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Abstract

Optical coherence tomography (OCT) has become an important modality for examination of the 

eye. To measure layer thicknesses in the retina, automated segmentation algorithms are often used, 

producing accurate and reliable measurements. However, subtle changes over time are difficult to 

detect since the magnitude of the change can be very small. Thus, tracking disease progression 

over short periods of time is difficult. Additionally, unstable eye position and motion alter the 

consistency of these measurements, even in healthy eyes. Thus, both registration and motion 

correction are important for processing longitudinal data of a specific patient. In this work, we 

propose a method to jointly do registration and motion correction. Given two scans of the same 

patient, we initially extract blood vessel points from a fundus projection image generated on the 

OCT data and estimate point correspondences. Due to saccadic eye movements during the scan, 

motion is often very abrupt, producing a sparse set of large displacements between successive B-

scan images. Thus, we use lasso regression to estimate the movement of each image. By iterating 

between this regression and a rigid point-based registration, we are able to simultaneously align 

and correct the data. With longitudinal data from 39 healthy control subjects, our method improves 

the registration accuracy by 50% compared to simple alignment to the fovea and 22% when using 

point-based registration only. We also show improved consistency of repeated total retina 

thickness measurements.
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1. INTRODUCTION

Optical coherence tomography (OCT) has become widely used in ophthalmology since it 

provides high resolution three-dimensional data of the retina and the contained structural 

layers that make it up. As such, both gross pathologies, like retinal detachments, and smaller 
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changes, such as ganglion cell layer thinning, are detectable using OCT. Often, these smaller 

retinal changes are observed in population studies where, for example, the average thickness 

of specific layers are significantly different in one population versus another. However, 

tracking small changes in a single patient over short time intervals is significantly more 

challenging for a variety of reasons including the limited resolution of the scanner, the 

accuracy of the segmentation algorithms, the positioning of the eye, and movement of the 

eye during a scan. Therefore, to improve the consistency and accuracy of longitudinal 

thickness measurements, it is critical to both register the scans for alignment and apply 

motion correction in the absence of eye tracking.

While OCT scanner technology is rapidly evolving, with modern scanners having eye and 

pupil tracking to address the issue of alignment and eye motion, retrospective studies are 

often performed on data acquired from older scanners without these improvements. In these 

systems, measurements are made spatially relative to the position of the center of the fovea 

only, providing just a single landmark for aligning data from the same subject acquired at 

different times. Using this simplistic strategy, alignment errors due to eye motion and head 

rotation are still possible.

Research on registration or alignment of OCT data and motion correction have typically 

been done separately from one another. Since we are only concerned with longitudinal data 

acquired from the same subject in our work, the registration problem primarily consists of 

aligning the blood vessel patterns as seen in a fundus view of the retina. These vessels can 

be thought of as fixed landmarks that do not change over time. For the specific purpose of 

longitudinal analysis, there have only been a small number of papers on the alignment of 

OCT data.1–4 The two works of Niemeijer et al.1, 2 provide longitudinal registration as a 

motivating example, but do not include experiments to show improved longitudinal stability 

or accuracy. In Wu et al.,3 blood vessel points are extracted from an OCT fundus projection 

image and registered between scans using the coherent point drift algorithm.5 This work was 

later used to evalute the change in thickness over time in patients with macular edema.6 In 

our own prior work,4 we registered longitudinal data using intensity-based registration of 

OCT fundus projection images.

To address the problem of motion correction, several algorithms have been developed that 

require a pair of orthogonally acquired scans,7, 8 data which is not frequently acquired. 

Another method, which does not require multiple scans, uses a particle filter to track 

different features between images.9 In work by Montuoro et al.,10 eye motion was corrected 

using a single scan by estimating the lateral translation between successive B-scan images 

by maximizing the phase correlation. The variability of this method is quite large, however, 

due to the images having slightly different features despite being close together.

As an alternative to acquiring multiple scans (orthogonal or otherwise) at the same visit, we 

propose to use data from successive longitudinal visits to simultaneously register and motion 

correct the data. With such a framework, more accurate measurements can be made without 

the need to acquire multiple scans at each visit. Perhaps the closest related work to our own 

is that of Vogl et al. where they combined previous work on motion correction and point-

based registration to align data in succession before doing a longitudinal analysis.6 By 
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simultaneously doing these two steps, we are able to overcome any drawbacks found in 

doing the correction and registration steps separately since we take advantage of 

complementary information found in successive scans.

2. METHODS

An overview of our method is presented in Fig. 1. We begin with two OCT volumes 

acquired from the same subject at different times. A fundus projection image (FPI) is created 

from each volume by projecting the intensities along each A-scan (vertically) to the x-y 
plane. The blood vessel patterns are shown clearly in the FPI since the vessels create a 

shadow below their location. A set of points representing the vessels are then extracted and 

correspondences between the two point sets are estimated. Finally, we iterate between a 

point-based registration (using a rigid + scale transformation) to align the data and a lasso 

regression to do motion correction. With the data in alignment, any measurements made on 

the two scans, for instance thickness values, will be in correspondence and thus more 

accurate than if the data was misaligned.

2.1 Fundus projection image

Alignment of the OCT data relies on accurate extraction of the blood vessel points. 

Segmentation of blood vessels in OCT images is a significantly more challenging problem 

than in color fundus images due to the lower resolution and speckle noise in OCT data. To 

extract the blood vessel locations from the 3D OCT scans, we need to project the data to 2D, 

creating FPIs which show the blood vessels across the retina. To do this, we average the 

intensities along each A-scan over different regions of the retina, combining the fact that the 

vessels produce a hyperintense area in the inner retina, while their shadows produce a 

hypointense area in the outer retina.

We generate a single FPI, f(x, y), as a linear combination of FPIs created separately on the 

inner and outer retina, formed as f (x, y) = fo(x, y) + α (1 − fi(x, y)), where fo and fi are 

created by averaging voxels found in the outer and inner retina, respectively. Specifically, fo 

is the average intensity from the bottom boundary of the inner nuclear layer (INL) to 

Bruch’s membrane (BrM). To create fi, we average the pixel intensities in the ganglion cell 

and inner plexiform (GCIP) layer between 40% and 80% of the distance between the bottom 

boundary of the retinal nerve fiber layer (RNFL) to the top of the INL. Each FPI is then 

normalized to have intensities between 0 and 1. Note that the final FPI is created using the 

term 1 − fi, which changes the bright values of the inner retina to be compatible with the 

dark vessels in the outer retina. The layer boundaries needed to compute each FPI are found 

using our previously developed automated layer segmentation algorithm.11 Figure 2 shows 

an example of the FPI generation, showing fo, 1 − fi, and the resulting combined FPI f. We 

see that while fi has more noise, it has better contrast for some of the smaller vessels. We 

empirically chose a value of α = 0.5, which provides a good balance between noise and 

vessel contrast.
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2.2 Blood vessel segmentation and point extraction

Before registration of the data, we need to extract the blood vessel points from the FPIs. 

These points are extracted from a binary segmentation of the vessels. An overview of the 

process is shown in Fig. 3. To do the segmentation, we first resize each FPI to have a 

roughly isotropic size of 256 × 256 pixels. Next, we process the images by applying 

background subtraction to reduce inhomogeneity in the images, followed by using a Frangi 

filter to enhance the vessel structures and reduce the noise.12 Background subtraction was 

done by subtracting the image with the morphological closure of the image using a disk 

structuring element with a radius of 7 pixels. The resulting processed image was rescaled to 

have intensity values between 0 and 1 and then thresholded at a value of 0.09 to create a 

binary image containing the vessels. Any connected components with an area of less than 15 

pixels were removed to again filter out noisy results. To create the final segmentation, we 

applied a morphological closing with a disk structuring element with a radius of 2 pixels to 

the binary image to connect small discontinuities in the vessels. Finally, the vessel points are 

extracted from the binary skeleton of the segmentation. These skeleton points are used 

instead of the segmentation directly which both reduces the number of points used for the 

registration and provides less ambiguity for finding correspondences.

2.3 Vessel registration and lasso regression

To solve the point-based registration problem, we define our two point sets as  and 

, where  = { 1, … n} and n is the number of points. We require that the point 

correspondences are known meaning that pi and qi correspond to the same vessel point for 

every i. Since the segmentation results in two sets of points without known correspondences, 

we must first estimate the correspondences between them. To do this, we use the coherent 

point drift (CPD) algorithm, a deformable point-based registration method.5 CPD uses the 

EM algorithm to find correspondences and is quite robust to the frequent outliers and noisy 

points we see in our data. Since these correspondences may still have errors, we run the 

registration and motion correction algorithm twice, estimating correspondences using CPD 

at the start of both iterations.

While the CPD result aligns the data well, its non-rigid transformation violates the 

assumption that the transformation between OCT scans acquired from the same subject 

should be rigid, with an additional scale component to account for camera position. While 

the deformations introduced by eye motion are non-rigid, they are modeled in a separate 

way as described later. The rigid plus scale transformation allows rotation, translation, and 

scaling of the points. A point pi = (pi,x, pi,y)T from one FPI is related to a point qi = (qi,x, 

qi,y )T through the relation pi = sRqi + t where s is the scale, R is a 2 × 2 rotation matrix 

parameterized by a single rotation angle, and t is the translation.

To model the motion correction problem, we assume eye motion results in the displacement 

of a B-scan’s position relative to the previous one. This assumption is appropriate since 

images are acquired one at a time, in raster order. We denote the displacement of B-scan 

image j as γj for the first OCT scan and βj for the second. Note that we assume the same 

number of B-scan images for each scan, and thus j ∈ {1, …, nB } for both, where nB is the 
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number of B-scans. As we are concerned with motion in both the x and y plane (the axes of 

the FPI), γj and βj each have an x and y component.

To combine the registration and motion correction problems together, we look to minimize 

the following cost function

(1)

The term  γj represents the overall displacement of vessel point pi based on the 

cumulative displacement of each B-scan up to that point. Since each point may not lie 

exactly on a B-scan due to the resizing of the FPI, we use the floor operator ⌊·⌋ in the limit 

of the summation. The coefficient λ encourages displacement values to be 0 as it gets larger 

since the L1 norm induces sparsity. It is important to note that if we used a global 

displacement model instead of a cumulative one, the displacements would no longer be 

sparse. Sparsity is a desired feature for two reasons. First, eye motion tends to be abrupt 

during a scan, with infrequent, large displacements. Second, the estimation of displacements 

for both scans is rather ill-posed. A displacement in one image can be counteracted by an 

opposite displacement at the same location in the other image (e.g., if γj = −βj and s and R 

are close to identity). If no displacement truly exists at that point, the sparsity constraint will 

encourage both coefficients to be zero.

The problem of minimizing Eq. 1 is solved by iterating between solving for the 

transformation parameters and solving for the displacements until convergence, which 

usually occurs within 20 iterations. We use a value of λ = 1, empirically set with a 

preference to keep many of the coefficients set to zero. By careful inspection of Eq. 1, we 

see that by fixing the displacements and solving for s, R, and t, we have a simple least-

squares point-based registration problem. The second term can be ignored as it does not 

depend on the transformation parameters. In other words, we minimize the reformulated 

function

(2)

where  and  are the motion corrected vessel points. This minimization can be solved in 

closed form, e.g., using singular value decomposition or Procrustes alignment.13 Next, by 

fixing the transformation parameters, Eq. 1 can be rearranged such that the displacements 

are estimated by solving a lasso, or L1 regularized regression problem.14 Specifically, the 

first term can be rewritten as  where y = pi − sRqi − t, X = − [I2 ⊗ X1 −sR ⊗ 

X2], α = [γT β]T, and the x and y components of vectors are stacked such that 

. I2 is a 2 × 2 identity matrix while the design matrices X1 and X2 are n 
×|nB with a structure such that the first ⌊pi⌋ columns of row i have a value of 1 and the 

remaining columns have a value of 0. Thus, Eq. 1 reduces to

Lang et al. Page 5

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2016 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(3)

which is in the form of a lasso regression and we solve using the Glmnet software 

package.14, 15

As a final note, we use a phase correlation motion correction method both to initialize the 

displacements and to use as weights in the lasso regression.10 Since many of the smaller 

resulting displacements are due to noise, we ignore any displacement estimates smaller than 

3 pixels (≈ 35 µm). We denote the estimated initial translations of a B-scan j as  and , 

with only the x-component of the displacement estimated. To incorporate these as weights in 

the lasso regression, we modify the second term of Eq. 1 as

(4)

with Gaussian-shaped weights  and , where σ = 10. These 

weights act to reduce the lasso penalty when it takes a small value, thus reducing the sparsity 

constraint when we have confident initial estimates.

3. EXPERIMENTS AND RESULTS

To examine both the accuracy and consistency of our method, we looked at data from 26 

healthy control subjects. Both eyes of all subjects were scanned twice, with the second scan 

occurring within an hour of the first. In total, 42 of the 52 possible pairs of images were used 

(considering both eyes), with some pairs not included due to a missing acquisition or poor 

image quality. Macular OCT data was acquired using a Zeiss Cirrus scanner (Carl Zeiss 

Meditec Inc., Dublin, CA), with each scan covering a 6 × 6 mm area centered at the fovea. 

Each scan has 1024 pixels per A-scan, 512 A-scans per B-scan, and 128 B-scans. For each 

pair of scans, landmark points were manually selected on FPIs at corresponding vessel 

bifurcations and corners to generate ground truth data for exploring the accuracy of the 

registration. An average of 37 points were selected from each pair of images, with a range of 

18 to 45 points, depending on the complexity of the vessel pattern in each eye.

First, we looked at the accuracy of our method. To do this, we compared the average root 

mean square error (RMSE) of the manually selected landmark points after registration. 

Three methods of registering the data were compared: 1) alignment to the center of the 

fovea∗, 2) the proposed method without motion correction (registration only), and 3) the 

proposed method (registration plus motion correction). We also ran our method after 

replacing the automatically segmented vessel points pi and qi with the manually selected 

landmark points. This result provides both an indicator of the best possible performance for 

our method and also an estimate for how accurately the landmark points can be localized in 

an FPI. The results are shown in Table 1. Our method showed a significant improvement in 

accuracy as compared to both of the other methods when using a paired t-test (p < 0.01). 

Differences between errors when using the segmented points versus the manual points are 
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due to the accuracy of both the vessel segmentation and the correspondence estimation using 

CPD. An example showing the landmark point alignment after registration using the four 

methods is shown in Fig. 4.

An important application of our method is the measurement of retinal thicknesses in 

longitudinal data. Since the time between scans in our dataset is minimal, we expect the 

difference in thickness between them to be close to zero. To explore this, we applied a 

previously developed automated segmentation algorithm to all of the data, segmenting a 

total of eight layers.11 Looking only at the total retina thickness, we computed the average 

value within a 5 × 5 mm area centered at the fovea for each scan. The results are shown in 

Table 2, where we computed the average signed and unsigned change in thickness between 

the two successive scans. Our method was significantly better (closer to 0) than the other 

methods when looking at the unsigned values (p < 0.05). Note that we did not compare to 

the result of our method when using the manual landmark points here since the sparse nature 

of these points means we are not able to accurately localize B-scan motion (there are fewer 

landmark points than B-scan images). Thus, the thickness maps are likely to be incorrectly 

registered in areas where there are no landmark points. Looking at individual layers, we saw 

no difference when comparing the registration with and without the motion correction, but 

we did see thickness differences that were significantly closer to zero in the RNFL and GCIP 

layers when comparing the two registration methods versus fovea alignment (p < 0.05).

Finally, in Fig. 5, we show FPIs before and after registration for two subjects with each row 

showing a different subject. The uncorrected FPIs from the first and second temporal scan 

are shown in Figs. 5(a) and 5(b), respectively. The same images are shown in Fig. 5(c) and 

5(d) after motion correction and registration. Note that motion correction is applied to both 

scans, while registration is only applied to the second. Figure 5(e) shows the segmented 

boundaries from each scan after motion correction and registration overlaid on the first 

corrected FPI only. Motion artifacts are highlighted by arrows and have been corrected after 

running our algorithm.

4. CONCLUSIONS AND FUTURE WORK

We have developed a method for simultaneous registration and motion correction of 

longitudinal macular OCT data. Our method has better accuracy when registering 

longitudinal data compared to only registration, and enables more consistent thickness 

measurements between scans. While the motion correction did not show significant 

improvements when looking at specific layer thicknesses, the registration did prove to be 

important when compared against data aligned only to the fovea. The cohort of data 

included in our experiments was a healthy one with a minimal amount of motion artifacts. If 

scans with motion were explicitly included, we expect to see more improvement within each 

layer when using our method. A critical step for the registration of the data is the 

segmentation and extraction of the blood vessel points. Currently, this step leads to many 

points without correspondences, depending on the contrast of the vessels in each FPI. Thus, 

in future work, we will continue work on improving the segmentation of the vessels. There 

are also several parameters in the method, including the sparsity coefficient λ, and weight 

parameter σ, that need to be estimated in a more rigorous cross-validation framework. While 
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the value of λ seems to be rather sensitive for accurately estimating motion, the value of σ is 

much more robust. Finally, we hope to look at simulated deformation experiments to further 

validate our methodology, in addition to running the method on data from non-healthy 

patients where motion may be more severe.
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Figure 1. 
Overview of the algorithm for motion correction and registration of OCT data from two 

visits. The final iterations between point-based registration and motion correction are carried 

out until convergence. Note that correspondences are estimated for every point and only a 

reduced set are shown for display purposes.
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Figure 2. 
FPIs generated from (a) the outer retina, (b) the inner retina, and (c) their combined FPI.
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Figure 3. 
The processing pipeline for segmenting and extracting blood vessel points from the FPI.
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Figure 4. 
(Top row) FPIs from two successive scans with corresponding manually selected landmark 

points overlaid. (Bottom row) Landmark points from Scan 2 overlaid on Scan 1 after 

registration using different methods. Manual points are marked as red circles and registered 

points are marked as black ×’s.
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Figure 5. 
FPIs (a, b) before and (c, d) after motion correction and registration. Motion artifacts are 

indicated by arrows. In (e), segmented blood vessel points from the first (red) and second 

(green) scans are overlaid.
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Table 1

Root mean square error (μm) of the manually selected blood vessel landmark positions after registration using 

different methods. Standard deviations are in parentheses.

Fovea alignment Rigid registration
Rigid reg. +

motion correction
Proposed using
manual points

59.0 (30.5) 38.3 (19.3) 29.7 (10.8) 19.2 (3.3)
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Table 2

Average signed and unsigned difference in total retinal thickness (μm). Standard deviations are in parentheses.

Fovea centered Rigid registration
Rigid reg. +

motion correction

Signed −0.10 (0.82) −0.08 (0.55) −0.14 (0.46)

Unsigned 0.67 (0.48) 0.45 (0.34) 0.37 (0.31)
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