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Abstract

Xenobiotic compounds undergo a critical range of biotransformations performed by the phase I, II, 

and III drug-metabolizing enzymes. The oxidation, conjugation, and transportation of potentially 

harmful xenobiotic and endobiotic compounds achieved by these catalytic systems are 

significantly regulated, at the gene expression level, by members of the nuclear receptor (NR) 

family of ligand-modulated transcription factors. Activation of NRs by a variety of endo- and 

exogenous chemicals are elemental to induction and repression of drug-metabolism pathways. The 

master xenobiotic sensing NRs, the promiscuous pregnane X receptor and less-promiscuous 

constitutive androstane receptor are crucial to initial ligand recognition, jump-starting the 

metabolic process. Other receptors, including farnesoid X receptor, vitamin D receptor, hepatocyte 

nuclear factor 4 alpha, peroxisome proliferator activated receptor, glucocorticoid receptor, liver X 

receptor, and RAR-related orphan receptor, are not directly linked to promiscuous xenobiotic 

binding, but clearly play important roles in the modulation of metabolic gene expression. 

Crystallographic studies of the ligand-binding domains of nine NRs involved in drug metabolism 

provide key insights into ligand-based and constitutive activity, coregulator recruitment, and gene 

regulation. Structures of other, noncanonical transcription factors also shed light on secondary, but 

important, pathways of control. Pharmacological targeting of some of these nuclear and atypical 

receptors has been instituted as a means to treat metabolic and developmental disorders and 

provides a future avenue to be explored for other members of the xenobiotic-sensing NRs.
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Introduction

A vast array of enzymes are responsible for the biotrans-formation and metabolism of 

xenobiotic compounds in the human body. Xenobiotic metabolism occurs by three generally 

accepted steps, termed phase I (functionalization), phase II (conjugation), and phase III 

(transporters) (Handschin and Meyer, 2003; Miller and Willson, 2001; Moore, 2001; 
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Omiecinski et al., 2003; Sonoda and Evans, 2003; Xie et al., 2004). Key proteins involved in 

these steps include cytochrome p450 (CYPs), UDP-glycosyltransferases (UGTs), 

glutathione-S-transferases (GSTs), sulfotransferases (SULTs), organic anion transporters 

(OATs), multidrug-resistance proteins (MDRs), and multidrug-resistance–associated 

proteins (MRPs). They can be collected into three groups that mirror the phases: oxidative 

drug-metabolizing enzymes (CYPs) (Gonzalez, 1988); conjugative enzymes (UGTs, GSTs, 

SULTs) (Larrieu and galtier, 1988); and transporter proteins (OATs, MDRs, MRPs) (Scheper 

et al., 1992). It has been well established that endo- and xenobiotic compounds regulate the 

expression of these drug-metabolizing enzymes through their direct binding to nuclear 

receptors (NRs) (Miller and Willson, 2001; Sonoda and Evans, 2003; Xie et al., 2004; 

Remmer, 1972; Xie and Evans, 2001) (Table 1).

Pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are the master 

xenobiotic sensors that bind a variety of ligands and modulate a number of drug-

metabolizing enzymes (Kliewer et al., 2002; Moore et al., 2000; Kachaylo et al., 2011) 

(Table 1). Farnesoid X receptor (FXR), vitamin D receptor (VDR), hepatocyte nuclear factor 

4 alpha (HNF4α), peroxisome proliferator-activated receptor (PPAR), glucocorticoid 

receptor (GR), liver X receptor (LXR), and RAR-related orphan receptor (ROR) are also 

involved in the regulation of genes critical for drug metabolism (Kang et al., 2007; Chiang, 

2009; Zhang and Guan, 2007; Reschly and Krasowski, 2006; Hong and Tontonoz, 2008; 

Einstein et al., 2004) (Table 1).

X-ray crystallographic studies focused on the ligand-binding domain (LBD) of these NRs 

have greatly assisted our understanding of the recognition of endo- and xeno-biotic 

compounds (Figure 1). Nuclear receptors form a conserved three-layered, α-helical 

sandwich that makes up the bulk of the LBD. This canonical make-up is composed of 

several α-helices (α1–10, AF) and β-sheets that cap the ligand-binding pocket (as depicted 

in Figure 1A) for PXR, and similar compositions are found in the other NRs (shown in 

Figure 1). The LBD of various NRs envelop sizeable binding cavities that are able to attract 

and bind to a wide variety of compounds. Each receptor contains divergent secondary 

structural elements in the lower left portion of the LBD (Figure 2A). Further, the amino-acid 

composition of this region supports the differentiation between these NRs (Figure 2B). 

However, examination of the domain in its entirety reveals relative conservation of both 

secondary structure and amino-acid composition between these nine NRs (Figure 2C) (Holm 

et al., 2008). A compilation of LBD crystallographic studies is presented in this review in an 

attempt to better understand the collaboration between the ligand-binding properties of NRs 

and activation of drug-metabolizing genes.

PXR and CAR as master xenobiotic sensors

Regulation of drug-metabolizing genes

It was originally noted in the 1970s that certain pharmaceutical compounds regulated the 

expression of a number of enzymes capable of protecting against toxic effects of xenobiotics 

(Selye, 1971). The receptor capable of sensing the presence of such exogenous compounds 

and, ultimately, the upregulation of various metabolizing enzymes was later identified in 

mice as PXR (Blumberg et al., 1998; Kliewer et al., 1998). Activation was shown to be 
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induced by natural steroids as well as synthetic corticoids. The human ortholog, originally 

named PXR as well as SXR (steroid and xenobiotic receptor) and PAR (pregnane-activated 

receptor), was found to be highly expressed in the liver and intestine, where drug 

metabolism and clearance is most prominent. Regulation of the phase I major drug-

metabolizing enzyme, CYP, was additionally found to be linked to xenobiotic activation of 

PXR (Kliewer et al., 1998; Goodwin et al., 1999, 2002; Brobst et al., 2004). CAR was also 

identified as a xeno-biotic-activated receptor that regulates CYP enzymes through a variety 

of steroidal and xeno-compounds (Forman et al., 1998; Kawamoto et al., 1999; Sueyoshi et 

al., 1999). Similar to PXR, CAR is primarily expressed in the liver, and a multitude of 

ligands are known to activate CAR, though less so than PXR. A distinction of CAR is its 

activity in the absence of ligands in nonhepatic cells. Although PXR has well-established 

basal activity in in vitro reporter gene assays, it appears that PXR is as active in vivo as CAR 

in the absence of ligand.

Metabolic transformation by phase I drug metabolism prepares xenobiotics for subsequent 

reactions through oxidative mechanisms, creating sites for phase II metabolizing enzymes to 

act upon (Zamek-Gliszczynski et al., 2006). By utilizing phase III–based efflux pumps, such 

xenobiotic metabolites are then excreted from cells to complete the metabolic cycle. It is 

becoming increasingly accepted that xenobiotics sensors, such as PXR and CAR, coordinate 

the regulation of all three phases of drug metabolism. Because they are involved in the 

transcriptional control of UGTs, SULTs, GSTs, as well as hydrolases and acetyltransferases, 

CAR and PXR are capable of regulating ~90% of all phase II metabolism (Wells et al., 

2004; Evans and Relling, 1999; Bélanger et al., 2003; Nowell and Falany, 2006; Glatt, 2000; 

Pool-Zobel, 2005; Haimeur et al., 2004; Weinshilboum, 2006). This allows for the 

conjugation of a wide variety of compounds, both xeno- and endobiotics. As such, PXR and 

CAR are able to induce detoxifying enzymes to protect against the toxicity derived from the 

metabolism of endogenous compounds and xenobiotics, facilitating their excretion. Several 

xenobiotics, acting as agonists or antagonists, interact with both PXR and CAR, either to the 

same effect or with inverse responses. Notably, because CAR and PXR can be activated by 

the same ligands, upregulation of overlapping sets of genes can create collaborative 

mechanisms for eliminating toxic compounds (Moore et al., 2000, 2002; Timsit and Negishi, 

2007; Ekins et al., 2002; Maglich et al., 2002). PXR and CAR utilize traditional mechanisms 

of gene regulation, which include ligand binding, nuclear translocation, dimerization with 

their binding partner, retinoid X receptor (RXR), and binding to a variety of response 

elements in the promoter regions of regulatory enzymes (Stanley et al., 2006).

PXR as a promiscuous xenobiotic sensor

Originally characterized as critical in the role for detecting endogenous pregnanes, the types 

of compounds that activate PXR has, since then, been expanded to include several 

xenobiotics and pharmaceutically relevant compounds (Takeshita, 2001; Ricketts et al., 

2007; Sonoda et al., 2005; Cheng et al., 2009). Deemed as a central xenobiotic sensor, PXR 

is expressed predominantly in areas of the human body along the traditional metabolic 

pathway (liver and gastrointestinal tract) (Kliewer et al., 1998; Lehmann et al., 1998; 

Bertilsson et al., 1998). PXR ligands are structurally and chemically unique, such as 

phenobarbital, rifampicin, dexamethasone, and hyper-forin, further supporting PXR's role as 
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a master xenobiotic sensor (Goodwin et al., 1999; Watkins et al., 2003; Waxman and 

Azaroff, 1992; Shi et al., 2010) controlling a number of phase I–III metabolizing enzymes. 

In addition to xenobiotic activation, PXR has also been shown to be activated by a number 

of endogenous ligands (pregnanes, bile acids, and vitamins) (Kliewer et al., 1998; Xue et al., 

2007). These endobiotics control the induction of a number of genes involved in bile acid 

metabolism and transport, cholesterol homeostasis, and protection from toxic endobiotics 

(Uppal et al., 2005). The promiscuity of PXR has been validated by ligand-binding assays, 

establishing that PXR is activated by the direct binding of compounds within its flexible 

ligand-binding cavity, a unique feature of this receptor.

PXR LBD properties

A number of crystallographic studies of the LBD of PXR have been conducted since its 

initial discovery as a crucial regulator of drug metabolism. Crystal structures have been 

elucidated of both the apo- and ligand-bound form. Some of these complexes include the 

cholesterol-lowering drug, SR12813, the macrocyclic antibiotic, rifampicin, hyperforin from 

St. John's Wort, as well as the anti-HIV (human immunodeficiency virus) drug, 

PNU-142721 (Watkins et al., 2003; Xue et al., 2007; Wang et al., 2008; Noble et al., 2006; 

Cheng and Redinbo, 2011; Watkins et al., 2001; Chrencik et al., 2005).

The overall structure of the PXR LBD is shown in Figure 3A and adopts the classical helical 

sandwich observed in other nuclear-receptor LBD structures (Figure 1A). The ligand-

binding pocket residues (magenta) envelop a large volume capable of accommodating a 

variety of compounds. Further, PXR has the capability to expand its binding pocket to allow 

for larger compounds (e.g., rifampicin), as evidenced by the increase in volume of space in 

the binding pocket from ~1,300 Å3 for the SR12813-bound structure to ~1,600 Å3 for the 

rifampicin-bound structure [Figure 3A, calculated by Computed Atlas of Surface 

Topography of proteins (CASTp); Dundas et al., 2006; Binkowski et al., 2003]. This 

conformational change results in the disordering of residues 229–235, 310–317, and 178–

210 (Figure 3B) (Chrencik et al.,2005). An in-depth analysis of the LBD reveals a generally 

hydrophobic pocket, with a few polar residues and basic residues adding additional potential 

interactions for ligands (Figure 3C). The overall size change of the binding pocket, when 

comparing different ligand sizes, can be distinguished in Figure 3C.

Several studies have shown that Ser247, Gln285, His407, Met243, Trp299, and Phe420 are 

consistently involved in direct protein/ligand interactions in human PXR LBD complex 

structures (Watkins et al., 2001, 2003; Chrencik et al., 2005; Teotico et al., 2008). It has also 

been observed that a number of other residues lining the pocket may also interact with the 

ligand or simply enclose the cavity (Figure 3C). It has also been hypothesized that 

cooperativity exists between coregulator binding to the AF-2 region of PXR's LBD and 

ligand stability in the ligand-binding pocket (Orans et al., 2005; Ingraham and Redinbo, 

2005). Although not directly involved in ligand binding, PXR contains a novel secondary 

structural element, five-stranded antiparallel β-sheet that results in a unique homodimeric 

interface adjacent to the ligand-binding pocket. Although most NRs contain two to three 

stranded β-sheets, this element does not result in the formation of a homodimer species for 

other NRs, CAR included. Several studies have shown that the PXR homodimer is 

Wallace and Redinbo Page 4

Drug Metab Rev. Author manuscript; available in PMC 2016 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



biologically relevant (Noble et al., 2006), and the full implications of this oligomer interface 

have yet to be completely elucidated.

CAR xenobiotic binding, overlap with PXR, and constitutive activity

Similar to PXR, CAR has been shown to bind to a wide variety of xeno- and endobiotic 

compounds that result in the induction or repression of drug-metabolizing enzymes 

(Kachaylo et al., 2011; Forman et al., 1998; Kawamoto et al., 1999; Sueyoshi et al., 1999; di 

Masi et al., 2009; Suino et al., 2004; Wei et al., 2000; Xie et al., 2000; Chang, 2009; Sakai et 

al., 2006; Baskin-Bey et al., 2006). CAR is known to modulate the expression of some of the 

same genes as PXR (CYPs, GSTs, UGTs, SULTs, and so on) (Yanagiba et al., 2009; Xu et 

al., 2009; Kohle and Bock, 2009; Dong et al., 2009; Buckley and Klaassen, 2009; 

Echchgadda et al., 2007; Chen et al., 2007). The functional overlap between PXR and CAR 

leads to a sophisticated method of drug clearance and detoxification through coordinated 

regulation of metabolic genes. Although both nuclear receptors can be activated by the same 

ligand, different modes of gene regulation are resultant. For example, phenobarbital is 

known to activate both PXR and CAR; however, activation of PXR by this compound results 

in increased expression of CYP3A, whereas CAR activation leads to CYP2B upregulation 

(Kawamoto et al., 1999; Sueyoshi et al., 1999; Waxman and Azaroff, 1992; Zelko and 

Negishi, 2000; Martin et al., 2003). A similar effect has also been demonstrated for 

rifampicin activation (Nannelli et al., 2008).

CAR is unique, relative to other NRs, in its ability to maintain constitutive activity, even in 

the absence of a bound ligand (Jyrkkärinne et al., 2008; Dussault et al., 2002; Windshügel 

and Poso, 2007; Windshügel et al., 2005, 2007; Xu et al., 2004). Alternative activation 

pathways are integrated into the overall function of CAR that are more indirect, independent 

of xenobiotic activation. Maintained in an inactive state through cytoplasmic localization by 

chaperone molecules (e.g., CAR cytoplasmic retention protein, heat shock protein 90) 

(Kawamoto et al., 1999; Kobayashi et al., 2003), CAR is then released through the action of 

an inducing compound, which allows the nuclear translocation of CAR and its subsequent 

activation of genes (Timsit and Negishi, 2007). Relatively unclear at this point, the 

mechanism of translocation is thought to be dependent on protein phosphatase activity, 

followed by response element recognition and DNA binding (Blattler et al., 2007; Shindo et 

al., 2007). Because of the regulation of CAR's activity by other proteins and biochemical 

pathways versus ligand-based activation, CAR appears to utilize a complex mode of 

transcriptional activation, relative to other members of the NR family.

CAR LBD crystal structures and analysis

Atomic resolution studies of CAR's LBD include mouse CAR in apo form and human CAR 

in complex with its heterodimeric binding partner, RXRα (Shan et al., 2004; Xia and 

Kemper, 2005). The CAR LBD adopts similar secondary structural elements as other NRs 

(Figure 1B). The size of the ligand-binding pocket is smaller than that of PXR (Figure 4A), 

with a calculated pocket volume of ~700 Å3 for the CITCO-bound CAR LBD (calculated 

using CASTp). Although CAR is less promiscuous than PXR, the smaller pocket size of 

CAR appears to result in a more-stable ligand-bound complex than PXR, resulting in better 

packing of the AF-2 helix in the active conformation. The stability that coactivator 
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recruitment provides to PXR upon ligand binding may instead be conferred to CAR through 

the more-compact, smaller ligand-binding pocket, with or without a bound compound.

Further analysis of the amino-acid properties of the ligand-binding pocket reveals a largely 

hydrophobic pocket, with polar, acidic, and basic residues lining the cavity (Figure 4B). The 

hydrophobic nature of the binding pocket is similar to PXR in nature; however, the size 

limitation of the pocket, no known malleability of the pocket, as well as the incorporation of 

a greater variety of residue properties support the conclusion that the activity of CAR, 

although promiscuous, is modulated by a smaller variety of ligands, compared to the 

plethora that activate PXR. An examination of the two human CAR-ligand–bound structures 

currently deposited in the Protein Data Bank show that there is no significant conformational 

change or disordering of structural elements in the ligand-binding pocket (Figure 4B), as 

occurs in the LBD of PXR.

Splice variants and implications

The canonical sequences for PXR and CAR [PXR.1 (434 residues, Uniprot ID O75469-1) 

and CAR.1 (352 residues, Uniprot ID Q14994-1)] maintain the three-domain structure of all 

formal NRs, with a DNA-binding domain, hinge region, and the LBD. The LBD for PXR.1 

consists of residues 205–434 and the LBD of CAR.1 103–352. A number of splice variants 

exist for each of these NRs, resulting in insertions and deletions throughout the full-length 

sequence. Focus will be placed on those splice variants concentrated around the LBD as well 

as their implication for ligand binding and gene regulation.

The major PXR splice variant is PXR.2, which lacks 111 nucleotides, resulting in the 

deletion of 37 amino acids in the LBD (Lin et al., 2009). This variant of PXR represents 

6.7% of all PXR transcripts, with PXR.3 representing 0.33% (Koyano et al., 2004). Studies 

have discovered that PXR.2 has a reduced basal activity level as well as decreased ligand-

induced (rifampicin and corticosterone) (Lamba et al., 2004; Koyano et al., 2004) 

transcriptional activation. Further, PXR.2 failed to activate CYP3A4 upon treatment with 

smaller ligands, such as deoxycholic acid, oxysterols, and bile acids (Lin et al., 2009; Lamba 

et al., 2004; Koyano et al., 2004; Reschly et al., 2008). The 37 residues missing from PXR.2 

(Figure 5A) are a portion of the ligand-binding pocket of PXR.1, and it is to be expected that 

the ligand binding of properties of PXR.2 would be drastically altered. This could be a 

potential explanation for the loss of trans-activation upon ligand treatment. Both the 

canonical PXR.1 and PXR.2 are coexpressed in the liver, and it has been shown that PXR.2 

regulates the overall activity of PXR.1 by repressing transactivation (Lamba et al., 2004). 

Indeed, it was also found that coregulator recruitment to PXR.2 is different than PXR.1; 

corepressors are retained by PXR.2, but coactivators show little binding (Lin et al., 2009). 

The two major splice variants of PXR, PXR.2 (lacking 37 residues in the LBD) and PXR.3 

(lacking a 41-amino-acid deletion in the LBD) appear to be similar in predicted fold to more 

canonical NRs. These same residues are absent in such NRs as FXR, LXR, CAR, RXR, and 

ER (Ekins et al., 2002).

There are 26 splice variants (Lamba et al., 2004) for full-length CAR, with CAR LBD 

variants involving the entire deletion of exon 5 and/or 7 (Lamba et al., 2004; van der Vaart 

and Schaaf, 2009), as well as deletions of exon 4 (which constitutes a portion of the N-
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terminal LBD), partial deletions of exon 9 (C-terminal end), and insertions throughout the 

LBD. The major splice variants of CAR involve the deletion of exon 7 (Figure 5B), which 

includes variants 3, 5, 8–11, and 16–21, and involve the elimination of major helices that 

line the ligand-binding pocket. These variants are unable to bind response-element DNA and 

are unable to lead to the transactivation of the major drug-metabolism enzymes, CYP2B, 

CYP3A4, UGT1A1, and MDR1 (Lamba et al., 2004; van der Vaart and Schaaf, 2009).

Additional CAR splice variants are created through the combination of deletion and 

insertions sites around exon 7 and deletions of exons 4–9 (Figure 5B). Splice variants 1, 6–7, 

12, 14–15, and 23–24 incorporate an insertion on either side of exon 7. CAR variants lead to 

a number of consequences, resulting in altered gene expression (Auerbach et al., 2003, 2005, 

2007; Arnold et al., 2004). Insertions on the N-terminal side of exon 7 result in decreased 

DNA binding to response elements, decreased interactions with various coactivators, and 

increased specificity for activation of CYP2B and MDR reporters, but decreased induction 

of CYP3 and UGT genes. Insertions on the C-terminal side of exon 7 lead to complete loss 

of response element binding and no activation of CYP2, CYP3, UGT, and MDR genes. 

Consequences of exon 5 and partial exon 9 deletion are varied: Removal of exon 5 results in 

a premature termination and loss of CAR expression; partial exon 9 deletion results in 

decreased DNA binding, loss of transactivation, and no interaction with coactivators.

Splice variants of PXR and CAR result in a number of deleterious or altered effects on gene 

transactivation, coregulator recruitment, as well as ligand binding. LBD splicing results in 

potentially dramatic changes in the structural elements surrounding the ligand-binding 

pockets and, consequentially, leads to such altered characteristics as mentioned above. 

Currently, no crystal structures have been solved of any PXR or CAR splice variants; 

however, this is perhaps not unexpected because of the predicted loss of secondary structural 

elements, and thus stability, within the helical sandwich that defines formal NRs. It is clear, 

though, that the presence of such splice variants serve to modulate the activities of PXR and 

CAR. The altered characteristics of the PXR and CAR variants, as described above, yield 

LBDs that resemble NRs not directly involved in xenobiotic sensing, such as FXR, LXR, 

and others. Removal of several residues surrounding the ligand-binding cavity (Figure 5) 

most likely results in a smaller pocket, significantly limiting ligand promiscuity and binding. 

This not only would reduce the ability to regulate the vast array of drug-metabolizing 

enzymes, but also may have a profound effect on coregulator recruitment, which is known to 

be linked to the type of ligands that bind to these two NRs (Zhang et al., 2011; Xu et al., 

2002).

Tissue distributions

Considered as the preliminary responders to xeno- and endobiotic recognition, it is expected 

that PXR and CAR are highly expressed in tissues at the entry points for xenobiotic 

metabolism in the body. For example, these NRs are most notably expressed in the liver 

(both), intestinal tract (both), and kidney (PXR) (Kliewer et al., 1998; Lehmann et al., 1998; 

Bertilsson et al., 1998; Baes et al., 1994), key tissues involved in initial drug metabolism, 

transportation, and reabsorption. CAR is additionally expressed in much lower levels in the 

heart, skeletal muscle, brain, kidney, and lung, but the exact function in these tissues is not 
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fully understood (Choi et al., 1997; Swales and Negishi, 2004) and may relate to its 

constitutive activity. As a key influencer of protective measures in the body, PXR is more 

widely expressed, found in the lung, stomach, blood monocytes, reproductive organs, heart, 

bone, and brain tissues (Lamba et al., 2004; Bauer et al., 2004). It is also clear that the 

expression levels of both CAR and PXR are regulated by the presence of xenobiotics (Huss 

and Kasper, 2000; Pascussi et al., 2000), further exemplifying their intricate involvement in 

biotransformation and metabolism. Other NRs also control PXR and CAR expression, 

suggesting secondary measures for xenobiotic sensing and metabolic regulation (Kliewer et 

al., 2002; Matic et al., 2007; Modica and Bellafante, 2009; Khan et al., 2009; Peet et al., 

1998).

Additional nuclear receptors involved drug metabolism

LXR

The LXRs were originally identified in the 1990s and were shown to be critical regulators of 

cholesterol, fatty acid, and glucose homeostasis (Peet et al., 1998; Lehmann et al., 1997; 

Janowski et al., 1996; Willy et al., 1995). Two isoforms were identified (α and β) and were 

shown to be sterol sensors, activated by oxysterol cholesterol derivatives (Lehmann et al., 

1997; Janowski et al., 1996). LXRα is most notably expressed in the liver, kidney, intestine, 

adipose, macrophages, lung, and spleen (Janowski et al., 1996). The LXRβ isoform is 

expressed ubiquitously, resulting in its original name, ubiquitous receptor (Song et al., 1994, 

1995). As with other NRs, the LXRs form a heterodimer with RXR upon ligand activation, 

then binding the LXR response-element sequences (Korf et al., 2009). LXRs are known to 

increase cholesterol removal and to decrease endogenous cholesterol synthesis and dietary 

absorption; however, LXRs also have the ability to activate proteins involved in lipogenic 

activity (Ouvrier et al., 2009a, 2009b; Larrede et al., 2009; Zelcer et al., 2009; Delvecchio et 

al., 2008). More recently, the drug-metabolizing SULT enzymes have been shown to be 

regulated by LXRs (Uppal et al., 2007). Synthetic LXR agonists have been shown to be 

effective in mice models of diabetes, inflammation, and other disorders, and glucose 

tolerance and bile-duct–induced cholestasis are both conferred through LXR agonism (Hong 

et al., 2008; Dushkin et al., 2009; Cermenati et al., 2012).

Several crystal structures of the LXRα- and β-ligand-binding domains have been elucidated, 

both in the apo and liganded form. The overall secondary structure is similar to other NRs 

(Figure 1C), with the three-layered helical sandwich, and the ligand-binding pocket in the 

lower portion of the LBD. In addition to the helices surrounding the binding pocket, a beta-

hairpin caps the lower left side, similar to the VDR and GR (Figure 6A). The ligand-binding 

pocket is classified as one of the smaller ones, relative to other NRs (Figure 7A). The overall 

composition of the pocket residues are conserved, with a largely hydrophobic nature and a 

few polar residues lining the cavity (Figure 7A; Table 2). Additional basic and acidic 

residues are also present, resulting in a pocket that confers specificity for LXR ligands.

GR

The GR is a ubiquitously expressed NR that binds to cortisol and other glucocorticoids 

(Wira and Munck, 1970; Svec and Rudis, 1981; Munck et al., 1972). Upon activation, GR 
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forms a homodimer complex, which results in transactivation of various drug-disposition 

genes, and regulates the body's response to inflammation (Ray et al., 1995; Laue et al., 

1988). The GR also serves as a repressor by binding to various other transcription factors 

and preventing them from activation. This particular characteristic affects other xenobiotic-

sensing nuclear receptors, such as CAR, PXR, and RXR (Pascussi et al., 2000, 2003), and 

likely serves as another way to modulate drug-metabolism pathways. CYP2 appears to be 

responsive to GR activation, as well as bile acid transport mechanisms (Pascussi et al., 

2003).

The clinical significance of the GR is wide reaching; the GR is involved in the central 

nervous system, influences endocrine systems, is involved in psychological disorders, such 

as Cushing's disease, and plays a role in other responses to stressors, such as inflammation 

(Schwabe et al., 2009; van der Akker et al., 2008; Ebisawa et al., 2008; Raddatz et al., 

2004). As such, drugs targeting the GR are frequently utilized for a number of ailments. 

Although largely advantageous, the integration of the GR in both neural and physical 

networks can also lead to unwanted side effects upon prolonged glucocorticoid treatment, 

ranging from osteoporosis, metabolic issues, stunted development, psychosis, and 

depression (Kawano and Kumagai, 2007; Ng and Celermajer, 2004).

The crystal structure of the LBD of the GR has been determined in complexes with various 

agonists and antagonists, as well as coactivators and corepressors. Although the sequence 

identity of GR is low, relative to other NRs, the overall LBD structure is similar (Figure 1D). 

As with LXRα, the left portion of the pocket cavity is closed off by a beta-hairpin structural 

element (Figure 6A). Further, the ligand-binding pocket is elon-gated, when compared with 

other LBDs (Figure 7B). This suggests a less-stable binding pocket and, perhaps, allows for 

a different mode of ligand binding along the vertical axis versus the horizontal. Sugar-linked 

steroidal compounds would also add additional size to the base ligand, which requires a 

larger binding pocket to compensate. Enveloping the ligand-binding pocket is a mostly 

hydrophobic cavity, with polar residues, as well as charged side chains that confer specificity 

(Figure 7B; Table 2).

VDR

The VDR, also known as the calcitriol receptor, is an NR that binds the endogenous ligand, 

1,25-dihydroxyvitamin D3 (Campbell and Adorini, 2006). The VDR is also receptive to 

many other ligands, such as glucocorticoids, and bile acids, such as lithocholic acid 

(Makishima et al., 2002). Upon ligand activation and binding to its binding partner, RXR, 

the VDR is known to regulate calcium homeostasis, cell proliferation and differentiation, 

and other immunological and microbial functions (Campbell and Adorini, 2006). VDR is 

most prominently found in the intestine, bone, kidney, and parathyroid glands, with limited 

expression in liver tissue (Gascon-Barré et al., 2003). Regulation of phase I–III drugs are 

known to be attributed to VDR activation and repression, such as CYP2 and CYP3 enzymes, 

as well as SULTs (Drocourt et al., 2002; Echchgadda et al., 2004). Further, there is an 

inverse relationship between FXR and VDR as regulators bile acid homeostasis; as such, 

calcitriol inhibits FXR activation (Honjo et al., 2006). Because CYP3 and VDR expression 

is high in the intestine, it should be noted that vitamin D is involved in first-pass drug 
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metabolism. Vitamin D analogs have been utilized to treat a number of diseases, such as 

rickets, osteoporosis, and psoriasis (Zintzaras et al., 2006; Arita et al., 2008; Malloy et al., 

2007). Preliminary studies have shown that such analogs are effective at treating immune 

disorders and tumor malignancies, as well (Meyer et al., 2012; Valrance et al., 2007). 

Similar to PXR, VDR activation by the intestinal bacterial metabolite, lithocholic acid 

(LCA), leads to CYP3A induction, which serves to detoxify bile acids (Makishima et al., 

2002). Modulating VDR activity can alter bile acid transport and detoxification, although the 

clinical application of this has not been established.

Crystal structures of the LBD of VDR have been elucidated as bound to vitamin D and 

several analogs. The VDR maintains a high sequence and structural similarity to steroid and 

thyroid hormone receptors (Figure 1E). As with LXR and GR, beta-hairpin element 

encapsulates the ligand-binding pocket (Figure 6A) to produce a relatively small space 

(Figure 7C). The environment surrounding the binding cavity is mainly hydrophobic, with 

polar and basic residues to incorporate ligand specificity (Figure 7C; Table 2).

ROR

There are three different RORs (α, β, and γ; Jetten et al., 2001), and each is expressed in 

separate tissues and have distinctive functions (Carlberg et al., 1994). The exact role of 

RORβ is not fully understood; it is highly expressed in the brain and retina and is believed to 

have a critical function in rod and cone photoreceptor cell development, as well as in bipolar 

disorder (Carlberg et al., 1994; Stehlin-Gaon et al., 2003; André et al., 1998). There are two 

types of RORγ: γ1 and γt (γ2). RORγ1 is expressed in several tissues, including the liver, 

adipose, skeletal muscle, and kidney, whereas the expression of RORγt is restricted to 

certain cell types in the immune system (Medvedev et al., 1996). RORγ is known to control 

the development of lymphoid tissues and plays a role in thymopoiesis (Kurebayashi et al., 

2000; He et al., 1998; Villey et al., 1999). RORα is found in a variety of tissues, such as the 

testis, kidney, adipose, and liver, and is most highly expressed in the brain (Matsui, 1997; 

Hamilton et al., 1996). RORα is involved in lymph node and cerebellum development, lipid 

metabolism, and immune responses (Matsui, 1997; Delerive et al., 2001; Sashihara et al., 

1996). It remains unclear what the identity of endogenous ROR ligands are, but several 

studies suggest that cholesterol and sulfonated metabolites, as well as melatonin and 

thiazolidinediones, might induce ROR-guided responses (Kallen et al., 2002; Missbach et 

al., 1996; Wiesenberg et al., 1995). Additionally, there is evidence that retinoids may act as 

antagonists for the α and γ isoforms (Stehlin-Gaon et al., 2003). Although RORα is most 

directly linked to drug metabolism, mice knockout studies show that RORγ also appears to 

be involved (Kang et al., 2007).

RORα can bind either as monomers or homodimers to ROR DNA response elements, and 

the associated transcriptional activities can have positive or negative effects on the 

expression of drug-metabolism genes (Carlberg et al., 1994). Studies toward the 

pharmacological targeting of RORα appear far off, because even the identity of the 

endogenous RORα ligand is not certain. Additionally, ligands believed to be involved in 

ROR activation or repression also bind to other NRs. Thus, specifically targeting ROR may 

prove difficult. However, a recent structural and biochemical study of RORγ provides 
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evidence that hydroxycholesterols lead to coactivator promotion (Jin et al., 2010; Wang et 

al., 2010). These results may lead to the production of synthetic agonists for further ROR 

testing.

The LBD structures of RORα (Figure 1F) and RORγ have been determined with a number 

of different ligands. As with VDR, GR, and LXR, RORα has a beta-hairpin cap on the lower 

left side of the binding pocket; however, this NR incorporates an additional helical cap, 

which would serve to not only restrict ligand binding and types, but could also provide 

additional ligand contacts (Figure 6B). The ligand-binding pocket of RORα is elon-gated, as 

with the GR, and is similarly hydrophobic, with both polar and basic contacts (Figure 7D; 

Table 2). This larger pocket is able to bind a variety of RORα ligands, including cholesterol-

based compounds, as well as retinoids and melatonin.

FXR

Also known as the bile acid receptor, the major function of the FXR is the regulation of bile 

acid export and of bile acid and lipid homeostasis (Parks et al., 1999; Makishima et al., 

1999; Wang et al., 1999). The first NR shown to be activated by bile acids, many natural 

FXR ligands are known, the most notable being chenodeoxycholic acid. FXR is highly 

expressed in the liver, gut, and kidney, all of which are part of enterohepatic circulation and 

targets of bile acids (Lu et al., 2001). In addition, though, expression has been noted in other 

tissues, such as the heart, eye, spleen, reproductive organs, and smooth muscle cells (Rizzo 

et al., 2006; Bishop-Bailey et al., 2004; Huber et al., 2002). As with many NRs, FXR forms 

a heterodimer with RXRα and binds to inverted and everted repeats, resulting in regulation 

of SULTs, MRP, and critical metabolizing genes, as well as other xenobiotic receptors 

(Laffitte et al., 2000; Urizar et al., 2000; Kast et al., 2002; Song et al., 2001). LCA, which 

activates VDR, has an inverse agonistic effect on FXR, suggesting that these two NRs 

cooperate in bile acid metabolism (Yu et al., 2002). It is also noteworthy that monomeric 

FXR activates the expression of UGTs (Barbier et al., 2003b); most formal orphan receptors 

similar to FXR are obligate heterodomers with RXR.

FXR is known to negatively regulate bile acid uptake systems through the receptor's 

interaction with small heterodimer partner (SHP). This prevents the overaccumulation of 

toxic bile acid metabolites, inverse to the properties of the VDR (Honjo et al., 2006; Yu et 

al., 2002). In addition, CYP3A, UGTs, and SULTs are shown to be effected by FXR 

activation or repression (Gnerre et al., 2004; Miyata et al., 2006; Lu et al., 2005). More 

recently, liver regeneration and liver protection from carcinogenesis has been linked to FXR 

(Zhang et al., 2012; Fiorucci et al., 2012). Although not a major drug target, the 

development of targeted compounds has the potential to precisely control bile-acid–

regulatory systems and to modulate NRs directly involved in xenobiotic sensing, such as 

PXR and PPAR. Additionally, because FXR is closely integrated in liver protection and 

repair, controlling this NR's function could alter drug-treatment methods where liver damage 

is of concern.

The FXR LBD crystal structure has been determined as being bound to agonist ligands and 

coactivator peptides. Although the LBD maintains the canonical secondary structural 

elements of other NRs (Figure 1G), unlike the other NRs presented here, though, the left 
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side of the ligand-binding cavity is enclosed solely by a helical cap, instead of the common 

beta-hairpin feature (Figure 6C). The binding pocket is similar to LXR and VDR—smaller 

and compact, with a nearly complete hydrophobic nature (Figure 7E; Table 2). FXR is 

expected to contain binding-cavity properties similar to VDR because they bind closely 

related or identical compounds, such as LCA.

HNF4α

Highly expressed in the liver, intestine, kidney, and pancreas, HNF4α plays an important 

role in organ function, particularly development and maintenance of the liver (Miquerol et 

al., 1994; Zhong et al., 1994). Acting as a homodimer, HNF4α can regulate gene 

transcription in the absence of ligands, but its activity is affected by fatty thioesters (Ladias 

et al., 1992; Sladek et al., 1990). Drug transporters that are suppressed by bile-acid–activated 

receptors FXR and SHP, like the organic cation transporters 1 and 2 and organic anion 

transporter 1, are instead transactivated by HNF4α, detailing a mechanism of modulation 

between NRs (Saborowski et al., 2006; Popowski et al., 2005). This can be extended to PXR 

and CAR that both contain promoters regulated by HNF4α (Kamiya et al., 2003; Ding et al., 

2006). Various CYP and SULT enzymes contain HNF4α-binding sites, providing a direct 

link between this NR and critical drug-metabolizing enzymes (Echchgadda et al., 2007; 

Tirona et al., 2003; Jover et al., 2001). Pharmacological targeting of HNF4α may prove 

deleterious because it plays such an integral role in the regulation of many essential NRs that 

control xeno- and endobiotic metabolism.

There are a number HNF4α LBD crystal structures, complexed with fatty acids and 

coactivator fragments (Figure 1H). Secondary structural elements that surround the cavity 

include the helical sandwich, as well as a beta-hairpin cap (consistent with many other NRs) 

and an additional small helical cap further closes the lower left portion (Figure 6D). The 

ligand-binding pocket of HNF4α is relatively compact, coinciding with the thin nature of the 

fatty acid compounds it is known to bind (Figure 7F; Table 2). The environment is heavily 

hydrophobic, but also contains a number of polar residues, and a charged basic residue.

PPAR

The three forms of PPAR (PPARα, PPARβ, and PPARγ) are lipid sensors and controllers of 

lipid homeostasis, adipocyte differentiation, development, metabolism, and tumorigenesis 

(Brown and Plutzky, 2007; Willson et al., 2000). PPARα is expressed mainly in the heart, 

liver, and kidney brown fat, whereas PPARγ is expressed in those locations as well as white 

adipose, colon, pancreas, and spleen (Brown and Plutzky, 2007; Willson et al., 2000). 

PPARβ is most notably found in the brain and skin tissue (Girroir et al., 2008). PPARα and 

PPARγ are both known to regulate drug-metabolism genes and, as such, are regular 

pharmaceutical targets for different purposes. PPARα activation leads to induction of 

organic cation transporters, involved in drug uptake, as well as SULTs and UGTs after 

activation by fibrates (Luci et al., 2006; Barbier et al., 2003a; Fang et al., 2005). PPARγ is 

critical for adipogenesis and insulin response, and treatments with thiazolidinediones are 

used to regulate these factors (Szatmari et al., 2006).
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Crystal structures of the PPARγ LBD (Figure 1I) consist of all three forms of PPAR and 

have been determined to be bound to agonists, antagonists, and coactivator and -repressor 

peptide fragments. PPARγ contains a beta-hairpin element that caps the lower left of the 

ligand-binding pocket, and an additional helix-beta-helix element further encloses the cavity 

(Figure 6E). The binding pocket is comparatively large, similar in size and shape to RORα 

or GR, and would support the binding of a variety of compounds (Figure 7G; Table 2). This 

is confirmed by the number of basic residues interspersed throughout the largely 

hydrophobic pocket.

RXRα is a binding partner for gene regulation

Obligate RXRα recruitment

Upon ligand binding, a number of NRs are complexed with a common binding partner 

(RXRα) (Mangelsdorf and Evans, 1995). Several studies have shown that this heterodimer 

complex is required for response element recognition and DNA binding (Mangelsdorf and 

Evans, 1995; Shulman et al., 2004; Zechel et al., 1994; Mader et al., 1993). Because the 

basic makeup of a formal NR includes only a single DNA-binding domain (DBD), the 

recruitment of RXRα is necessary to incorporate an additional DBD to bind two repeating 

hexameric half-sites. Understandably, RXRα is expressed in the liver, kidney, skin, and 

intestinal tissues, where NRs requiring heterodimerization are present (Mangelsdorf et al., 

1990). NRs involved in drug metabolism requiring RXRα include PXR, CAR, FXR, VDR, 

PPAR, and LXR (Orlov et al., 2003; Chandra et al., 2008; Zhang et al., 2006; Cai et al., 

2010; Son and Lee, 2009; Conde et al., 2008). Although RXRα assists many NRs in the 

sensing and binding of various response elements, it should be noted that its presence is not 

essential to the other receptors involved in drug metabolism. These NRs include GR, ROR, 

HNF4α, as well as FXR that can specifically regulate UGT enzymes in the absence of 

RXRα (Lu et al., 2005; Rauch et al., 2010; Cieśla, 2011). As such, RXRα appears to be 

critical for NRs that exhibit xenobiotic sensing properties, such as PXR and CAR, whereas 

NRs with a more-indirect effect on metabolism do not require heterodimerization.

Atypical receptors and receptor-like proteins

Aryl hydrocarbon receptor (AhR)

The AhR is technically classified as a member of the basic helix-loop-helix transcription 

factors (Fukunaga et al., 1995; Burbach et al., 1992). Although not a member of the NR 

family, AhR consists of four major domains, some of which are strikingly similar to that of 

the canonical domain composition of nuclear receptors, including a DBD and LBD 

(Fukunaga et al., 1995). There is an additional PAS-A domain, and a large transcriptional 

activation binding domain. The AhR has been shown to function in a manner reminiscent of 

NRs, such as being initiated by ligand binding. The AhR nuclear translocator is then 

recruited to AhR, and the resulting complex binds to the response elements in the promoter 

region of a number of drug-metabolizing genes, such as CYPs, UGTs, and GSTs (Köhle and 

Bock, 2007; Fujii-Kuriyama, 2005). The AhR is known to bind include many synthetic 

xenobiotic compounds, such as halogenated and polycyclic aromatic hydrocarbons (Denison 

et al., 2002; Denison and Nagy, 2003), including dioxins (environmental toxins), 
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polychlorinated dibenzofurans (known environmental carcinogens and mutagens), 

polychlorinated biphenyls (found in coolants and subsequently identified as carcinogens), 

benzo(a)prene found in coal tar, tetracene (an organic semiconductor), and other aromatics 

(Denison and Nagy, 2003). With the ability to bind a wide range of xenobiotic compounds, 

AhR is believed to act as a detection mechanism, sensing potentially toxic foreign 

compounds and facilitating their eventual metabolism and elimination (Denison et al., 2002; 

Baba et al., 2005). However, there are no known crystal structures of the AhR.

SHP

Although classified as an NR, the SHP is unique in that it consists of the classical LBD, but 

lacks the conserved NR, DBD (Seol et al., 1996). The primary function of the SHP is 

understood to be the repression of other NRs by forming inactive heterodimer complexes 

(Johansson et al., 2000; Zhang et al., 2011). Crystal structures of the SHP reveal that it 

adopts the canonical helical sandwich motif and thus most likely forms heterodimers 

similarly to formal NRs (Johansson et al., 2000; Lee et al., 1998; Ortlund et al., 2005). The 

SHP has been shown to affect many of the key NRs that modulate the activity of drug-

metabolizing genes, including the GR, FXR, LXR, HNF4α, PPARγ, PXR, and CAR (Zhang 

et al., 2011). Potential models of SHP repression include the blocking of the coactivator-

binding site, increased recruitment of corepressors, and inhibition of DNA binding (Zhang et 

al., 2011). The repressive function of the SHP serves to alter the regulation of drug-

metabolizing genes and thus plays a critical role in how xenobiotics are treated in the human 

body. Recently, activation of the SHP has been shown to be ligand induced upon interaction 

with certain compounds, such as retinoid-related molecules (Miao et al., 2011). This ligand-

dependent activation was shown to repress certain CYP enzymes involved in bile acid 

regulation. Additional studies are also exposing further potential synthetic ligands that could 

be utilized to modulate SHP activity and its repressive functions (Xia et al., 2011, 2012).

Nuclear factor erythroid 2-related factor 2 (Nrf2)

Nrf2 is a family member of the basic leucine zipper transcription factors and is known to 

induce the gene expression of antioxidant enzymes (Aleksunes and Manautou, 2007). Nrf2 

is most notably expressed in the kidneys, muscle, lung, heart, liver, and brain (Moi et al., 

1994). Activated by reactive oxygen species and electrophiles, Nrf2 is involved in the 

regulation of oxidative stress (OS) through mechanisms similar to the NR family, including 

binding to antioxidant response elements and modulating constitutive and ligand-induced 

expression. Normally sequestered by the Kelch-like ECH-associated protein 1 (Keap1), 

influences by OS or electrophiles leads to the releases of Nrf2 and translocation to the 

nucleus, followed by gene transcription (Itoh et al., 1999; Kang et al., 2004). Phase II 

enzymes, such as GSTs, UGTs, and SULTs, are known to be effected by Nrf2 activation, as 

well as the drug-efflux–transporter proteins, Mrps (Itoh et al., 1997; Yueh and Tukey, 2007; 

Alnouti and Klaassen, 2008). Structural studies of Nrf2 have been limited to only a portion 

of the protein; however, sequence alignments reveal that it contains six highly conserved 

Nrf2/ECH homology domains, which allow for several interactions, including Maf 

dimerization, binding to Keap1, protein stability and transactivation, binding to cyclic 

adenosine monophosphate response element-binding proteins, and degradation signaling 

(Motohashi et al., 2004; Motohashi and Yamamoto, 2004; Nioi et al., 2005; McMahon et al., 
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2004). Drug targeting of Nrf2 is being investigated as a therapeutic method for OS-related 

ailments, as is the case with bardoxolone methyl, used to treat advanced chronic kidney 

disease (Reisman et al., 2012; Pergola et al., 2011).

Coregulator recruitment and involvement in metabolism

Implications of agonist versus antagonist binding

NRs have the ability to exhibit dramatically different effects dependent upon the receptor's 

identity, the chemical makeup of a target ligand, and the tissue involved. These effects range 

from agonism, antagonism, and inverse agonism (Gronemeyer et al., 2004). Agonists, such 

as endogenous ligands and other synthetic mimics, bind to the LBD of NRs and lead to 

upregulation of gene expression, whereas antagonism works to competitively block agonist 

binding and prevents gene induction (Brzozowski et al., 1997). A major accompanying 

factor to ligand binding is the location of the AF helix and the coregulator-binding surface 

found in formal NRs (Zhang et al., 2011; Xu et al., 2002). Agonist-bound NRs allow for 

favorable coactivator binding, as is the case in the “agonist-bound” state (Figure 8). 

Antagonism of these NRs causes a conformational change (Figure 8), preventing coactivator 

recruitment, but allowing for corepressors, such as silencing mediator of retinoic acid and 

thyroid hormone receptor 1 and 2, to bind with greater affinity. The connection between 

ligand-binding specificity and stability and with coregulator binding has previously been 

documented for a number of NRs (Xu et al., 2004; Watkins et al., 2003). The proximity of 

the ligand-binding pocket and the AF-2 region, where cofactors are known to bind in crystal 

structures, further supports consequential interplay between the two. As such, regulation of 

gene expression by NRs are not only dependent on ligand binding, but are also additionally 

further tuned by coregulator recruitment.

Conclusions and future directions

NR regulation of drug-metabolism gene expression has been well documented. The 

structural basis for endo- and xenobiotic ligand binding in the LBD reveals conserved modes 

of binding for certain NRs, such as LXRα, VDR, and FXR, and more-disparate modes, as 

observed for GR, RORα, and PPARγ. The primary xenobiotic sensor, PXR, has the unique 

ability to alter the shape of its pocket and the positions of neighboring elements to 

accommodate a wide variety of large and small compounds. Coregulator recruitment has 

also been directly correlated with agonist versus antagonist binding for the whole group of 

NRs considered. With the widespread tissue distribution of these NRs, nearly every critical 

tissue contains a NR known to regulate the key drug-metabolizing genes.

The discovery of agonists and antagonists has been noted for some NRs, but this does not 

extend to all. No synthetic, designed PXR antagonist, for example, has yet been created, 

though the implications of such a finding would have serious clinical applications for 

regulating gene expression. Additionally, more structural studies of LBD complex structures 

with RXRα, coupled with biological experiments, could provide a deeper understanding of 

coregulator recruitment to each NR and, possibly, could then be extrapolated to local or 

systemic gene induction or repression.
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Figure 1. 
(A–I) LBD crystal structures of the nuclear receptors, PXR, CAR, LXRα, GR, VDR, RORα, 

FXR, HNF4α, and PPARα. Each LBD contains the conserved, three-layered α-helical 

sandwich, along with structural elements that line the lower left portion of the ligand-

binding pocket.
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Figure 2. 
(A) Structural overlay of all nine NR LBD crystal structures. In blue are the conserved α-

helical bundles, and colored in tan are the divergent structural features that line the binding 

pocket. (B) Amino acids that are found to envelop the lower left ligand-binding pocket for 

each NR. Identities of these regions are disparate in terms of both length and chemical 

property. (C) Structural alignment and sequence identity performed by Dali (Holm et al., 

2008) using known LBD crystal structures reveals both primary and secondary similarities.
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Figure 3. 
(A) Crystal structure of the PXR LBD, with the ligand-binding pocket residues highlighted 

in magenta. A space-filling model of the binding pocket is shown to better understand the 

cavity of the pocket. PXR has the unique ability to alter its pocket to allow for the binding of 

different chemical structures, as exemplified by the pocket volume change from ~1,300 

(SR12813 bound) to ~1,600 Å3 (rifampicin bound). (B) Overlay of the SR12813-bound 

(gray/yellow) and rifampicin-bound (cyan/green) PXR LBDs. Of note is the conformational 

change required to accommodate the large, macrocyclic compound, rifampicin, which 

results in three regions in the LBD becoming disordered (yellow). (C) Chemical properties 

of the residues that surround the ligand-binding pocket. Amino acids are colored to represent 

the chemical property: orange (hydrophobic); green (polar); blue (basic); red (acidic); 

yellow (cysteine); and white (glycine).
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Figure 4. 
(A) Crystal structure of the CAR LBD. Ligand-binding pocket residues are highlighted in 

magenta. The cavity of the binding pocket is represented as a space-filled model. The CAR 

pocket has a calculated volume of ~700 Å3. (B) Chemical properties of the residues that 

surround the CAR ligand-binding pocket. Amino acids are colored to represent the chemical 

property: orange (hydrophobic); green (polar); blue (basic); red (acidic); yellow (cysteine); 

and white (glycine).
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Figure 5. 
(A) The WT PXR LBD (cyan) with residues that would be removed in the various PXR 

splice variants highlighted (PXR.2, left; PXR.3, right; yellow). The deletion of these 

residues would still maintain the canonical LBD structure, but would also result in a smaller 

binding pocket, which would alter PXR's ability to bind to larger xenobiotics. (B) WT CAR 

LBD (cyan) with residues predicted to be deleted from CAR splice variants (but still 

maintaining the classical LBD structure) (yellow/green). Exon 7 is a major deletion in many 

of CAR's variants (left, yellow) and would affect ligand binding. Shown on the right, exon 5 

(predicted, yellow), exon 9 (predicted, green), and various insertion and deletion sites 

(magenta) are highlighted, describing additional alterations to CAR, resulting in many of the 

known splice variants.

Wallace and Redinbo Page 34

Drug Metab Rev. Author manuscript; available in PMC 2016 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
(A) Overlay of VDR, LXRα, and GR showing secondary structural elements that cap the left 

portion of the ligand-binding pocket; these NRs contain a beta-hairpin cap to enclose the 

cavity. (B) RORα ligand-binding pocket is capped by a beta-hairpin, as with other receptors, 

and an additional alpha-helical cap on top of the beta-hairpin element. (C) Binding cavity of 

FXR is enclosed only by an alpha-helical cap, but not by a beta-hairpin. (D) HNF4α 

maintains the beta-hairpin structural element and incorporates half of an alpha-helical cap. 

(E) The PPARα ligand-binding pocket is enclosed by a beta-hairpin element found in most 

NRs and a unique helix-beta-helix feature to add unique specificity to this receptor.
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Figure 7. 
(A–G) Details of the ligand-binding pockets for the nine NR LBDs. Residues are color 

coded based on chemical properties: orange (hydrophobic); green (polar); blue (basic); red 

(acidic); yellow (cysteine); and white (glycine). For each illustration, approximate 

measurements of binding cavities are determined to compare their relative size and shape to 

each other. As further detailed in Table 2, each pocket is heavily hydrophobic in nature, with 

various elements of polarity and charge to facilitate ligand-binding specificity.
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Figure 8. 
Coregulator recruitment for agonist versus antagonist binding. (A) Crystal structures of the 

PPARα LBD have been solved in complex with an agonist/coactivator (left) and antagonist/

corepressor (right). Comparing the two structures, it is noted that the AF helix changes 

conformation dramatically upon antagonist binding, producing a unique site for corepressor 

binding. (B) RXRα LBD crystal structures complexed with agonist/coactivator (left) and 

antagonist/corepressor (right) elements. As with other NRs, the consequences of antagonist/ 

corepressor binding are evident in the conformational change of the AF helix.
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Table 1

List of formal NRs and atypical receptor-like proteins known to be involved in drug-metabolism gene 

regulation.

Formal NRs involved in drug metabolism and disposition

NR Major gene types regulated Effects upon induction Key ligands and types

PXR CYPs, UGTs, GST, SULTs, 
MDR, MRP, OATs

Detoxification and biotransformation of 
xenobiotics, regulation of homeostasis

Various drug, drug-like, and endobiotic compounds

CAR CYPs, UGTs, GST, SULTs, 
MDR, MRP, OATs

Detoxification and biotransformation of 
xenobiotics, regulation of homeostasis

Small-molecule compounds

FXR
a CYPs, UGTs, SULTs, MRP, 

OATs, MDR, SHP, PPAR, PXR
Bile acid and lipid homeostasis, bile 
acid export and regulation of bile acid 
formation

Cholesterol-based compounds, farnesol 
metabolites, bile acid metabolites

VDR CYPs, SULTs, MRP, FXR Calcium homeostasis, cell proliferation 
and differentiation

1α,25-dihydroxyvitamin D3, LCA

HNF4α
b CYPs, SULTs, MDR, OATs, 

PXR, CAR, PPAR, FXR
Liver development, lipid and bile 
metabolism, bile acid synthesis

Fatty acids, linoleic acid

PPAR CYPs, UGTs, GSTs, SULTs, 
MDR, FXR, SHP

Fatty acid homeostasis, repression of 
bile acid synthesis, inflammation

Fatty acids, thiazolidinediones, hypolipidemic 
fibrates

GR
b CYPs, MRP, CAR, PXR, RXRα Immunoresponse, stimulation of bile 

acid transport
Glucocorticoids

LXR SULTs Regulation of cholesterol synthesis and 
absorption, modulation of bile acid 
toxicity and cholestasis

Cholesterol-based compounds (oxysterols)

ROR
b CYPs, SULTs, GSTs Triglyceride regulation, glucose 

homeostasis
Cholesterol, retinoic acids, melatonin, 
thiazolidindiones

RXR Dependent on binding Partner Dependent on binding partner Retinoic acids

Atypical NR-like proteins involved in drug metabolism and disposition

Receptor Major genes regulated Effects upon induction Key ligands and types

AhR CYPs, GSTs, UGTs, MRP, SULTs Cell-cycle control, metabolic adaptation to 
xenobiotics, chemical toxicity signals

Polycyclic aromatic 
hydrocarbons, halogenated 
aromatic hydrocarbons

SHP AR, ER, HNF4, LRH-1, LXR, PPAR, RAR, 
RXR, and other NRs

Repression of NRs through 
heterodimerization

Small, synthetic molecules, 
others unknown

Nrf2 GSTs, UGTs, SULTs, MRP, AhR Protection against oxidative and electrophilic 
stress

—

Detailed for each NR (top) are the major gene types regulated, the observed effects upon receptor activation, and some of the known ligands and 
ligand types. Further outlined are atypical and receptor-like proteins (bottom) that have been identified as modulators of drug metabolism and 
formal NRs with direct effects on gene regulation. For these informal receptors, the major genes and proteins regulated, the observed effects, and 
key ligand types are given.

a
Can function with or without RXRα.

b
Functions as monomer or homodimer.
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Table 2

Chemical properties of residues that line the ligand-binding pocket of NRs involved in drug metabolism.

NR Hydrophobic residues (orange) Polar residues (green) Basic residues (blue) Acidic residues (red) Cysteines (yellow) Glycines (white)

GR P541, M560, L563, L566, V571, 
A573, A574, W577, W600, 
M601, L603, M604, A605, 

A607, L608, F623, M646, L732, 
F749, L753

N564, Q570
Y663, Y735

R611, K667 E540 C622, C736 G567, G568

LXRα F254, F257, L260, A261, V263, 
I295, M298, L299, I313, F315, 
L316, F326, L331, F335, I336, 
I339, F340, V425, L428, L435, 

L439, W443

T258, S264, T302, 
T314, Q424

R305, H421 E267, E301 — —

VDR F150, L227, L230, A231, L233, 
V234, I268, I271, M272, W286, 
V300, A303, L309, L313, L404, 

L414, V418, F422

Y143, Y147, S237, 
S275, S278, Y295, 

Y401

R274, H305, H397 — C288 —

RORα W320, A324, I327, A330, V364, 
F365, M368, A371, V379, F381, 
F391, L394, F399, I400, V403

Y380, Y507
R370, H484

K326, R367, — C323, C396 —

FXR M265, I273, F284, L287, M290, 
A291, V325, M328, F329, I335, 
L348, I352, I357, M365, M450, 
L451, W454, F461, L465, W469

T270, T288, S332, 
S342, Y369

H294, R331, H447 — — G343

HNF4α V178, M182, L219, L220, 
A223, L234, L235, L236, V242, 
L249, M252, V255, I259, M342, 

I346

S181, Q185, N238, 
S256, Q345

R226 — — G222, G237

PPARγ I262, I281, F287, A292, I326, 
L330, M334, V339, L340, I341, 
M348, L353, F363, M364, F368

Q283, S289, S342
R288, K367, H449

K263, R280, — C285 G284

In coordination with Figure 7, residues are identified as either hydrophobic, polar, basic, acidic, cysteines, or glycines. It is noted that each binding 
pocket is mostly hydrophobic in nature, with patches of polar and charged residues to incorporate ligand specificity.
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