumor mutation analysis are con-
vening molecular tumor boards before finalizing the contents of the
interpretive report (eg, Roychowdhury et al3 and Tran et al 76). Other
groups that perform tumor genomic analysis on a fixed number of
cancer genes have developed electronic versions of their reports that
link to outside knowledge resources.2,77 This interactive reporting
strategy has the advantage of reporting the analytic validity of an assay
at a moment in time, while allowing the clinical utility of the results to
continuously be updated by outside and centrally maintained sources.
Several tools in use78 or under development67 enable molecular pa-
thologists to more easily create interpretive reports with the frame-
works described previously. They are being designed to leverage the
information from multiple publically available web-based resources,
such that as much information as desired can be obtained with ease
and within the framework of an electronic medical record.

The knowledge resources available today vary in their degree of
clinical applicability, as many were originally created to facilitate can-
cer research. They also vary in their scope and degree of coverage of the
cancer domain. Some only cover information at the gene level,
whereas others cover information at the gene variant level. Some focus
on gene–disease relationships and others on gene–drug relationships,
which correspond to the types of clinic effects (eg, diagnosis v predict
response to treatment) that can be inferred from the knowledge.
Finally, these resources vary in the levels of evidence that they cover
and their public accessibility. Table 1 describes the cancer-specific
databases and knowledge bases for tumor variant information that are
potentially clinically applicable. Table 2 describes general gene–drug
databases that also may provide some utility for the interpretation of
the clinical significance of tumor variants.

Challenges with respect to evolving clinical knowledge. An active
area of study concerns the questions of if, when, and how to notify
providers when new clinical evidence emerges regarding clinically
actionable genomic alterations in tumor specimens previously re-
ported. The current standard of care in laboratory medicine is to
report the most up-to-date knowledge regarding the clinical signifi-
cance of the test result at the time the initial report is created. There are
no standards for reanalyzing the data or contacting providers when
new knowledge or analysis algorithms become available. Ethical
guidelines on this matter are being considered for germline studies,88

Table 2. Gene–Drug Knowledge Bases to Assist in Clinical Interpretation of Tumor Variants

Knowledge Base Description Types of Relationships Clinical Domains

Pharmacogenomics
Knowledge Base
(PharmGKB)85

Contains annotations on genetic variants and
gene–drug–disease relationships via literature
reviews

Gene–drug, germline variant–drug–host response Somatic and germline
pharmacogenomics

DrugBank72 A compilation of detailed drug data with
comprehensive drug target information

Gene–drug, drug–pathway Somatic and germline
pharmacogenomics

STITCH86 An interaction network of genes, drugs, and
proteins

Gene–drug, gene–chemical Somatic and germline
pharmacogenomics

Therapeutic Target Database
(TTD)87

A database of known and explored therapeutic
drug targets, the targeted disease, pathway
information, and the associated drugs

Gene–drug, drug–pathway, drug–target Somatic and germline
pharmacogenomics
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but are lacking for somatic studies. These issues are especially impor-
tant when new therapies become available (as standard of care or
clinical trials) or when new knowledge emerges regarding variant-
specific drug sensitivity or resistance. The dynamic reports described
in Formatting the Report for a Clinical Audience may be one way to
address this issue but require the clinician to refresh the report at the
time of transitions in treatment. The next section describes other
opportunities for more active forms of clinical decision support to
potentially address this issue. However, guidelines and realistic work-
flow strategies are still needed.

Clinical Decision Support Tools

Reporting results comprises just one way to provide clinicians
with decision support regarding potentially clinically actionable re-
sults. This type of “passive” clinical decision support requires the
clinician to review the report and supporting evidence at the point of
making a clinical decision. In contrast, “active” forms of clinical deci-
sion support, such as alerts and notifications, are interruptive at the
point of finalizing clinical decisions. Active decision support includes
alerts for possible contraindications to a selected therapy at the point
of provider order entry. For example, if the clinician is attempting to
prescribe erlotinib for a patient with EGFR-mutant lung cancer, a
decision support system could alert the clinician if the tumor has one
of the variants that is known to confer primary or secondary resistance
to erlotinib, thereby sparing the patient from a potentially ineffective
therapy. The advantage of this approach is the ability to update clinical
evidence at the point of treatment action, a major benefit over static
reporting strategies. Other opportunities exist to filter and prioritize
the list of potential therapies within a chemotherapy order manage-
ment system at the point of plan selection, taking into account multi-
ple clinical features including the tumor genome. However, such tools
are under development for only a small subset of genomic biomarkers.

In conclusion, this science of computational cancer medicine is
still in its infancy. With the decreasing cost of tumor gene alteration
testing and the increasing number of targeted therapeutics, we expect
the methods for analysis and interpretation of cancer genomes to
continue to evolve to meet the needs of patient-centered clinical deci-
sion making. By successfully bridging research-oriented genomics
analysis tools with clinically focused interpretation methods, oncolo-
gists may be able to incorporate vast amounts of genomic information
into individual patient care. Although it is as yet unknown if this
amount of data will result in improvements in clinical outcomes, it is
now conceivable to harness the weight of these data and rationally
design clinical trials to answer this question across cancer types.

There remains a pressing need to continue to develop knowledge
bases, best practices, tools, and validation experiments for the clinical
analysis and interpretation of the cancer genome. This effort will
require significant and longitudinal collaborations between medical
oncologists, molecular pathologists, computational biologists, and
biomedical informaticians working together to implement prospec-
tive large-scale sequencing. As these tools are developed in conjunc-
tion with prospective assessments of the impact cancer genomics may
have on patient care, robust analytic and interpretive frameworks
should emerge to facilitate clinical cancer genomics throughout the
field and across care centers.

In addition, as such analytic and interpretation platforms be-
come more refined, it will be imperative to ensure that these tools and
knowledge bases are open source and web based so that they may be
accessed by physicians and patients regardless of the care center con-
text. This may require increased regulation of these tools by the US
Food and Drug Administration, especially for interpretation algo-
rithms, so that genomic data are not used irresponsibly. Finally, the
ethical ramifications of the large amount of data being revealed by
these analytic and interpretation algorithms cannot be overlooked;
collaborations between ethicists and oncologists armed with this data
are necessary and reinforce the need for national guidelines that help
guide clinicians on how to safely use information that may have an
impact on the patient and his or her family.
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GLOSSARY TERMS

Breadth of coverage: The amount of genomic territory se-
quenced in a given testing modality.

Copy number alteration: A structural variation in the ge-
nome with an increased (amplification) or decreased (deletion)
number of copies of a gene or region.

Depth of coverage: The number of times a particular place
in the genome (eg, base, exon, or region) has been sequenced,
often to ensure data accuracy and sensitivity.

Exome: Part of the genome formed by genes that code for pro-
teins and other functional gene products (known as exons).

Genome: The complete set of genetic material.

Genome testing modality: The technology or platform
that is used to translate biologic tissue into genetic or molecular
data, including Sanger sequencing, mass spectrometric genotyp-
ing, allele-specific polymerase chain reaction– based technologies,
and massively parallel sequencing, among other options.

Germline alterations: Alterations in a gene present at con-
ception that are incorporated into every cell of an individual.

Hotspots: Sites in a specific gene known to harbor recurrent
alterations that have well-defined biologic and/or clinical
significance.

Insertion/deletion (“indel”): A local net gain or loss of
nucleotides (generally, between one and 50 bases) that results
in a frameshift event.

Massively parallel sequencing: A high-throughput approach
to sequencing DNA or RNA, also known as next-generation or
second-generation sequencing.

Mutation: A change of one base in a nucleotide sequence that may
result in a change in the amino acid sequence.

Rearrangement: A genomic alteration resulting from a chromo-
somal breakpoint that leads to a large structural change in or be-
tween chromosomes.

Somatic alterations: Alterations in DNA that occur in an indi-
vidual after conception; here used to denote alterations that occur
uniquely in a tumor cell.

Targeted sequencing: Sequencing the coding regions or other
selected regions from a relatively small subset of genes.

Transcriptome: The complete expressed product of the entire
genome in a particular cell, tissue, or biofluid at a specific point in
time.

Variant: A change in the DNA sequence from the reference ge-
nome that may or may not have functional consequences.

Variant calling: The method for identifying variants in a tumor
sample.
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