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Sudden oak death, caused by Phytophthora ramorum, has killed
millions of oak and tanoak in California since its first detection in
1995. Despite some localized small-scale management, there has
been no large-scale attempt to slow the spread of the pathogen in
California. Here we use a stochastic spatially explicit model param-
eterized using data on the spread of P. ramorum to investigate
whether and how the epidemic can be controlled. We find that
slowing the spread of P. ramorum is now not possible, and has
been impossible for a number of years. However, despite extensive
cryptic (i.e., presymptomatic) infection and frequent long-range
transmission, effective exclusion of the pathogen from large parts
of the state could, in principle, have been possible were it to have
been started by 2002. This is the approximate date by which suffi-
cient knowledge of P. ramorum epidemiology had accumulated for
large-scale management to be realistic. The necessary expenditure
would have been very large, but could have been greatly reduced
by optimizing the radius within which infected sites are treated and
careful selection of sites to treat. In particular, we find that a dy-
namic strategy treating sites on the epidemic wave front leads to
optimal performance. We also find that “front loading” the budget,
that is, treating very heavily at the start of the management pro-
gram, would greatly improve control. Our work introduces a frame-
work for quantifying the likelihood of success and risks of failure of
management that can be applied to invading pests and pathogens
threatening forests worldwide.
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Introductions of new pathogens into previously uncolonized
areas pose threats to trees in natural ecosystems, commercial

woodlands, and urban environments. Rates of introduction are
increasing (1), driven by changing climate (2) and altered patterns
of travel and trade (3). Emerging epidemics cause direct economic
loss from death and restricted growth of trees grown for timber
and horticultural use (4). Other major impacts occur when sus-
ceptible trees play critical roles in ecosystem services (5).
Successful control of epidemics involves matching the scale of

management with the inherent scale of spread (6). Early detection
and timely removal of affected trees from a small number of newly
infected sites soon after initial introduction(s) can prevent epi-
demics (7). Routine detection and control of emerging pathogens
of woodland trees, however, are prone to significant logistical and
epidemiological constraints. Detection and reporting can be delayed
by incomplete and infrequent sampling of large areas of susceptible
hosts (8), with broad pathogen host ranges often increasing the area
that must be surveyed. Infected sites may be inaccessible or under
multiple ownership (9). Long incubation periods for some patho-
gens mean that disease remains cryptic while infection continues to
spread (10). Spread can also be over long distances (11), with ex-
tensive creation of new foci.
Difficulties in detection and management have undoubtedly

contributed to high-profile failures of large-scale control programs
for a number of tree diseases, including chestnut blight (12), white
pine blister rust (13), Dutch elm disease (10), and citrus canker
(14). Identifying when, where, why, and how to manage emerging
epidemics at regional, state, or countrywide scales, and even whether

or not it is feasible to do so, remains a major challenge (15).
However, understanding whether management can eradicate a
pathogen or restrict its spread to uninvaded locations is critical in
identifying cost-effective control strategies. We show here how
mathematical modeling can be used to do this, using sudden oak
death (SOD) in California (CA) as an example.
SOD, caused by the oomycete Phytophthora ramorum (PR), has

killed millions of oak (Quercus spp.) and tanoak (Notholithocarpus
densiflorus) in CA since first detection in 1995 (16). The epidemic
has been intensively monitored (17), and much is now known
about PR epidemiology. However, questions remain about the
feasibility of statewide control, introducing uncertainty and con-
fusion into identifying regional management objectives. The epi-
demic also provides an opportunity for retrospective analyses of
how effective control scenarios could have been, had they been
introduced at different stages in the epidemic.
Here we extend a previously tested, spatially explicit, stochastic,

statewide model, resolved to 250 × 250-m resolution (18), to com-
pare the range of outcomes for different management scenarios,
addressing the following questions:

Could statewide prevention of continued pathogen spread be
successful were it to start now, given the current size of the
epidemic and the budget potentially available for treatment?

Could prevention of pathogen spread ever have been success-
ful by management starting after the pathogen was sufficiently
well characterized for control to have been realistic?

How could local and statewide deployment of management
have been optimized?

The analyses also address the following generic questions about
epidemic control under uncertainty:

Significance

We use sudden oak death in California to illustrate how math-
ematical modeling can be used to optimize control of established
epidemics of invading pathogens in complex heterogeneous
landscapes. We use our statewide model—which has been pa-
rameterized to pathogen spread data—to address a number of
broadly applicable questions. How quickly must management
start? When is an epidemic too large to prevent further spread
effectively? How should local treatment be deployed? How does
this depend on the budget and level of risk aversion? Where
should treatment be targeted? How should expenditure be
balanced on detection and treatment? What if the budget
changes over time? The underlying principles are important for
management of all plant disease epidemics in natural ecosystems.
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How soon must control start for it to be effective?

When is an epidemic so large that control is impossible?

Which sites should be targeted when there are insufficient
resources to treat all infected sites?

How extensively should sites be treated?

How does this depend on the budget and risk aversion?

How can costs of detection and treatment be balanced?

What is the effect of a budget that changes over time?

Over 100 tree and forest shrub species are known to be suscep-
tible to PR infection (16). First reported in 1995 in coastal regions
near San Francisco (19), the pathogen is transmitted locally via rain
splash and over long distances via storms and human-mediated
transport. Subsequent estimates of the initial introduction to natural
ecosystems suggest that the first invasion occurred around 1990
(16). PR has spread widely in coastal CA since then: Coastal forests
from southern Monterey County up to northern Humboldt County
are affected. Billions of tanoak and oak trees, covering over
20 million ha of land, are potentially threatened (20). There are also
large and growing epidemics in several countries in Europe (21).
The only treatment shown to be effective in reducing pathogen

prevalence at the landscape scale is removal of host species (22),
as has been practiced in the United Kingdom for a number of
years (21). In North America, however, large-scale management
has not been attempted. Nevertheless, an outbreak of SOD in
Curry County, Oregon, has remained relatively small in compar-
ison with CA due to active management by host removal since first
detection in 2001 (23). The attempted eradication of PR in Ore-
gon in the very earliest stage of that outbreak was only possible
because the potential impacts were already clear from CA, and
because its epidemiology was beginning to be characterized (22).
We consider 2002 to be the earliest that statewide attempts to
prevent further spread of PR in CA could, in principle, have been
attempted. This was 1 y after the pathogen was first named (24),
and the year in which the pathogen first came under European
Community emergency control measures (21).

Results
Pathogen Spread Without Management. Our analyses predict that
spread of PR within CA will accelerate after 2020 if measures to
slow the spread are not attempted. This will be driven by the
pathogen reaching the northwestern coast, where large regions
of continuous host and suitable weather conditions facilitate
spread (18). The estimated area infected by 2030 in CA is around
14,000 km2, a nearly 10-fold increase from the predicted ∼1,550 km2

infected in 2014 (Fig. 1B and Movie S1). However, all estimates of
future epidemic size reflect the inherent variability of pathogen
spread (Fig. 1C), largely driven by the timing of long-distance

dispersal to the northwest but also reflecting stochastic variability
in pathogen bulking up and dispersal driven by fluctuating envi-
ronmental drivers in a heterogeneous host landscape. A 95%
prediction interval for the area infected by 2030 ranges from
∼7,600 to ∼19,600 km2. Acceleration in spread means that an ever-
increasing area is expected to be infected but in which the path-
ogen remains undetected. By 2030, we predict on average
∼4,000 km2 would have been colonized too recently to show crown
mortality symptoms detectable via an aerial survey.

Slow the Spread Management Starting 2014. Initially, we consider
performance of a baseline management strategy that removes PR-
susceptible and -infected hosts within a radius of 375 m of de-
tected foci of infection. Treated sites are randomly selected from
the set of sites known to contain infection until a fixed budget per y
is exhausted. Control starting in 2014 under this scenario has very
little effect on the area lost by 2030, that is, the area ever affected
by either disease or host removal (Fig. 2 and Movie S2). Even a
very large budget allowing up to 200 km2 to be treated annually—
which we estimate would cost at least 100 million US dollars
(USD) per y (SI Appendix)—has almost no effect on spread. The
California Department of Forestry and Fire Protection (Cal Fire)
allocated just over 90 million USD in fiscal year 2015–2016 to
improve forest management for carbon sequestration and to im-
plement drought mitigation, suggesting this level of expense is at
least within the bounds of possibility. However, multiple and
sometimes competing objectives must be addressed by Cal Fire,
meaning that allocation of the full budget to slowing the spread of
a single pathogen is very unlikely. Given the almost imperceptible
effect on the epidemic of even such a large amount of manage-
ment, we consider prevention of spread at the statewide scale to no
longer be possible.

Slow the Spread Management Starting Before 2014. Were an at-
tempt to restrict the natural spread of PR to have started earlier
than 2014, it could have been more successful, although the req-
uisite budget increases rapidly as the start date becomes later (Fig.
3A). Successful management can make it impossible to spend the
full budget as the epidemic comes under control, and so the total
area managed by 2030, which corresponds to the amount spent on
treatment, is nonmonotone in budget and starting year (Fig. 3B).
The distribution of area lost (Fig. 3C) again reveals the wide
variability in outcome, a pattern that is replicated for the full range
of budgets and starting years we considered.

Optimizing the Radius of Treatment.We consider how performance
of management is affected by the treatment radius within which
susceptible and infected hosts are removed around each detected
site, focusing initially on a default budget that allows removal of
up to 50 km2/y. Unless otherwise stated, henceforth all results
relate to management starting in 2002, the first date we consider
control to have been realistic. Too small a treatment radius does

Fig. 1. Underlying epidemiological model and spread when there is no control. (A) Epidemiological model. (B) Median predicted area infected when
management is not attempted, distinguishing symptomatic and cryptic infection. (C) Distribution of infected area without management, showing the variability
in the area lost to disease. Shading shows the deciles and 5th and 95th percentiles; the white curve marks the median.
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not account sufficiently for cryptic infection around each detected
focus, whereas at too large a treatment radius, too many healthy
trees are unnecessarily removed and/or an increased proportion of
other infection remains untreated because of the limited budget
(Fig. 4A). There is therefore an optimum in the area lost as the
treatment radius is altered, at least if the objective is phrased in
terms of minimizing the average epidemic size. In particular, at the
optimal radius of 187.5 m, the median area lost is ∼6,800 km2

(95% prediction interval ∼2,600 to ∼16,200 km2; compare median
of ∼7,900 km2 with 95% interval ∼1,100 to ∼17,100 km2 at the
375-m baseline).

Effect of Budget and Risk Aversion. The optimal treatment radius
depends upon the budget. The more limited the resources, the
more strongly treatment should focus on locations known to be
infected by selecting a shorter treatment radius around each de-
tected site, because this allows a larger number of distinct foci to be
managed (Fig. 4B). Optimizing the treatment radius at different
percentiles of the distribution of area lost reveals that shorter radii
are also promoted when there is a high level of risk aversion (Fig.
4C). Again, a smaller treatment radius means that more known
disease foci will be removed, which reduces the risk of failing to
treat a site that goes on to cause many secondary infections.

Optimizing the Subset of Locations to Treat. We have assumed that
foci to treat are selected randomly from the set of sites known to
contain currently uncontrolled infection, analogous to independent

action by stakeholders throughout infected areas. The selection of
sites to treat can be improved (25–28). Logistical constraints sur-
rounding movement of machinery and access to land make tackling
highly infected regions an attractive default. However, this “in-
fected” strategy (Movie S3) performs worse in terms of epidemic
impact than the default “random” strategy (Fig. 5A and Movie S4).
We considered a range of other possibilities, which in order of
performance were focusing control on regions with large areas of
host, irrespective of disease status (“host” strategy) (Movie S5),
with high local rates of spread [“hazard” strategy (Movie S6), tar-
geting areas with high basic reproductive number; R0 (29)], or with
large areas currently uninfected (“susceptible” strategy) (Movie S7).
However, the best-performing strategy we tested targets local

control at and ahead of the northerly wave front of epidemic
spread (“wave-front” strategy; Fig. 5A and Movie S8). This
strategy reduces predicted area lost by 2030 to ∼2,400 km2 (95%
interval 2,600–7,400 km2) at an optimal radius of 362.5 m
(compare ∼6,800 km2 with interval 2,600–16,200 km2 at the
optimal radius 187.5 m under the random strategy starting 2002)
(Fig. 5 A and D). The increase in optimal treatment radius for
the better-performing strategies was consistent across all priori-
tizations we tested. Selecting sites for management more effec-
tively allows more extensive treatment around each one, because
sites that have a greater impact are then treated, reducing the
future spread of the epidemic.
The relative performance at the optimal treatment radius of

the six strategies was consistent across all control budgets (Fig.

Fig. 2. Extensive treatment starting in 2014 does not contain the epidemic. (A) Median total area affected by infection or host removal when there is
sufficient budget to treat up to 200 km2/y, starting 2014 (red), compared with no management (blue). (B) Distributions of area affected by infection or host
removal in 2030. (C) Predicted spread of infection for statewide management with budget allowing up to 200 km2/y to be controlled (control starting 2014).

Fig. 3. Management efficacy depends on the starting date and the available budget. (A) Median area affected by infection or host removal by 2030.
(B) Median area removed by treatment by 2030. (C) Area lost by 2030 as a function of the budget, for treatment that starts in 2002, showing the distribution
of possible epidemic impacts. (Inset) Response to the year in which treatment begins, for a fixed budget that allows up to 50 km2/y to be treated.
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5B) and starting dates (Fig. 5C) we considered, emphasizing
that the ordering of these strategies is generic, at least for this
epidemic. We note, however, that the performance of even the
wave-front strategy degrades for control that starts later in the
epidemic. Management starting in 2014 of up to 50 km2/y leads
to an average area lost of >7,000 km2 by 2030. The epidemic
remains out of control even when treating more effectively, and
the ostensibly large reduction in area lost under the wave-front
strategy starting 2014 corresponds only to a 7-y delay relative to
not treating at all (SI Appendix, Fig. S8). Such poor performance
even with the optimal strategy and comparatively large budget
(equivalent to at least 25 million USD per y) reiterates our
earlier contention that the epidemic is uncontrollable at the
statewide scale for management starting today.

Budgets That Vary over Time. Resources that can be devoted to
control are set by policymakers in response to a number of com-
plex and time-dependent drivers, including public opinion, other
demands on a limited budget for plant health, and the perceived
and anticipated success of control. We therefore assessed manage-
ment strategies for which the budget varies over time but that ensure
the total budget over the period 2002–2030 is fixed (SI Appendix,
Fig. S1A). It is better to devote larger resources to treatment early in
the epidemic, particularly if any unused budget can be carried over
to subsequent years, because the net rate of growth of the epidemic
increases with its size, and so earlier treatment reduces the future
growth rate (28).

Accounting for the Cost of Detection. Limited resources for man-
agement must be split between pathogen detection and treat-
ment (30). Results thus far are contingent on extensive statewide
surveys, repeated yearly. In practice, the cost of this would re-
duce the amount remaining to be spent on treatment. We
therefore tested the effect of assuming the area that can be
surveyed for disease symptoms is proportional to the fraction of
the budget that is spent on detection, with the remainder de-
voted to management (SI Appendix, Fig. S1B). We find an op-
timum irrespective of the year treatment starts, and that a larger
proportion of the budget should be devoted to detection for
interventions that start earlier, because smaller amounts of treat-
ment are then required and detection is more difficult when the
epidemic is smaller.

Discussion
Deciding whether and how to control invasive pathogens are two
of the principal challenges in epidemiology (15). Our results
show how a stochastic, spatially explicit, epidemiological model
can be used to integrate the current state of knowledge about
the pathogen with detailed information on host topology and

environmental drivers to predict the likely effects of manage-
ment strategies. The model simulates epidemic spread through a
large heterogeneous host landscape. It couples fine spatial res-
olution of 250 × 250 m for pathogen transmission with the facility
to address local and statewide control of the advancing disease,
allowing for spatial targeting of control within a limited budget.
The model has been parameterized using data for PR spread in
CA and successfully used to predict patterns of statewide spread
(18). However, this is the first study, to our knowledge, to use a
plant disease model calibrated to pathogen spread data and that
predicts spread over such a large spatial scale to understand
management. A version of the model has also been calibrated
and validated for spread in the United Kingdom, in which con-
text it is being used by plant health policymakers to inform
management strategies, particularly the extent of host removal
around infected larch stands (31).
We distinguish three phases of invasion and spread for an

emerging epidemic.

Phase 1: initial invasion that may go undetected and undiag-
nosed for some time and in some places; frequently, little is
known about the causal agent and the potential for damage.

Phase 2: the epidemic continues and is perceived to be a po-
tentially serious threat; knowledge about the causal agent is
sparse but there are sufficient data to construct models to
begin to assess different strategies.

Phase 3: the pathogen has spread far enough that eradication
is no longer possible; local containment may still be an option.

Our analyses show that statewide action to eradicate or even
slow the spread of PR is no longer feasible, even with a sub-
stantial budget, indicating that the epidemic in CA is now firmly
in phase 3 (Figs. 1 and 2). Shifting management resources to
restoring degraded forests and protecting ecological function at
smaller scales would be more beneficial than attempting statewide
control. Prevention of spread could, however, have been feasible
starting earlier, with substantial losses prevented by earlier treat-
ment (Fig. 3 A and B), indicating that the epidemic was still in
phase 2 in 2002. However, the cost in 2002 would have been very
high, and practical implementation would have required un-
precedented cooperation among agencies and landowners.
The analyses for SOD in CA illustrate how epidemiological

principles could be translated into practical application. One
important principle is matching the scale of treatment with the
inherent spatial and temporal scales of pathogen spread to
achieve effective management (6, 15, 25–27, 32). Characteriza-
tion of epidemic scales is complicated, as the epidemic advances
through heterogeneous host populations subject to variability in

Fig. 4. Optimizing the local deployment of treatment. (A) Area lost by 2030 when treating up to 50 km2/y (starting 2002). Shading shows the deciles and 5th
and 95th percentiles; the white curve marks the median. (B) The distributions of area lost when treating 25 km2/y (Top Left), 75 km2/y (Top Right), and
100 km2/y (Bottom Left). The median area lost when treating using the optimal radius (minimizing the median) is shown (Bottom Right). (C) Area lost at
optimal radius as a function of the percentile of the distribution of area lost that is optimized. (Inset) Optimal radius by percentile.
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environmental drivers. Nevertheless, optimal scenarios can be de-
rived for the median response, for example, the treatment radius
that minimizes the impact of disease. Although optimal control
radii have been derived using models at small spatial scales (7, 33),
this is the first demonstration, to our knowledge, that the idea
extends to landscape-scale control of plant disease within a fixed
budget. Impact is assessed by totaling the area lost from disease
and from removal of healthy trees around infected sites. However,
the metric could readily be extended to a range of objective
functions with different weightings for the individual components
depending on perceived costs and benefits by different stake-
holders (7, 34). Treatment radii can also be adjusted to allow for
different degrees of risk aversion (35), for example, selecting the
radius that corresponds to the 5th percentile (high risk aversion)
through to the 95th percentile (low risk aversion) (compare Fig. 4).
Our results confirm that it would have been possible, in prin-

ciple, to bring the epidemic under control by early removal of
infected hosts. In practice, however, selection of sites for treat-
ment within a limited budget is problematic. We considered a
range of possibilities from random selection of sites for treatment,
analogous to independent action by stakeholders in infected areas,
through to highly structured centralized selection of sites accord-
ing to model predictions (28, 36), the first assessment, to our
knowledge, of such a prioritization for a plant disease. Model-
informed selection proved superior to randomly choosing sites in

terms of minimizing areas lost. The impacts of disease and treat-
ment successively decreased (Fig. 5) by prioritizing areas where
there are large host populations, where the potential for rapid
local spread is high [i.e., selecting regions of high hazard (15, 18,
29)], and where the density of susceptible hosts available for in-
fection is high. However, for the combination of host distribution,
pathogen dispersal, epidemic progress, and environmental suit-
ability for SOD in CA, local control at and ahead of the northerly
wave front proved most effective (Fig. 5).
Finding and mapping newly infected sites are expensive for an

epidemic spreading through a heterogeneous host landscape in
which access is limited by terrain, private ownership, and resources
(8). Previous work has shown how to optimize the balance be-
tween detection and treatment to maximize the cost-effectiveness
when there is a shared budget for detection and treatment, but has
focused exclusively on simple theoretical models (37, 38). Here
we present the first test, to our knowledge, of the tradeoff be-
tween probability of detection and deployment of treatment in
a realistic landscape. Our results show that there are optima
that balance the expenditure on the identification of newly
infected sites against the remaining resources available to treat
the sites.
The conventional approach to dealing with emerging epidemics

involves scaling up of the budget for control as the perception of
the risk from the epidemic becomes more widely understood. This

Fig. 5. Optimizing the set of locations to treat. (A) The median area lost by 2030 as a function of treatment radius, comparing strategies to prioritize disease
foci for treatment. Management starts in 2002, with sufficient budget to treat 50 km2/y. Circles show the optimal radius and minimum median area lost for
each strategy. (B) Response of area lost to the budget, independently optimizing the radius for each strategy at each budget. In all cases, control starts in
2002. (C) The area lost by 2030 as a function of the year in which treatment starts, for treatment of up to 50 km2/y, again optimizing the radius of treatment
for each strategy for each year. (D) Maps showing the risk of infection in 2030 with no control (Left), treating with random selection of sites from the set of
sites known to contain untreated infected (Middle), and for control, focusing treatment at and beyond the northward moving wave front of the epidemic
(Right). Both treatment strategies are shown at their optimal radius, for treatment starting in 2002 and with sufficient budget to treat 50 km2/y.
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was certainly the case during the Dutch elm disease epidemic in
the United Kingdom in the 1970s (10) and also during the 50-y
attempt to control white pine blister rust in the United States (13).
Indeed, for SOD, the budget for control of the isolated epidemic
in southwestern Oregon increased over time as the outbreak be-
came larger (23). We show here, however, how front loading of
the budget with greater expenditure in the earlier years is likely to
be markedly more effective in bringing epidemics under control,
increasing long-term cost-efficiency. However, in practice it might
be difficult for a policymaker to justify a very large expenditure on
an epidemic that currently remains small, particularly because
estimates of future sizes are often subject to considerable un-
certainty early in epidemics (39).
For SOD in CA, our analyses show—for the first time, to our

knowledge—that statewide action to slow epidemic spread has not
been feasible for some years. Management efforts to reduce im-
pacts at local scales must now be the focus. However, we have
shown how management starting 2002 could, in principle, have
been successful. Our work illustrates how mathematical models
can be used to optimize and assess the likely feasibility of man-
agement of established plant disease, particularly when there is a
limited budget. It therefore complements a body of work on foot-
and-mouth disease (25–27, 36), which also focuses on model-
based optimization of large-scale management for an epidemic
with long-distance dispersal. Particular challenges for SOD,
however, include the broad host range of the pathogen, difficulties

surrounding detection leading to very extensive cryptic infection,
and the lack of any realistic control options other than host removal
(e.g., no vaccination). The challenge—but also the opportunity—
presented by increasing rates of introductions of plant pathogens
(2, 40) and increasing acceptance of models by policymakers (31) is
now to more routinely use the insights from models in the early
stages of invading epidemics, when carefully optimized manage-
ment can still make a difference.

Materials and Methods
Our stochastic epidemic model (Fig. 1A) tracks the density of PR-infected host
across CA at 250 × 250-m spatial resolution, extending the model developed
by Meentemeyer et al. (18) to include detection and treatment. The model
(18) was parameterized using data on pathogen spread at local and state-
wide scales and validated by predicting the infection status of positive and
negative sites surveyed by the California Oak Mortality Task Force (41). The
AUC (area under the receiver operating curve) value was 0.89, indicating
very good performance. The model allows for spatial heterogeneity in host
density, multiple host species with different susceptibility and infectivity
(16), short- and long-range dispersal (42), and environmental drivers to af-
fect transmission (19). Further details are in SI Appendix.

ACKNOWLEDGMENTS.We thank Richard Stutt, Stephen Parnell, andMatthew
Castle for discussions; and Mark Calleja for administering a computing
cluster. We acknowledge funding from the BBSRC, DEFRA, NSF, USDA, and
Gordon and Betty Moore Foundation.

1. Stenlid J, Oliva J, Boberg JB, Hopkins AJM (2011) Emerging diseases in European forest
ecosystems and responses in society. Forests 2(2):486–504.

2. Sturrock RN, et al. (2011) Climate change and forest diseases. Plant Pathol 60(1):
133–149.

3. Brasier CM (2008) The biosecurity threat to the UK and global environment from
international trade in plants. Plant Pathol 57(5):792–808.

4. Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic
costs associated with alien-invasive species in the United States. Ecol Econ 52(3):
273–288.

5. Boyd IL, Freer-Smith PH, Gilligan CA, Godfray HCJ (2013) The consequence of tree
pests and diseases for ecosystem services. Science 342(6160):1235773.

6. Gilligan CA, Truscott JE, Stacey AJ (2007) Impact of scale on the effectiveness of dis-
ease control strategies for epidemics with cryptic infection in a dynamical landscape:
An example for a crop disease. J R Soc Interface 4(16):925–934.

7. Cunniffe NJ, Stutt ROJH, DeSimone RE, Gottwald TR, Gilligan CA (2015) Optimising
and communicating options for the control of invasive plant disease when there is
epidemiological uncertainty. PLoS Comput Biol 11(4):e1004211.

8. Parnell S, Gottwald TR, Riley T, van den Bosch F (2014) A generic risk-based surveying
method for invading plant pathogens. Ecol Appl 24(4):779–790.

9. Epanchin-Niell RS, et al. (2010) Controlling invasive species in complex social landscapes.
Front Ecol Environ 8(4):210–216.

10. Tomlinson I, Potter C (2010) ‘Too little, too late’? Science, policy and Dutch elm dis-
ease in the UK. J Hist Geogr 36(2):121–131.

11. Brown JKM, Hovmoller MS (2002) Aerial dispersal of pathogens on the global and
continental scales and its impact on plant disease. Science 297(5581):537–541.

12. Freinkel S (1997) American Chestnut: The Life, Death, and Rebirth of a Perfect Tree
(Univ of California Press, Oakland, CA).

13. Maloy OC (1997) White pine blister rust control in North America: A case history.
Annu Rev Phytopathol 35:87–109.

14. Gottwald TR (2007) Citrus canker and citrus huanglongbing, two exotic bacterial
diseases threatening the citrus industries of the Western Hemisphere. Outlooks Pest
Manag 18:274–279.

15. Cunniffe NJ, et al. (2015) Thirteen challenges in modelling plant diseases. Epidemics
10:6–10.

16. Rizzo DM, Garbelotto M, Hansen EM (2005) Phytophthora ramorum: Integrative re-
search and management of an emerging pathogen in California and Oregon forests.
Annu Rev Phytopathol 43:309–335.

17. Meentemeyer RK, Dorning MA, Vogler JB, Schmidt D, Garbelotto M (2015) Citizen
science helps predict risk of emerging infectious disease. Front Ecol Environ 13(4):
189–194.

18. Meentemeyer RK, et al. (2011) Epidemiological modeling of invasion in heteroge-
neous landscapes: Spread of sudden oak death in California (1990–2030). Ecosphere
2(2):1–24.

19. Rizzo DM, Garbelotto M, Davidson JM, Slaughter GW, Koike ST (2002) Phytophthora
ramorum as the cause of extensive mortality of Quercus spp. and Lithocarpus den-
siflorus in California. Plant Dis 86(3):205–214.

20. Lamsal S, et al. (2011) Spatial estimation of the density and carbon content of host
populations for Phytophthora ramorum in California and Oregon. For Ecol Manage
262(6):989–998.

21. Brasier C, Webber J (2010) Plant pathology: Sudden larch death. Nature 466(7308):
824–825.

22. Hansen EM, et al. (2008) Epidemiology of Phytophthora ramorum in Oregon tanoak
forests. Can J For Res 38(5):1133–1143.

23. Peterson EK, Hansen EM, Kanaskie A (2015) Temporal epidemiology of sudden oak
death in Oregon. Phytopathology 105(7):937–946.

24. Werres S, et al. (2001) Phytophthora ramorum sp. nov., a new pathogen on Rhodo-
dendron and Viburnum. Mycol Res 105(10):1155–1165.

25. Keeling MJ, et al. (2001) Dynamics of the 2001 UK foot and mouth epidemic: Sto-
chastic dispersal in a heterogeneous landscape. Science 294(5543):813–817.

26. Tildesley MJ, et al. (2006) Optimal reactive vaccination strategies for a foot-and-
mouth outbreak in the UK. Nature 440(7080):83–86.

27. Tildesley MJ, Bessell PR, Keeling MJ, Woolhouse MEJ (2009) The role of pre-emptive
culling in the control of foot-and-mouth disease. Proc Biol Sci 276(1671):3239–3248.

28. Epanchin-Niell RS, Hastings A (2010) Controlling established invaders: Integrating
economics and spread dynamics to determine optimal management. Ecol Lett 13(4):
528–541.

29. Tildesley MJ, Keeling MJ (2009) Is R(0) a good predictor of final epidemic size: Foot-
and-mouth disease in the UK. J Theor Biol 258(4):623–629.

30. Epanchin-Niell RS, Haight RG, Berec L, Kean JM, Liebhold AM (2012) Optimal sur-
veillance and eradication of invasive species in heterogeneous landscapes. Ecol Lett
15(8):803–812.

31. DEFRA (2014) Tree health management plan. Available at https://www.gov.uk/
government/publications/tree-health-management-plan.

32. Thompson RN, Cobb RC, Gilligan CA, Cunniffe NJ (2016) Management of invading
pathogens should be informed by epidemiology rather than administrative bound-
aries. Ecol Modell 324:28–32.

33. Parnell S, Gottwald TR, Gilligan CA, Cunniffe NJ, van den Bosch F (2010) The effect of
landscape pattern on the optimal eradication zone of an invading epidemic.
Phytopathology 100(7):638–644.

34. Marsot M, Rautureau S, Dufour B, Durand B (2014) Impact of stakeholders influence,
geographic level and risk perception on strategic decisions in simulated foot and
mouth disease epizootics in France. PLoS One 9(1):e86323.

35. Tildesley MJ, Smith G, Keeling MJ (2012) Modeling the spread and control of foot-
and-mouth disease in Pennsylvania following its discovery and options for control.
Prev Vet Med 104(3–4):224–239.

36. Keeling MJ, Woolhouse MEJ, May RM, Davies G, Grenfell BT (2003) Modelling vac-
cination strategies against foot-and-mouth disease. Nature 421(6919):136–142.

37. Bogich TL, Liebhold AM, Shea K (2008) To sample or eradicate? A cost minimization
model for monitoring and managing an invasive species. J Appl Ecol 45(4):1134–1142.

38. Ndeffo Mbah ML, Gilligan CA (2010) Balancing detection and eradication for control
of epidemics: Sudden oak death in mixed-species stands. PLoS One 5(9):e12317.

39. Neri FM, Cook AR, Gibson GJ, Gottwald TR, Gilligan CA (2014) Bayesian analysis for
inference of an emerging epidemic: Citrus canker in urban landscapes. PLoS Comput
Biol 10(4):e1003587.

40. Roy BA, et al. (2014) Increasing forest loss worldwide from invasive pests requires new
trade regulations. Front Ecol Environ 12(8):457–465.

41. Meentemeyer RK, Anacker BL, Mark W, Rizzo DM (2008) Early detection of emerging
forest disease using dispersal estimation and ecological niche modeling. Ecol Appl
18(2):377–390.

42. Filipe JAN, et al. (2012) Landscape epidemiology and control of pathogens with
cryptic and long-distance dispersal: Sudden oak death in northern Californian forests.
PLoS Comput Biol 8(1):e1002328.

Cunniffe et al. PNAS | May 17, 2016 | vol. 113 | no. 20 | 5645

EC
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1602153113/-/DCSupplemental/pnas.1602153113.sapp.pdf
https://www.gov.uk/government/publications/tree-health-management-plan
https://www.gov.uk/government/publications/tree-health-management-plan

