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Natural odors typically consist of many molecules at different
concentrations. It is unclear how the numerous odorant molecules
and their possible mixtures are discriminated by relatively few
olfactory receptors. Using an information theoretic model, we
show that a receptor array is optimal for this task if it achieves two
possibly conflicting goals: (i) Each receptor should respond to half
of all odors and (ii) the response of different receptors should be
uncorrelated when averaged over odors presented with natural
statistics. We use these design principles to predict statistics of the
affinities between receptors and odorant molecules for a broad
class of odor statistics. We also show that optimal receptor arrays
can be tuned to either resolve concentrations well or distinguish
mixtures reliably. Finally, we use our results to predict properties
of experimentally measured receptor arrays. Our work can thus be
used to better understand natural olfaction, and it also suggests
ways to improve artificial sensor arrays.

olfaction | sensing | natural statistics | information theory |
molecular recognition

Discrimination of olfactory signals occurs in a high-dimensional
space of odor stimuli in which a large number of distinct mol-

ecules and their mixtures can be distinguished by a much smaller
number of receptors (1–3). For example, humans have about 300
distinct olfactory receptors (4), which can sense at least 2,100
odorant molecules (5), and the real number might be much larger
(1). Moreover, humans can differentiate between mixtures of up
to 30 odorants (6). Such remarkable molecular discrimination is
thought to use a combinatorial code (7, 8), where typical odorant
molecules bind to receptors of multiple types (1, 3). Each receptor
type is expressed in many cells (9), and the information from all
receptors of the same type is accumulated in corresponding glo-
meruli in the olfactory bulb (10, 11) (see Fig. 1A). The activity of a
single glomerulus is thus the total signal of the associated receptor
type, so the information about the odor is encoded in the activity
pattern of the glomeruli (11, 12). This activity pattern is inter-
preted by the brain to learn about the composition and the con-
centration of the inhaled odor. We here study how receptor arrays
can maximize the transmitted information.
It is known (13, 14) that the input−output characteristics of

sensory apparatuses of many organisms are tailored to the sta-
tistics of the organism’s natural environment to maximize in-
formation transmission. For example, in the visual circuit of the
fly, the input−output relationship of neurons is matched to the
cumulative distribution of the input distribution (13). Similar
observations have since been made in many sensory systems (14,
15) and even in transcriptional regulation (16). In all these cases,
the distinguishable outputs of the sensory system must be dedi-
cated to equal parts of the input distribution, which is known as
Laughlin’s principle (13) or histogram equalization (17). In-
tuitively, more of the response range is dedicated to common
stimuli, at the expense of less frequent stimuli (13).
Similarly, the binding affinities of olfactory receptors might

reflect the natural statistics of odors in an organism’s environ-
ment. Odors vary across environments and differ in both their
frequency and composition (18). For example, some molecules
might frequently appear together because they originate from
the same source, whereas others are rarely found in the same

odor. Additionally, some odors are more important to recognize
than others, which corresponds to considering an increased fre-
quency for these odors. Together, the frequencies and correla-
tions constitute the natural olfactory scene.
It is not clear how olfactory receptors can account for natural

odor statistics. Merely dedicating more receptors to common
odors is not optimal, given the small number of available re-
ceptors and the many-to-many relationship between receptors
and odors. Further, the value of a receptor is strongly dependent
on how it complements the other receptors in the array; many
“good” receptors can still create a poor array. Finally, the con-
centrations of molecules composing an odor can vary widely.
Odors need to be distinguished in both quality and quantity;
hence receptors must vary in both what molecules they respond
to and how strongly they do this. Given the statistics of an ol-
factory scene, what combination of odorants should different
receptors in an array respond to?
We use an information theoretic approach to quantify how

well a receptor array is matched to given odor statistics. We
generalize Laughlin’s principle to the high-dimensional case and
show that optimal receptor arrays should obey two general
principles: (i) Each receptor should be active half the time when
odors are presented with natural statistics. (ii) The activities of
any pair of receptors should be uncorrelated when averaged over
all odors presented with natural statistics. If both conditions are
satisfied for an array of Nr receptors with binary readouts, all 2Nr

activity patterns are equally likely when odors are presented with
natural statistics (see Fig. 1B). The two basic principles may be
obvious with some thought, but they usually cannot be satisfied
simultaneously. We thus also determine the relative costs of
violating the two conditions and use this to carry out numerical
and analytical optimizations to determine conditions for optimal
receptor arrays. Furthermore, our model implies relationships
between the typical ligand concentrations and the ability to dis-
criminate mixtures that have been missed before.

Significance

Natural odors typically consist of many molecules at different
concentrations, which together determine the odor identity.
This information is collectively encoded by olfactory receptors
and then forwarded to the brain. However, it is unclear how
the receptor activity can encode both the composition of the
odor and the concentrations of its constituents. We study a
simple model of the olfactory receptors from which we derive
design principles for optimally communicating odor information
in a given natural environment. We use these results to discuss
biological olfactory systems, and we propose how they can be
used to improve artificial sensor arrays.
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After introducing our general framework below, we first dis-
cuss general properties of optimal receptor arrays. We then
consider two different classes of natural statistics, for which we
find optimal receptors in terms of random matrices. Here, our
information theoretic approach provides a combined measure of
the array’s performance in multiple aspects—from the resolution
of ligand concentrations to the discrimination of mixture com-
position. We thus finally discuss the trade-off between such po-
tentially mutually exclusive goals and compare our results to
experimentally measured receptor arrays.

Results
Odors are mixtures of odorant molecules that are ligands of
olfactory receptors. Any odor can be described by a vector
c= ðc1, c2, . . . , cNlÞ that specifies the concentrations ci of all Nl
possible ligands (ci ≥ 0). During a single sniff, the ligands in the
odor c come in contact with Nr different odor receptors. In the
simplest case, the sensitivity of receptor n to ligand i can be
described by a single number Sni, and the total excitation en of
receptor n is given by (19, 20)

en =
X
i

Snici. [1]

Typical receptors have a nonlinear dose–response curve (21),
and the output an is thus a nonlinear function of en. Moreover,
receptors are subject to noise (22), e.g., from stochastic binding,
which limits the number of distinguishable outputs. To capture
both effects, we consider receptors with only two output states,
which corresponds to large noise (23). In this case, the activity an
of receptor n is given by

an =
�
0 en < 1
1 en ≥ 1 , [2]

i.e., the receptor is active if its excitation en exceeds a threshold.
Eqs. 1 and 2 describe the mapping of the odor c to the activity

pattern a= ða1, a2, . . . , aNrÞ, where the receptor array is character-
ized by the sensitivity matrix Sni (see Fig. 1C). This activity pattern
is then analyzed by the brain to infer the odor c. Such a distributed
representation of odors in activity patterns has been compared
with compressed sensing (24); here we focus on how this repre-
sentation can be tuned to match the structure of natural odors.
We assume that the structure of natural odors in a given en-

vironment can be captured by a probability distribution PenvðcÞ
from which odors are drawn. PenvðcÞ can encode, for example,
the fact that some ligands are more common than others or that
some ligands are strongly correlated or anticorrelated in their
occurrence. Because natural odor statistics are hard to measure
(18), we work with a broad class of distributions PenvðcÞ charac-
terized by a few parameters. We define pi to be the probability with
which ligand i occurs in a random odor. The correlations between
the occurrences of ligands are captured by a covariance matrix pij.
We expect pi to be small because any given natural odor typically
contain tens to hundreds of ligands (20, 25), which is a small subset
of allNl J 2,100 ligands (18). When a ligand i is present, we assume
its concentration ci has mean μi and standard deviation (SD) σi.
Thus, the full natural odor statistics PenvðcÞ are parameterized by pi,
μi, and σi for all ligands i and a covariance matrix pij in our model.

Optimal Receptor Arrays. An optimal receptor array must tailor
receptor sensitivities Sni so that the odors-to-activity mapping
given by Eqs. 1 and 2 dedicates more activity patterns to more
frequent or more important odors as specified by PenvðcÞ. In in-
formation theoretic terms, the array must maximize the mutual
information Iðc, aÞ (26). In our model, the mapping from c to a is
deterministic, and I can be written as the entropy of the output
distribution PðaÞ,

I =−
X
a

PðaÞlog2 PðaÞ, [3]

where the sum is over all possible activity patterns a. Note that
PðaÞ= R

dc  PðajcÞPenvðcÞ, where PðajcÞ describes the mapping
from c to a. Consequently, I depends on Sni and the odor envi-
ronment PenvðcÞ. In fact, I is maximized by sensitivities Sni that
are tailored to PenvðcÞ such that all activity patterns a are equally
likely (13, 26).
The mutual information I can be approximated (27) in terms

of the mean activities hani and the covariance between receptors,
covðan, amÞ= hanami− hanihami, encoded by PðaÞ,

I ≈ −
X
n

½hanilog2hani+ ð1− haniÞlog2ð1− haniÞ�

−
8
ln 2

X
n<m

covðan, amÞ2,
[4]

which is an expansion up to quadratic order in covðan, amÞ. The
first term gives the information gained through each receptor in
isolation. The second term describes the reduction of informa-
tion due to correlations between different receptors. For both
Eqs. 3 and 4, the maximal mutual information of Nr   bits can only
be obtained if

hani* = 1
2

[5a]

and

covðan, amÞ* = 0. [5b]

Consequently, in a receptor array optimized for its natural envi-
ronment, each receptor responds to about half of all odors and any
pair of receptors is uncorrelated in its response to odors, assuming
odors are presented with frequency PenvðcÞ.

A B

C

Fig. 1. (A) Schematic representation of the olfactory system, where ligands
bind to receptors, whose excitation is accumulated in glomeruli, thresholded,
and relayed to the brain. (B) Histogram of the probabilities PðaÞ of the 2Nr

output patterns a for a random receptor array (red, entropy I= 6.15  bits), a
numerically optimized one (orange, I= 7.83  bits), and the theoretical optimum
of a uniform distribution (gray, I= 8  bits). (C) Schematic representation of our
physical model, where the input c (green bars) is mapped to excitations (blue
bars), which are turned into the output a (orange) by thresholding. Parameters
in B and C are: receptor count Nr = 8, ligand count Nl = 16, ligand frequency
pi = 1=4, and mean μi = 1 and SD σi = 1 of the ligand concentration.
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These design principles follow from very general considerations,
but they may not always be simultaneously achievable. To un-
derstand such constraints, we study how microscopic properties of
receptor arrays (the sensitivities Sni) determine both hani and
covðan, amÞ. The mean receptor activity hani is given by the prob-
ability that the associated excitation en exceeds 1, hani= 1−Fnð1Þ,
where FnðenÞ denotes the cumulative distribution function of en
(see Supporting Information). The covariance covðan, amÞ can be
estimated in terms of covcðen, emÞ using a normal approximation
around the maximum of I (see Supporting Information). These
statistics of en can be calculated from Eq. 1 and read

henic =
X
i

Snihcii [6a]

covcðen, emÞ=
X
i, j

SniSmjcov
�
ci, cj

�
, [6b]

where hcii and covðci, cjÞ follow from Penv ðcÞ.
Combining Eqs. 4 and 6 to estimate mutual information, we

can quantify how well an array’s sensitivities Sni are matched to
natural odor statistics PenvðcÞ. As a computational matter, these
equations also allow a rapid calculation of mutual information
without calculating the full distribution PðaÞ.
Random Sensitivity Matrices. We next study which sensitivity ma-
trices Sni obey the optimization goals given in Eq. 5 for given
odor statistics. Here, we will show that random Sni with inde-
pendent and identically distributed entries drawn from the right
distribution can be close to optimal. This is because such matrices
generically have low correlations, and the resulting activities an
are thus only weakly correlated. In this section, we study
what distributions lead to hani= 1

2 and under what conditions
these matrices minimize covðan, amÞ for two different classes of
odor distributions.
Narrow concentration distributions.We begin with the simple case where
the concentration distributions are narrow, σi � μi. In this case, we
can focus on determining which ligands appear in a mixture. Re-
ceptors that are optimal for this task must be highly sensitive to
some ligands while they ignore the others, but the exact value of the
sensitivity does not matter. This property can be encoded in a binary
sensitivity matrix Ŝni where Ŝni = 1 if receptor n reacts to ligand i and
Ŝni = 0 if it does not. We can then calculate activity statistics using
Eqs. 2 and 6, as shown in Supporting Information. In the simple case
of uncorrelated mixtures (pij = 0 for i≠ j), hani≈

P
iŜni   pi and

covðan, amÞ≈
P

iŜniŜmi   pi. In Supporting Information, we also cal-
culate corrections due to the correlated appearance of ligands
(pij ≠ 0); e.g., hani≈ hani0 + 1

2 ð1− hani0Þ
P

i,jðŜni + Ŝnj − ŜniŜnjÞpij,
where hani0 =

P
iŜni   pi is the receptor activity in the uncorre-

lated case.
In the case of uncorrelated mixtures, we find, using Eq. 5, that

Ŝni for optimal receptor arrays must satisfy

X
i

Ŝ*ni   pi =
1
2 [7a]

and X
i

Ŝ*niŜ
*
mi   pi = 0. [7b]

Receptors are thus optimal if (i) the occurrence probabilities
pi of the ligands they react to add up to 1/2 and (ii) no ligand
activates multiple receptors. Because any given ligand is rare in
natural odors, pi � 1=2, such optimization is equivalent to a
partition problem where the Nl probabilities fpig have to be
put into Nr groups (i.e., a group of ligands for each receptor),

such that the sum of the elements is close to 1/2, while a min-
imal number of elements should appear in several groups. Eq. 4
gives the relative cost of violating these two possibly conflicting
requirements.
This partition problem can be solved approximately using

random binary sensitivity matrices. The ensemble of such ma-
trices is characterized by a single parameter, the fraction of
nonzero entries or sparsity ξ. Fig. 2A shows that there is an
optimal sparsity ξp, at which I is maximized. It follows from
hani= 1=2 that

ξ* ≈
ln 2
s
, [8]

where s=
P

ipi is the mean mixture size (see Supporting Informa-
tion). This condition for random matrices agrees well with the
sparsity found from numerical optimization over all binary matrices
(see Fig. 2B). However, for small s, the sparsity ξp becomes large,
which leads to significant correlations covðan, amÞ and thus
reduced performance. Optimal matrices thus have a sparsity
that is lower then predicted by Eq. 8 for small mixture sizes s
(see Fig. 2B).
Wide concentration distributions. In reality, odor concentrations vary
widely, and receptor arrays must thus measure both odor compo-
sition and concentrations. The concentration of a single ligand can
be measured if many receptors react to it with different sensitivities
(7). The receptor array is optimal for this task if all possible outputs
occur with equal frequency. This is the case if the inverse of the
sensitivities follows the same distribution as the ligand concentra-
tions (13), which is known as Laughlin’s principle. However, it is
not clear how this principle can be generalized for measuring the
concentration of multiple ligands simultaneously.
We study this problem by considering random sensitivities

that are lognormally distributed. This choice is motivated by the
complex interaction between receptors and ligands, which typi-
cally leads to normally distributed binding energies (28). We will
show later that experimentally measured sensitivities indeed
appear to be lognormally distributed. Lognormal distributions
are characterized by two parameters, the mean S and the SD λ of
the underlying normal distribution. We thus next ask how these
parameters have to be chosen to maximize the mutual infor-
mation I. To estimate I, we need to consider the excitations en,
which approximately also follow a lognormal distribution (29).
Their statistics are given by Eq. 6 and read henic,S = Shctoti and
covc,Sðen, emÞ= S

2
varðctotÞ+ δnmvarðSÞ

P
ihc2i i, where ctot =

P
ici

and varðSÞ= S
2½expðλ2Þ− 1�. We use this to calculate hani from

Eq. 2 and find that the receptor array is optimal (hani= 1=2) if
(see Supporting Information)

A B

Fig. 2. Receptor arrays with random sensitivity matrices whose sparsity ξ is
tuned to match natural statistics achieve near-optimal information transmission
of odor composition. (A) Information I gained by Nr = 8 receptor as a function of
the average sparsity ξ of random binary sensitivity matrices for mixtures made
of s ligands drawn from a total of Nl = 32 ligands. Numerical results (shaded
areas; mean ± SD; 32 samples) and analytical results (lines) following from Eq. 4
are shown. (B) Sparsity ξ of general binary sensitivity matrices that were nu-
merically optimized for maximal I (symbols) is compared with the prediction
from random binary matrices (solid line, Eq. 8) for different s and Nr at Nl = 128.
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S=
1

hctoti

"
1+

varðctotÞ
hctoti2

+

P
i

�
c2i
�

hctoti2
�
eλ

2
− 1

�#1
2

. [9]

We test this equation by numerically calculating the mutual infor-
mation I as a function of S and λ. Fig. 3A shows that Eq. 9 predicts
the optimal parameters of lognormally distributed sensitivities very
well. Fig. 3B shows that this result also predicts the mean S for
numerical optimizations over general sensitivity matrices.
Log-normally distributed sensitivities perform badly if the

distribution width λ is small (see Fig. 3A). This is expected be-
cause receptors with narrowly distributed Sni respond similarly to
all ligands, leading to large correlations covðan, amÞ and thus
reduced performance I. Interestingly, for large enough λ, the
correlations are so small that the exact value of λ does not in-
fluence I significantly (see Fig. 3A). In fact, for very large λ, the
Sni are likely very large or very small compared with S. When S
is chosen according to Eq. 9, receptors can thus only detect
whether ligands are present or not, corresponding to the binary
sensitivities discussed above, which cannot resolve the concen-
tration of the ligands. Consequently, λ must influence how well
such receptor arrays can resolve concentrations.
Trade-off between concentration resolution and mixture discriminability.
When the distribution width λ is large, the receptor arrays have
similar performance I, so they are equally good at the combined
problem of resolving concentrations and discriminating mixtures.
However, the performance in the individual problems can vary
widely. Because, in many contexts, we might wish to trade off
performance, say, by sacrificing some ability to discriminate
mixtures in favor of a better concentration resolution, we next
investigate these properties in detail.
We define the concentration resolution R as the ratio of the

concentration c at which a single ligand is presented and the
concentration change δc that is necessary to register a change,
R= c=δc. Here, we consider the simple case where η additional
receptors have to be excited to register a change in concentra-
tion. R is a function of the concentration c at which it is mea-
sured and its maximal value

Rmax =
Nrffiffiffiffiffi
2π

p
ηλ

[10]

is obtained for c= S
−1
exp½ð1=2Þλ2�, which is the inverse of the

median of the sensitivity distribution (see Supporting Information).
The range of concentrations that can be detected by the re-

ceptor array is given by the ratio of the largest concentration
cmax at which concentration differences can be detected to the

lowest detectable concentration cmin, the odor detection thresh-
old (30). In terms of η, the logarithm of the concentration range
ζ= cmax=cmin reads (see Supporting Information)

lnðζÞ=
ffiffiffi
8

p
λerf−1



1−

2η
Nr

�
, [11]

where erf−1ðzÞ is the inverse error function. Eq. 11 shows that λ
determines the number of concentration decades over which the
receptor array is sensitive.
Taken together, λ has opposing effects on the resolution and

the range of concentration measurements (see Fig. 4A). Conse-
quently, λ can be tuned either for receptors that resolve concen-
trations well or cover a large concentration range. If only single
ligands are measured, the optimal λ only depends on the concen-
tration distribution PenvðcÞ. In this case, the mutual information I
can be calculated from the resolution function RðcÞ, and optimizing
RðcÞ is equivalent to maximizing I (31). For odor mixtures, I ac-
counts for a combination of the concentration resolution and the
mixture discrimination, and maximizing I does not uniquely de-
termine an optimal receptor array. We thus next study how the
distribution width λ influences the ability to discriminate mixtures.
We first consider mixtures of s ligands, each at concentration c,

and determine the maximal size smax where adding an additional
ligand does not significantly alter the activity pattern. Here smax is
given by the largest s that obeys (see Supporting Information)

dhaniS
ds

≥
η

Nr
, [12]

where haniS ≈ 1−FLN½c−1; Ss, varðSÞs� with FLNðx; μ, σ2Þ being the
cumulative distribution function of a lognormal distribution with
mean μ and variance σ2. Fig. 5A shows that smax increases with
decreasing concentrations, but, if the concentration falls below
the odor detection threshold, individual ligands cannot be de-
tected (dotted lines).
Not all mixtures with less then smax ligands can be distinguished

from each other. We show this by calculating the Hamming dis-
tance h of the activity patterns a of two mixtures, i.e., the number
of differences in the output. For simplicity, we consider mixtures
that contain s ligands, sharing sb of them. In this case, a given
receptor is activated by one of the mixtures if eb + ed > 1, where eb
and ed are the excitations caused by the sb shared and the s− sb
different ligands, respectively. Approximating the probability dis-
tribution of the excitations as a lognormal distribution, we can
calculate the expected distance h (see Supporting Information).
Fig. 5B shows that this approximation (solid lines) agrees well with
numerical calculations (symbols). The figure also shows that
mixtures can only be distinguished well if the concentration of the
constituents is in the right range. This is because receptors are
barely excited for too small concentrations, whereas they are sat-
urated for large concentrations. The distance h also strongly

A B

In
fo
rm

at
io
n

Fig. 3. Random receptor arrays with a suitable mean sensitivity S and distri-
bution width λ can transmit information about both odor concentration and
composition. (A) Information I for lognormally distributed sensitivities as a
function of the mean S and width λ of the distribution. The shownmean of Iwas
calculated from Eqs. 1−3 using Monte Carlo sampling of 32 realizations per
point. The orange line marks the optimum given by Eq. 9. (B) Mean sensitivity S
for different average mixture sizes s. Numerical optimizations over general
sensitivity matrices (symbols; mean ± SD; 64 samples) are compared with log-
normally distributed matrices (solid line, Eq. 9) with λ= 1.73, equal to the mean
of the numerical data. Additional parameters inA and B are the same as in Fig. 1.

A B

Fig. 4. The width λ of the sensitivity distribution has opposing effects
on concentration resolution Rmax (blue, Eq. 10) and range ζ (orange, Eq. 11).
(A) Rmax and ζ as a function of the width λ for Nr = 300 receptors. (B) Rmax and
ζ as a function of Nr for λ= 1. In A and B, η= 1 (solid lines) and η= 2 (dashed
lines) changes in the output pattern are required to distinguish inputs.
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depends on the number sb of shared ligands between the two
mixtures, which has also been shown experimentally (32). The
distance vanishes for sb = s, but Fig. 5B shows that a single dif-
ferent ligand can be sufficient to distinguish mixtures in the right
concentration range (green line). This range increases with the
width λ of the sensitivity distribution, similar to the range over
which concentrations can be measured (see Eq. 11). The suitable
concentration range is also a function of the mean sensitivity S,
which, in turn, must be adjusted to the odor statistics (see Eq. 9).
Consequently, our model predicts that only mixtures with total
concentrations near the average concentration in natural mixtures
can be distinguished well.

Experimentally Measured Receptor Arrays. The response of recep-
tors to individual ligands has been measured experimentally for
flies (33) and humans (34). We use these published data to es-
timate the statistics of realistic sensitivity matrices as described
in Supporting Information. Fig. 6 shows the histograms of the
logarithms of the sensitivities for flies and humans. Both histo-
grams are close to a normal distribution, with similar SDs λexp ≈ 1.1,
which implies lognormally distributed sensitivities. Using a sim-
ple binding model between receptors and ligands, λexp can also be
interpreted as the SD of the interaction energies (see Supporting
Information). Consequently, these interaction energies exhibit a
similar variation on the order of 1 kBT for both organisms, which
could be caused by the biophysical similarity of the receptors.
We next use the measured lognormal distribution for the

sensitivities to compare the concentration resolution R predicted
by Eq. 10 to measured “just noticeable relative differences” R−1

(23). For humans (Nr = 300), the measured values are as low as
4% (35), which implies ηλ≈ 4.8. Using λ≈ 1.1, this suggest that
about four receptors have to be activated until a change in
concentration can be registered. Additionally, our theory pre-
dicts that humans can sense concentrations over about 2.6 orders
of magnitude, which follows from Eq. 11 for λ= 1.1, η= 1, and
Nr = 300. However, we are not aware of any measurements of the
concentration range for humans.
Our theory also predicts the maximal number of ligands that

can be distinguished as a function of the concentration c of the
individual ligands. For λ≈ 1.1, we expect that the maximal
number smax of ligands in a mixture is around 20 if individual
ligands can be detected (see Fig. 5A). Experimental studies re-
port similar numbers, e.g., smax ≈ 15 (36) and smax < 30 (6).
However, Fig. 5A shows that smax strongly depends on the con-
centration of the individual ligands and thus on experimental
details. Similarly, how well mixtures can be discriminated also
depends strongly on the ligand concentration. Fig. 5B shows that
the concentration range over which mixtures can be distin-
guished is less than an order of magnitude for λ≈ 1.1.

Discussion
We studied how arrays of olfactory receptors can be used to
measure odor mixtures, focusing on the combinatorial code of
olfaction, i.e., how the combined response of multiple receptors
can encode the composition (quality) and the concentration
(quantity) of odors. Such arrays are optimal if each receptor
responds to half of the encountered odors and the receptors
have distinct ligand binding profiles to minimize correlations.
Our simple model of binary receptors can, in principle, distin-

guish a huge number of odors, because there are ∼ 1090 different
output combinations for Nr = 300. However, it is not clear whether
all outputs are achievable and how they are used to distinguish
odors. We showed that the mean receptor sensitivity must be
tailored to the mean concentration to best use the large output
space. Another important parameter of receptor arrays is the
fraction of receptors that is activated by a single ligand, which is
equivalent to the sparsity ξ in the simple case of binary sensitiv-
ities. If ξ is small, combining different ligands typically leads to
unique output patterns that allow identification of the mixtures,
but the concentration of isolated ligands cannot be measured re-
liably, because only a few receptors are involved. Conversely, if ξ is
large, mixtures of multiple ligands will excite almost all receptors,
such that neither the odor quality nor the odor quantity can be
measured reliably. However, here, the concentration of an isolated
ligand can be measured precisely. We discussed this property in
detail for sensitivities that are lognormally distributed, where the
width λ controls whether mixtures can be distinguished well or
concentrations can be measured reliably. Interestingly, experi-
ments find that individual ligands at moderate concentration only
excite a few glomeruli (37), but natural odors at native concen-
trations can excite many (38). This could imply that the sensitiv-
ities are indeed adapted such that each receptor is excited about
half the time for natural odors.
Our model implies that having more receptor types can improve

all properties of the receptor array. In particular, both the con-
centration resolution R and the typical distance h between mixtures
are proportional to Nr, a prediction that can be tested experimen-
tally. For instance, mice, with Nr ≈ 1,000 receptor types, are very
good at identifying a single odor in a mixture (39), but flies, with
Nr = 52 (33), should perform much worse. However, quantitative
comparisons might be difficult because the discrimination perfor-
mance strongly depends on the normalized concentration cS at
which odors are presented. In fact, we predict that mixtures can
hardly be distinguished if the concentration of the individual ligands
is changed by an order of magnitude (see Fig. 5B).
Our results also apply to artificial chemical sensor arrays known

as “artificial noses” (40, 41). Having more sensors improves the
general performance of the array, but it is also important to tune
the sensitivity of individual sensors. Here, sensors should be as
diverse as possible while still responding to about half the in-
coming mixtures. Unfortunately, building such chemical sensors is
difficult, and their binding properties are hard to control (41). If

A B

Fig. 5. The discriminability of mixtures strongly depends on the concen-
trations at which odors are presented. (A) Maximal mixture size smax (from
Eq. 12) as a function of the ligand concentration c for different widths λ of
the sensitivity distribution at Nr=η= 300. Dotted lines indicate where c is
below the detection threshold for single ligands. (B) Mean difference h in
the activation pattern of two mixtures of size s= 10 as a function of c for
different numbers sb of shared ligands and widths λ. Analytical results (lines)
are compared with numerical simulations (symbols).

A B

Fig. 6. Sensitivities of olfactory receptors appear to be lognormally dis-
tributed for (A) flies (33) and (B) humans (34). The histograms of the logarithms
of n entries of the sensitivity matrix (orange) are compared with a normal
distribution (blue) with the same mean and SD λexp.
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the sensitivity matrix of the sensor array is known, our theory can
be used to estimate the information In that receptor n contributes
as In ≈HðhaniÞ+Hð1− haniÞ− ð4=ln 2ÞPm≠ncovðan, amÞ2 where
HðpÞ=−p  log2   p, such that I =

P
nIn (see Eq. 4). This can then be

used for identifying poor receptors that contribute only a little
information to the overall results.
Our focus on the combinatorial code of the olfactory system

certainly neglects intricate details of the system. For instance, we
do not consider the dynamics of sniffing and odor absorption,
which are the first processing steps and influence the perception
(42). Further, our simple model of the binding of odorants to
receptors, described by sensitivity matrices with independent
entries, neglects biophysical constraints that will cause chemi-
cally similar ligands to excite similar receptors (8, 43). This is
important because it makes it difficult to distinguish similar li-
gands (44), and it might thus be worthwhile to dedicate more
receptors to such a part of chemical space. Additionally, recep-
tors or glomeruli might interact with each other, e.g., causing
inhibition reducing the signal upon binding a ligand (45). We
can, in principle, discuss inhibition in our model by allowing for
negative sensitivities, but more complicated features cannot be

captured by the linear relationship in Eq. 1. One important
nonlinearity is the dose–response curve of individual receptor
neurons (21), which we approximate by a step function (see
Eq. 2). This simplification reduces the information capacity of a
single glomerulus to 1 bit, whereas it is likely higher in reality.
However, we expect that allowing for multiple output levels would
only increase the concentration resolution and not change the
discriminability of mixtures very much (23). Additionally, these
perceptual quantities could be influenced by other processes, e.g.,
lateral inhibition between glomeruli (11, 46) and top-down mod-
ulation that adjusts the sensory system based on behavior (46).
Besides such enhancements of olfactory sensing, further process-
ing can only remove information, so our results provide an upper
bound for the ability to recognize odors.

ACKNOWLEDGMENTS. We thank Carl Goodrich, Venkatesh N. Murthy, and
Michael Tikhonov for helpful discussions and a critical reading of the manuscript.
This research was funded by the National Science Foundation (NSF) through
DMR-1435964, DMR-1420570, and DMS-1411694. M.P.B. is an investigator of the
Simons Foundation. D.Z. was also funded by the German Science Foundation
through ZW 222/1-1, the NSF through PHY11-25915, the National Institutes of
Health Award 5R25GM067110-07, and the Moore Foundation Award 2919.

1. Touhara K, Vosshall LB (2009) Sensing odorants and pheromones with chemosensory
receptors. Annu Rev Physiol 71:307–332.

2. Su CY, Menuz K, Carlson JR (2009) Olfactory perception: Receptors, cells, and circuits.
Cell 139(1):45–59.

3. Mainland JD, Lundström JN, Reisert J, Lowe G (2014) From molecule to mind: An
integrative perspective on odor intensity. Trends Neurosci 37(8):443–454.

4. Verbeurgt C, et al. (2014) Profiling of olfactory receptor gene expression in whole
human olfactory mucosa. PLoS One 9(5):e96333.

5. Dunkel M, et al. (2009) SuperScent—A database of flavors and scents. Nucleic Acids
Res 37(Database issue):D291–D294.

6. Weiss T, et al. (2012) Perceptual convergence of multi-component mixtures in olfac-
tion implies an olfactory white. Proc Natl Acad Sci USA 109(49):19959–19964.

7. Hopfield JJ (1999) Odor space and olfactory processing: Collective algorithms and
neural implementation. Proc Natl Acad Sci USA 96(22):12506–12511.

8. Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell
96(5):713–723.

9. Hasin Y, et al. (2008) High-resolution copy-number variation map reflects human
olfactory receptor diversity and evolution. PLoS Genet 4(11):e1000249.

10. Maresh A, Rodriguez Gil D, Whitman MC, Greer CA (2008) Principles of glomerular
organization in the human olfactory bulb—Implications for odor processing. PLoS
One 3(7):e2640.

11. Murthy VN (2011) Olfactory maps in the brain. Annu Rev Neurosci 34:233–258.
12. Leon M, Johnson BA (2003) Olfactory coding in the mammalian olfactory bulb. Brain

Res Brain Res Rev 42(1):23–32.
13. Laughlin S (1981) A simple coding procedure enhances a neuron’s information ca-

pacity. Z Naturforsch C 36(9-10):910–912.
14. Ruderman DL, Bialek W (1994) Statistics of natural images: Scaling in the woods. Phys

Rev Lett 73(6):814–817.
15. Lewicki MS (2002) Efficient coding of natural sounds. Nat Neurosci 5(4):356–363.
16. Tkacik G, Callan CG, Jr, Bialek W (2008) Information flow and optimization in tran-

scriptional regulation. Proc Natl Acad Sci USA 105(34):12265–12270.
17. Hummel R (1977) Image enhancement by histogram transformation. Comput Graph

Image Process 6(2):184–195.
18. Wright GA, Thomson MG (2005) Odor perception and the variability in natural odor

scenes. Integrative Plant Biochemistry, Recent Advances in Phytochemistry (Elsevier,
New York), Vol 39, pp 191–226.

19. McGann JP, et al. (2005) Odorant representations are modulated by intra- but not
interglomerular presynaptic inhibition of olfactory sensory neurons. Neuron 48(6):
1039–1053.

20. Lin Y, Shea SD, Katz LC (2006) Representation of natural stimuli in the rodent main
olfactory bulb. Neuron 50(6):937–949.

21. Reisert J, Restrepo D (2009) Molecular tuning of odorant receptors and its implication
for odor signal processing. Chem Senses 34(7):535–545.

22. Lowe G, Gold GH (1995) Olfactory transduction is intrinsically noisy. Proc Natl Acad Sci
USA 92(17):7864–7868.

23. Koulakov A, Gelperin A, Rinberg D (2007) Olfactory coding with all-or-nothing glo-
meruli. J Neurophysiol 98(6):3134–3142.

24. Stevens CF (2015) What the fly’s nose tells the fly’s brain. Proc Natl Acad Sci USA
112(30):9460–9465.

25. Knudsen JT, Tollsten L, Bergström LG (1993) Floral scents? A checklist of volatile
compounds isolated by head-space techniques. Phytochemistry 33(2):253–280.

26. Atick JJ (2011) Could information theory provide an ecological theory of sensory
processing? Network 22(1-4):4–44.

27. Sessak V, Monasson R (2009) Small-correlation expansions for the inverse ising
problem. J Phys A 42:055001.

28. Lancet D, Sadovsky E, Seidemann E (1993) Probability model for molecular recogni-
tion in biological receptor repertoires: Significance to the olfactory system. Proc Natl
Acad Sci USA 90(8):3715–3719.

29. Fenton LF (1960) The sum of log-normal probability distributions in scatter trans-
mission systems. IRE Trans Commun Syst 8(1):57–67.

30. Abraham MH, Sánchez-Moreno R, Cometto-Muñiz JE, Cain WS (2012) An algorithm
for 353 odor detection thresholds in humans. Chem Senses 37(3):207–218.

31. Bialek W (2012) Biophysics: Searching for Principles (Princeton Univ Press, Princeton, NJ).
32. Bushdid C, Magnasco MO, Vosshall LB, Keller A (2014) Humans can discriminate more

than 1 trillion olfactory stimuli. Science 343(6177):1370–1372.
33. Münch D, Galizia CG (2016) Door 2.0—Comprehensive mapping of Drosophila mel-

anogaster odorant responses. Sci Rep 6:21841.
34. Mainland JD, Li YR, Zhou T, Liu WLL, Matsunami H (2015) Human olfactory receptor

responses to odorants. Sci Data 2:150002.
35. Cain WS (1977) Differential sensitivity for smell: “Noise” at the nose. Science

195(4280):796–798.
36. Jinks A, Laing DG (1999) A limit in the processing of components in odour mixtures.

Perception 28(3):395–404.
37. Saito H, Chi Q, Zhuang H, Matsunami H, Mainland JD (2009) Odor coding by a

Mammalian receptor repertoire. Sci Signal 2(60):ra9.
38. Vincis R, Gschwend O, Bhaukaurally K, Beroud J, Carleton A (2012) Dense represen-

tation of natural odorants in the mouse olfactory bulb. Nat Neurosci 15(4):537–539.
39. Rokni D, Hemmelder V, Kapoor V, Murthy VN (2014) An olfactory cocktail party:

Figure-ground segregation of odorants in rodents. Nat Neurosci 17(9):1225–1232.
40. Albert KJ, et al. (2000) Cross-reactive chemical sensor arrays. Chem Rev 100(7):

2595–2626.
41. Stitzel SE, Aernecke MJ, Walt DR (2011) Artificial noses. Annu Rev Biomed Eng 13:1–25.
42. Wachowiak M (2011) All in a sniff: Olfaction as a model for active sensing. Neuron

71(6):962–973.
43. Hallem EA, Carlson JR (2006) Coding of odors by a receptor repertoire. Cell 125(1):

143–160.
44. Perez M, Giurfa M, d’Ettorre P (2015) The scent of mixtures: Rules of odour processing

in ants. Sci Rep 5:8659.
45. Ukhanov K, Corey EA, Brunert D, Klasen K, Ache BW (2010) Inhibitory odorant sig-

naling in Mammalian olfactory receptor neurons. J Neurophysiol 103(2):1114–1122.
46. Wilson RI (2013) Early olfactory processing in Drosophila: Mechanisms and principles.

Annu Rev Neurosci 36:217–241.
47. Hansen N (2006) The CMA evolution strategy: A comparing review. Towards a New

Evolutionary Computation, eds Lozano JA, Larrañaga P, Inza I, Bengoetxea E
(Springer, New York), pp 75–102.

Zwicker et al. PNAS | May 17, 2016 | vol. 113 | no. 20 | 5575

PH
YS

IC
S

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y


