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The human-mediated translocation of species poses a distinct threat
to nature, human health, and economy. Although existing models
calculate the invasion probability of any species, frameworks for
species-specific forecasts are still missing. Here, we developed amodel
approach using global ship movements and environmental conditions
to simulate the successive global spread of marine alien species that
allows predicting the identity of those species likely to arrive next in a
given habitat. In a first step, we simulated the historical stepping-
stone spreading dynamics of 40 marine alien species and compared
predicted and observed alien species ranges. With an accuracy of
77%, the model correctly predicted the presence/absence of an alien
species in an ecoregion. Spreading dynamics followed a common
pattern with an initial invasion of most suitable habitats worldwide
and a subsequent spread into neighboring habitats. In a second step,
we used the reported distribution of 97 marine algal species with a
known invasion history, and six species causing harmful algal blooms,
to determine the ecoregions most likely to be invaded next under
climate warming. Cluster analysis revealed that species can be
classified according to three characteristic spreading profiles: emerg-
ing species, high-risk species, and widespread species. For the North
Sea, the model predictions could be confirmed because two of the
predicted high-risk species have recently invaded the North Sea. This
study highlights that even simple models considering only shipping
intensities and habitat matches are able to correctly predict the
identity of the next invading marine species.
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The number of alien species transported by human assistance has
increased rapidly during the last decades with serious conse-

quences for native flora and fauna (1–3). These biological invasions
are considered to be one of the major drivers of biodiversity changes
(4–6). Once an unwanted alien species has naturalized in the new
environment, it is nearly impossible to eradicate the species, and
thus the mitigation of further introduction is the most efficient way
of combating biological invasions (6, 7). However, a targeted mon-
itoring and an efficient adaptive management requires knowledge
about spreading dynamics of the next potential invaders and thus
about the distribution of species, their invasiveness, and the likeli-
hood of new introductions. Although all of these topics have been
analyzed on their own, the potential to predict the spreading of alien
species while combining these components remains to be tested.
A large amount of recent introductions can be attributed to the

intensified global trade and transport as many species were acci-
dentally or deliberately translocated through the exchange of
commodities or the movements of transportation means (8, 9). The
amount of exchanged commodities and the intensity of global
traffic have therefore been found to be a good predictor to model
the global spread of alien species (10–12). In most cases, predictions
of alien species introductions are difficult to assess as model results
could not be validated (i.e., quantitatively assessed using observed
data) thoroughly due to the paucity of high-quality distributional
data of alien species. Without any model validation, however, it is
nearly impossible to assess the quality and the reliability of model
predictions, which hampers the application of models for the
management of alien species. In recent years, appropriate high-

quality data have been made accessible by various online databases,
but testing model predictions with these data has still been lacking.
Model frameworks to predict the likelihood of new invasions

have already been developed (10, 11, 13). However, these were not
able to predict the identity of new invaders, but only the likelihood
that any new species arrives from a certain source region on Earth.
Here, we combined such a model, a slightly modified version of the
vector-based model of marine invasion adopted from ref. 10, with
datasets about the global distribution of marine alien species, which
enabled us to predict the identity of the next species to arrive in a
given local habitat. The model is a statistical model that describes
how the probability a given species successfully invades a specific
location depends on the shipping traffic and the environmental
differences (temperature and salinity) between locations.
In a first step, to test the accuracy of the model, we used native

ranges of 40 marine species from various taxonomic groups,
ranging from algae to fish, as initial condition. For each species, we
simulated the global spread outside its native range and compared
the predicted alien range at each simulation time step with the
observed one. This procedure allows the assessment of the quality
of model predictions, although the degree of expansion distinctly
varied among species, as some species are already widespread,
whereas others occupy only a few alien regions either because they
just started to spread or there are only a limited number of suitable
habitats available.
In a second step, we used the reported distribution of 97 marine

algal species with a known invasion history and six harmful algal
species obtained from AlgaeBase (www.algaebase.org) and de-
termined the species-specific invasion probabilities for each marine
ecoregion not occupied by that species. Algae are particularly well
suited for such an analysis because they are easily translocated by the
exchange of ballast water, and especially invasive seaweeds are of
global concerns because over 400 introductions have been reported
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worldwide (14). Furthermore, seaweeds deeply shape marine eco-
systems and they can have strong detrimental ecological and
economic impacts (14, 15). Using our model, we identified the likely
hot spots of future invasions among 90 marine ecoregions of the
world and algal species with the highest probability to arrive next.

Results
Comparing observed and predicted alien ranges of 40 marine spe-
cies reveals that the model correctly predicted the presence/absence
of the species in an originally alien ecoregion in 77% of all cases
(median of all 40 spread simulations; Fig. S1). This value is robust to
interspecific variation (e.g., using only 50% of the species reduced
the number of correctly predicted ecoregions only to a median of
75%; Fig. S2), model parameterization, model structure, and vari-
ation of shipping intensity (SI Text and Table S1). Compared with
observational data, the model overpredicts the number of alien
species per ecoregion (Fig. S1). Predicted alien species numbers
were distinctly higher for Southern Africa and East Asia, which are
less studied regions, and thus higher alien species numbers can be
expected, but also for the US West Coast.
The simulations of the global spreading dynamics of the 40

marine species were used to analyze common patterns of the global
spread. For each simulated invasion step of each species, we de-
termined the great circle distance from the centroids of the newly
invaded ecoregion to the nearest already occupied ecoregion. This
shows that long-distance jumps are very common among the very
first invasion steps (Fig. S3). For 44% of all species spreads, the
longest jump to a new ecoregion was found among the first three
invasion steps with 10,376 km on average. That is, spreading dy-
namics of these species follow a common pattern: first, the suitable
habitats worldwide were invaded irrespective of the distance from
where the species originated, and subsequently the species spread
to neighboring habitats. This results in a mean geographic distance
between observed native and alien ranges of around 10,200 km.
Alien species numbers weighted by their number of native and
alien regions decreased to shorter and longer distances (Fig. S4). A
similar although more complex pattern was also found in ref. 10,
which indicates that the models applied in both studies revealed
similar results (Materials and Methods).
After validation of model predictions, we used the distribution of

97 algal species with a known invasion history obtained from
AlgaeBase as initial conditions to determine the species-specific

invasion probabilities to unoccupied ecoregions. These species
mostly live in temperate to subtropical marine ecoregions in
Europe and East Asia (Fig. 1A), corresponding to the known
global hot spots of algal diversity (16, 17). The predicted invasion
probabilities combined for all of these species reflect the global
shipping intensity as marine ecoregions with intense ship traffic
such as East Asian Seas or Northern European Seas have a high
invasion probability (Fig. 1B). The East Asian Seas and the
Northern European Seas are characterized by similar environ-
mental conditions and are well connected by ships, which in-
creases the likelihood of exchanges between both regions.
Indeed, the reported native and alien ranges show that species
have been mutually exchanged between both regions as many
alien species in the Northern European Seas originate from East
Asia (n = 11 of 19) and vice versa (4 of 16). Our model calcu-
lations revealed rankings of high-risk algal species for each
ecoregion, which is exemplarily shown for the North Sea (Table
S2). Two of the algal species of the top 10 high-risk species for
the North Sea are known from the literature to have naturalized
in that ecoregion in recent years [Prorocentrum minimum (18)
and Polysiphonia harveyi (19)]. These species are not listed for
the North Sea in AlgaeBase probably due to delays in data ac-
quisition. That is, based on data provided by AlgaeBase, the
model predicts a high probability that these species will enter the
North Sea, which could indeed be confirmed by recent studies.
Predicted climate warming will likely modify the similarity of

environmental conditions of marine ecoregions and thus will affect
the probabilities of invasion. Using predicted mean sea surface
temperatures during 2040–2060 revealed a latitudinal gradient in
the change of invasion probabilities (Fig. 2): in general, the model
predicts a decrease in invasion probabilities in the tropics, and an
increase in temperate regions due to climate change. Highest in-
creases in invasion probabilities can be expected for the Northeast
Pacific and the Baltic Sea, whereas highest declines arise for
ecoregions with high shipping intensity in the tropics such as
ecoregions with access to the Panama Canal, the Persian Gulf, the
Strait of Malacca, and South China.
The invasion probabilities distinctly vary among algal species,

which—in our model—mainly depends on the species-specific
global distribution of algae and their occupancy of ecoregions with
high shipping intensity (thereby enhancing the chance of further
spread). We found that the total invasion probability Ptot(Inv) (i.e.,
the probability for a species to invade any unoccupied ecoregion
worldwide) is a hump-shaped function of the initial number of oc-
cupied marine ecoregions (Fig. 3A). This can be explained by two
contrasting mechanisms: increasing the number of occupied ecoregions
results (i) in an increase in propagule pressure to unoccupied
ecoregions, thereby increasing the likelihood of further spread, and
(ii) in a reduction of the number of potential new habitats, which
simultaneously decreases the chance of further spread. Combining
both relationships results in the described hump-shaped curve.
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Fig. 1. Observed cumulative distribution (native plus alien) of 97 marine algal
species with an invasion history (A) and predicted invasion probabilities for
further spread of these species to formerly unoccupied marine ecoregions.
Colors indicate the number of reported algal species in A and the predicted
probability of invasion in B, respectively.
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Fig. 2. Predicted changes in invasion probabilities due to climate warming.
To simulate climate warming, invasion probabilities for 97 algal species with
a known invasion history were calculated using water temperatures during
2040–2060 for the recipient ecoregions. The resulting invasion probabilities
were compared with those calculated using current water temperatures, and
the deviations are indicated by colors.
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Consequently, species with narrow or wide distributions have a
comparatively low total invasion probability, whereas species with
an intermediate distribution have the highest invasion probabilities.
In addition to the number of occupied ecoregions, the interspecific
variation of Ptot(Inv) can be further explained by the maximum
invasion probability Pmax(Inv) to any ecoregion (Fig. 3B).
To characterize the spreading potential of each species, we in-

troduced an invasion threshold « and counted the number of
ecoregions with an invasion probability above this threshold. Note
that a decrease of « can be interpreted as a general increase in the
probability of invasion due to e.g., elevated propagule pressure,
interspecific variations in the ability to invade another ecoregion,
or increased environmental match due to environmental changes.
Decreasing « (or increasing the invasion probability) leads to a
higher number of ecoregions that potentially can be invaded by
the species (Fig. 3C). The obtained species-specific invasion curves
saturate when the species occupy all initially unoccupied ecoregions
worldwide. For example, species with a wide initial distribution can
only invade a few remaining unoccupied ecoregions, resulting in a
low number of ecoregions at which the invasion curves saturate.
Cluster analysis reveals three characteristic groups of invasion
curves: the first group, which we call the “emerging species,” has a
narrow initial distribution (red dots in Fig. 3A and red lines in Fig.
3 C andD). A decrease in the invasion threshold « results in a slow
increase of the number of unoccupied ecoregions with an invasion
threshold above «. That is, the species have a low chance to invade
another ecoregion. Species of the second group, called the “high-
risk species,” have an intermediate initial distribution (green dots
in Fig. 3A). Their spreading potential increases comparatively
steeply even at high invasion thresholds (green lines in Fig. 3 C
and D), and thus these species have a high chance to invade other
ecoregions. The third group of species, called the “widespread
species,” consists of species with a wide initial distribution (black
dots in Fig. 3A). Their invasion curves increase with decreasing
invasion threshold at a comparatively low rate similar to that of
the emerging species (black lines in Fig. 3 C and D), but saturate
at a low number of unoccupied ecoregions simply due to the low
availability of ecoregion without the species.
Although the known invasion of a species in an ecoregion is the

best predictor for the potential invasiveness of that species for
other ecoregions (20, 21), it is interesting to assess the spreading
potentials of species, which are not known for their invasiveness
but may affect other species and potentially even ecosystems. Some
algae produce toxic substances causing fish or shellfish poisoning,
which can also be harmful for humans (22). Transportation of toxic
algal cells or cysts in ballast water of ships is a likely explanation for
harmful algal blooms in previously unaffected regions (22, 23).
Although these species may not be known to naturalize outside

their native region (i.e., to establish populations viable for years),
they may produce harmful algal blooms in these regions at least
during one season of favorable conditions. We therefore selected
the distributions of six algal species from AlgaeBase responsible for
either well-known human diseases such as ciguatera or various
shellfish poisonings (24) and calculated invasion probabilities for
each species. Most of these species have an intermediate to wide
distribution and a comparatively high Ptot(Inv) (Fig. 4). Karenia
brevis, for example, causing neurotoxic shellfish poisoning, has a
Ptot(Inv) of 0.105, which is in the range of the highest invasion
probabilities calculated for species with a known invasion history.
The reason is that the K. brevis was found in an intermediate
number of ecoregions with intense ship traffic (Fig. 4). According
to our classification system for species with known invasion histo-
ries (Fig. 3), Gambierdiscus toxicus would fall in the category of
emerging species, whereas Protoperidinium crassipes, Dinophysis
acuminata, and Karenia brevis could be classified as high-risk spe-
cies, and the remaining algae would be widespread species.

Discussion
The mitigation of further introductions of alien species is a chal-
lenging task mostly due to the complexity of the invasion process
and the lack of data. Models can help to improve mitigation
strategies by the determination of hot spots of biological invasions,
the determination of high-risk pathways, and the identification of
species likely to arrive next. Several studies have tried to predict the
likelihood of new invasions (10, 13, 25–28); however, the common
paucity of model validations hampers the assessment of the quality
of model predictions and their comparison between different ap-
proaches. Here, we provide a robust approach for the validation of
colonization models, simulating the spread of alien species, which
may serve as an example for other models and taxonomic groups.
We show that our model correctly predicts the invasion status of
species in ecoregions outside their native range in good agreement
with observations (77% of the presence/absence of an alien species
correctly predicted). This is particularly striking because of the
simplicity of the model, considering only habitat matches and
maritime traffic intensity and lacking seemingly important predic-
tors like species-specific characteristics, biotic interactions, addi-
tional environmental variables, or historic shipping data. Indeed,
the consideration of additional parameters in the model such as
further environmental variables did not improve the model fit
(Table S1). The quality of the fit ranges between those found in
other modeling studies [e.g., R2 = 0.64 for the global spread of
terrestrial vascular plants (29) or an 87–94% accuracy for the in-
troduction of fishes into the Great Lakes (27)], but other models
were either more complex or restricted to much smaller geographic
areas or a single taxonomic group. We are not aware of any study,

0.00

0.02

0.04

0.06

0.08

0.10A

P
to

t I
n

v


emerging species
high risk species
widespread species

0 10 20 30 40 50 60 70
0.00

0.02

0.04

0.06

0.08

0.10
B

P
to

t I
n

v


Number of occupied ecoregions

0.00

0.01

0.02

PmaxInv

0

20

40

60

80

N
um

be
r 

of
 n

ew
ly

oc
cu

pi
ed

 e
co

re
gi

on
s

C emerging species
high risk species
widespread species

0

20

40

60

80

N
um

be
r 

of
 n

ew
ly

oc
cu

pi
ed

 e
co

re
gi

on
s

Invasion threshold 
109 107 105 103 101

D

E
co

re
gi

on
s

Invasion threshold 

0

2

4

103 102 101

Fig. 3. Spreading potential of marine alien algae.
(A) The total invasion probabilities Ptot(Inv) of algal
species follow a hump-shaped curve of the number
of initially occupied marine ecoregions, with species
of intermediate global distribution having the highest
Ptot(Inv). The colors denote the category of spreading
potentials classified by cluster analysis (C and D).
(B) The same data as in A, but the colors indicate the
maximum invasion probability Pmax(Inv) from the
occupied range of the species to any unoccupied
ecoregion. (C) Invasion curves for each species esti-
mated as the number of ecoregions outside the range,
which the species initially occupied, above an invasion
threshold «. Cluster analysis of interspecific variations
identified three groups of species with different in-
vasion curves (red, emerging species; green, high-risk
species; and black, widespread species). (D) The same
as C, but showing the mean invasion curves for each
cluster. The Inset indicates a zoom to high invasion
threshold values.
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simulating the global spread of marine species from various taxo-
nomic groups simultaneously as done here, which renders a direct
comparison difficult. Probably the best indication of the model’s
quality is the fact that two of the algal species predicted to be
among the top 10 high-risk species for the North Sea are known to
have naturalized in that ecoregion in recent years. That is, in two
cases our species-specific predictions could be confirmed by recent
samplings, which are not yet included in AlgaeBase. This also
shows that it is possible to explain the spread of alien species to a
large degree by simple vector-based invasion models. The sensi-
tivity analysis (SI Text) highlights that our model predictions are
robust to the choice of species for model validation, and to the
variation in model structure, parameterization, and input datasets.
For the 97 marine algal species considered in this study, the

highest probability of invasion arises in Asian and European
ecoregions (Fig. 1B), mostly along the major shipping routes. The
Asian Seas were also identified as invasion hot spots in a previous
analysis of marine invasion, thereby ignoring observed species
distributions (10). In contrast to our study, the invasion proba-
bilities of Northern European Seas were very low in ref. 10, which
was explained by the, on average, low environmental similarity to
most other ecoregions worldwide. The reason for the elevated
invasion probabilities found in this study is that many algal species
predicted to be at high risk in Northern European Seas are native
to East Asian waters, which provide similar environmental con-
ditions to Northern European Seas. As both regions are highly
interconnected due to intense ship traffic, the probability to invade
from one region to the other is also high, resulting in the described
mutual exchange of species between these regions. This shows
that, although the overall patterns of both studies were similar,
observational data are important to further improve the predic-
tions of invasion hot spots.
Our model predicts that climate warming will lead to reduced

invasion probabilities in the tropics and elevated ones in temperate
regions, particularly in North America (Fig. 2). The reason is that
many species used in this study live in temperate to subtropical
ecoregions and were assumed to be adapted to water temperatures
of those regions. If water temperatures increase, these species will
find appropriate environmental conditions at higher latitudes than
inhabited now, whereas environmental conditions will get less
suitable in tropical regions. The highest increase in invasion
probability arises for the Northeast Pacific. For this ecoregion, the
by-far most important donor area constitutes the Northwest Pacific

(10), and an elevation of water temperatures in the Northeast
Pacific will increase the environmental match of both regions,
resulting in increased invasion probabilities. Indeed, a recent
finding of the Asian macroalga Sargassum horneri at the West
Coast of Mexico and the United States is likely is a consequence
of this increased environmental match (30), which further sup-
ports our model predictions.
Our model predicts the total invasion probability of a species to

be a hump-shaped function of the initially occupied number of
ecoregions (Fig. 3 A and B), the reason being that species with an
intermediate global distribution pose a large propagule pressure to
a comparatively large number of unoccupied ecoregions. This
pattern corresponds to the relationship of the colonization rate on
the number of occupied patches of classical metacommunities
models (31). In these models, the colonization rate of new patches
has to be zero if either none or all patches are occupied by a
species and positive in between, which indicates the close re-
lationship between both types of models.
The reliable prediction of invasion dynamics remains one of the

biggest challenges in invasion ecology. We here demonstrate an
approach for a robust validation of global invasion models, which
allows the assessment of the quality of model predictions. This
study highlights that the combination of invasion models with
observational data can essentially improve the predictions of in-
vasion probabilities. The model applied here can be easily adopted
to simulate the spread of other taxonomic groups (see ref. 29 for
an example of terrestrial vascular plants). Many online databases
emerged in recent years. Notable examples are the Delivering
Alien Invasive Species Inventories for Europe (DAISIE) (www.
europe-aliens.org), the Invasive Species Compendium by the
Centre for Agriculture and Bioscience International (CABI), or
the upcoming Global Register of Invasive Species (GRIS) by the
Invasive Species Specialists Group (www.issg.org), all of which
provide native and alien ranges of numerous species. It is there-
fore the logical consequence to combine invasion models with
available distributional data to improve the predictability of in-
vasion dynamics as shown here. The prediction of future invasions
is a prerequisite of efficient mitigation strategies, and the de-
termination of the species identity enables a targeted monitoring
of potential high-risk species.

Fig. 4. Invasion probabilities for a selection of six
algal species causing fish and shellfish poisonings
potentially harmful to humans. The selected algae
are known to produce toxic compounds causing the
respective poisoning of fish or shellfish. Black areas
denote the current distribution of species, whereas
colors indicate the invasion probability to an un-
occupied ecoregion. The total invasion probabilities
Ptot(Inv) expressed as the integration of all single
invasion probabilities are given in the subheading of
each panel.
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Materials and Methods
Data. As input variables, the model requires data about the arrival and de-
parture dates of single ships moving between ports, ship type, ship size, ballast
tank volumes, and environmental data of ports. The ship and route-specific data
(i.e., ship size, ship type, and arrival and departure dates) were obtained from a
large dataset of ship movements and ship characteristics provided by Lloyd’s
Register Fairplay (www.ihs.com), consisting of nearly 3 million ship voyages of
32,511 ships between 1,469 ports during 2007–2008 (10), and ballast tank
volume data taken from the American Bureau of Shipping (32). The shipping
intensity was assumed to be constant in time (but see the discussion about the
reliability of using recent ship movement data to predict historic spreading
dynamics in SI Text). Sea surface temperatures and nutrient concentrations
(nitrate, phosphate, and silicate) were obtained from the World Ocean Atlas
(WOA) (www.nodc.noaa.gov), providing 50-y averages at 1° spatial resolution.
Surface salinity data of ports were calculated from port-specific data of water
densities provided by Lloyd’s Register Fairplay (www.sea-web.com/portguide.
html) for most of the ports (69%). Water densities were recalculated to salinities
using temperatures taken from the WOA. For the remaining ports, salinities
were taken from theWOA. Future sea surface temperatures were obtained from
the Coupled Model Intercomparison Project (CMIP5) (cmip-pcmdi.llnl.gov/cmip5/)
providing predictions of sea surface temperatures using an Intergov-
ernmental Panel on Climate Change scenario of intermediate greenhouse
gas concentration (RCP6) (33). The average sea surface temperatures were
calculated for each marine ecoregion for 2040–2060.

Model. We applied a vector-based model of marine invasion to calculate the
probability of invasion by global shipping between 1,469 major ports worldwide
(10). In the original form, the model consisted of three independent probabili-
ties: the probability to be alien, P(Alien); the probability of introduction, P(Intro);
and the probability of establishment, P(Estab). Here, however, whenwe combine
the model with observational data of species distributions, the term P(Alien),
constituting a theoretical estimator for biogeographical dissimilarity is not re-
quired anymore. We therefore removed P(Alien) from the model.

According to ref. 10, the probability of introduction,

PrðIntroÞ=
�
1− e−λBr

�
e−Δtr, [1]

is a function of exchanged ballast water volume Br on route r between donor
port i and recipient port j and travel time Δt. Pr(Intro) is obtained for each
single ship on a certain route r taken from the ship movement dataset. Br is
calculated as Br = zWrð1− zWr=VrÞδr , with Wr being the ship type- and ship
size-specific amount of released ballast water in cubic meters obtained from
regression fits shown in figure S1 in ref. 10, Vr denoting the ship size-specific
mean volume of ballast tanks of a ship, δr representing the number of stop-
over ports on route r, and z being the fraction of nonzero releases
depending on the type and the size of a ship. Note that in ref. 10, z was
falsely described as the fraction of zero releases, although it has to be the
fraction of nonzero releases as stated here.

The probability of establishment,

PijðEstabÞ= αe
−1

=

2

h�ΔTij
σT

�
+
�ΔSij

σS

�i
, [2]

was modeled as a Gaussian function of differences of water temperature ΔTij
and salinity ΔSij of donor port i and recipient port j standardized by the
width of the respective ecological niche σT and σS. α represents the basic
probability of establishment. To analyze the influence of climate warming
on model predictions, Pij(Estab) was calculated using future sea surface
temperature (2040–2060; Data) for the recipient regions.

The probability of invasion from port i to port j is given by the comple-
ment of species failing to invade on all ship routes rij connecting both ports,

PijðInvÞ= 1− ∏
rij

�
1−PrðIntroÞPijðEstabÞ

�
. [3]

The invasion probabilities between ports were aggregated accordingly to
obtain the invasion probabilities Pj(Inv) from the ecoregions occupied by the
respective species to each unoccupied ecoregion j. The total invasion prob-
ability was calculated for each species as Ptot(Inv) = 1 −∏j[1 − Pj(Inv)] and the
maximum probability of invasion as Pmax(Inv) = max(Pj(Inv)).

Although some modifications of the model structure and parameteriza-
tions slightly improved the accuracy of model predictions (SI Text and Table
S1), we adopted the basic model version and the parameterization provided
by ref. 10 for consistency. A more detailed description of the model, its

parameterization, the input variables, and tests of the robustness of this
approach are provided in ref. 10.

Model Validation. For model validation (i.e., the quantitative assessment of the
quality of model predictions using observed data), we compiled data of native
and alien distributions of marine alien species from the CABI Invasive Species
Compendium (www.cabi.org/isc/). In a first step, we used the implemented
search engine of CABI with the search term “(HAB marine) AND ballast water”
to filter for species in marine habitats likely to be transported by ballast water.
We manually removed species not fitting to this category as, e.g., freshwater
species with a high salinity tolerance were included as well, with the exception
of Dreissena polymorpha as this species is known to be transported by open-sea
vessels (34). We also removed regions with uncertain invasion status of a spe-
cies, which resulted in a total of 40 species with known native and alien dis-
tributions from various taxonomic groups ranging from algae to fish. The
following species were used for model validation: Acanthogobius flavimanus,
Acentrogobius pflaumii, Ascidiella aspersa, Asterias amurensis, Austrominius
modestus, Caprella mutica, Carcinus maenas, Caulerpa racemosa var. cylin-
dracea, Charybdis hellerii, Ciona intestinalis, Ciona savignyi, Crassostrea virgin-
ica, Crepidula fornicata, Diplosoma listerianum, Dreissena polymorpha, Ensis
directus, Gracilaria salicornia, Grateloupia turuturu, Hemigrapsus sanguineus,
Hemigrapsus takanoi, Hemimysis anomala, Littorina littorea, Marenzelleria
neglecta, Microcosmus squamiger, Mnemiopsis leidyi, Musculista senhousia,
Mytilus galloprovincialis, Palaemon elegans, Palaemon macrodactylus, Phyllo-
rhiza punctata, Polyandrocarpa zorritensis, Pseudochattonella verruculosa,
Pterois volitans, Rapana venosa, Rhithropanopeus harrisii, Schizoporella errata,
Spartina alterniflora, Styela plicata, Ulva pertusa, and Ulva reticulate. CABI
provides distributions usually on a country basis, but in some cases also sub-
national units such as states, provinces, or islands are provided. We translated
the distributional data provided by CABI into marine ecoregions, thereby as-
suming that if a species was listed for a geographic unit bordering or located in
a certain ecoregion, the species can be found in the whole ecoregion including
the ports. This may result in an overprediction of the actual distribution of
species, but given the highly patchy sampling coverage of the world’s coast-
lines, simulations can only be done on a coarse geographic resolution, which
necessitates such simplifications. A marine ecoregion represents an area of
similar environmental conditions and species assemblages, and thus it seems
likely that a species can also be found in other parts of that ecoregion. We
adopted the classification of “marine ecoregions of the world” by Spalding
et al. (35) but considered only those ecoregions that have at least one port
listed in our shipping database, resulting in a total of 90 marine ecoregions. To
assess the reliability of using recent ship movement data for the prediction of
historic spreading dynamics of alien species, we compiled a list of the years of
first record of the alien species in a region (Table S3). Inevitably, the year of first
record is not provided for all species and all regions due to the lack of data.

For each species, we calculated the mean temperature and salinity require-
ments from their known native distribution by taking the average of all native
ecoregion means of temperature and salinity. The obtained species-specific
ecological niche was used as input variables Ti and Si in Eq. 2. Note that i now
represents the geographic area used to calculate the ecological niche of a
species. As initial condition, we set all ports where the species is considered to
be native as “occupied” and all other ports to “unoccupied.” We then applied
the model to calculate the invasion probability to all unoccupied ports. The port
with the highest invasion probability was identified and set to occupied. This
was repeated until a threshold of a very low invasion probability was reached,
which corresponds to a hypothetical nearly worldwide coverage of the species.
The sequence of invaded ports was transformed to the sequence of invaded
ecoregions, thereby removing duplicated ecoregions. For each time step of the
modeled spread, we compared the predicted alien distribution of the species
with the observed alien distribution obtained from CABI and calculated the
goodness-of-fit of predicted and observed alien distributions. The goodness-of-
fit was estimated by the number of correctly predicted invaded ecoregions (true
positives) divided by the sum of false predictions (false positives plus false
negatives). At the time step of the largest goodness-of-fit value, the deviation
between predicted and observed distribution was lowest, and the respective
distribution was selected as the best fit. This procedure was repeated for each
of the 40 species and the median of the resulting 40 goodness-of-fit values was
taken as the overall goodness-of-fit of the model.

To test the robustness of our model predictions, we performed an ex-
tensive sensitivity analysis, thereby varying the simulation process, the model
parameterization, and the distributional data used for model validation, and
discuss the reliability of the ship movement data for our modeling purpose (SI
Text).
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Model Application. After model validation, we calculated invasion probabilities
using the global distribution of marine algae taken from AlgaeBase (www.
algaebase.org) to identify future invasion hot spots and high-risk species of
marine algae. We used the species names listed as “accepted names” in the
database. AlgaeBase provides detailed information for numerous algal species,
including their current global distribution, but AlgaeBase does not provide the
information whether a species is native or alien. We therefore adopted the
finding of previous studies that the best forecasting tool to predict the invasion
risk is whether the species has naturalized elsewhere (20), which is sometimes
even taken as the only permanent predictor of invasion success (21). We
screened the literature and other databases to compile a list of algal species
with a known invasion history. We started with a list of algal species provided
by Molnar et al. (36) and added other species from the literature and online
databases and finally ended up with 97 algal species with a known invasion
history. For these species, we selected their current distribution from AlgaeBase.
For each species, the ecological niche represented by Ti and Si was calculated as
the mean temperatures and salinities of all occupied ecoregions. We stan-
dardized the geographic units to the level of a country, island, or marine
ecoregion depending on the level of detail provided by AlgaeBase. For large
countries (United States, Canada, Russia, and Australia), we distinguish sub-
national units such as provinces or states if this information was provided. For
example, if a species was listed for Australia, we assigned all ecoregions sur-
rounding Australia to this species, whereas if the species was found only at the
island of Tasmania or at the coast of Queensland, we only selected the re-
spective ecoregions. Assuming that the species is homogeneously distributed in
the respective geographic unit (along a country coast or in a marine ecoregion),
all ports in that area were set to occupied. For instance, if the species was found

in the North Sea, we set all North Sea ports to occupied, whereas if the species
was listed for Germany, we selected the North Sea ports and Baltic Sea ports
located in Germany as occupied ports. For each species, we then calculated the
invasion probabilities to any unoccupied port.

Spreading Potentials of Species. The invasion probabilities obtained from the
model applied to the AlgaeBase data were used to characterize the spreading
potential of each species. This was done by introducing a threshold e of invasion
probability ranging from 10−9 to 10−1. For each species, the ecoregions outside
the species’ native range with an invasion probability above « were counted.
This can be interpreted as those ecoregions that can be invaded by the species
given a certain threshold value. While successively reducing «, the number of
these ecoregions with an invasion probability above « increased, but at dif-
ferent rates depending on the species-specific spreading potentials resulting in
species-specific invasion curves. To characterize the interspecific differences, we
calculated the area bounded between all pairs of invasion curves and applied a
hierarchical clustering algorithm using the open-source software package R
(37). The distances between clusters were calculated with “Ward’s minimum
variance method” (38), which aims at finding compact spherical clusters. We
tested other clustering algorithms as well, which, however, did not change the
results significantly.
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