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Abstract

Objectives

To investigate the involvement of the primary motor cortex (M1) in the coordination perfor-
mance of karate athletes through transcranial magnetic stimulation (TMS).

Methods

Thirteen right-handed male karate athletes (25.0+5.0 years) and 13 matched non-athlete
controls (26.7+6.2 years) were enrolled. A single-pulse TMS was applied using a figure-
eight coil stimulator. Resting motor threshold (rMT) was determined. Surface electromyog-
raphy was recorded from the first dorsal interosseous muscle. Motor evoked potential
(MEP) latencies and amplitudes at rMT, 110%, and 120% of rMT were considered. Func-
tional assessment of the coordination performance was assessed by in-phase (IP) and anti-
phase (AP) homolateral hand and foot coordination tasks performed at 80, 120, and 180
bpm.

Results

Compared to controls, athletes showed lower rMT (p<0.01), shorter MEP latency (p<0.01)
and higher MEP amplitude (p<0.01), with a significant correlation (r = 0.50, p<0.01) between
rMT and MEP latency. Coordination decreased with increasing velocity, and better IP per-
formances emerged compared to AP ones (p<0.001). In general, a high correlation between
rMT and coordination tasks was found for both IP and AP conditions.

Conclusion

With respect to controls, karate athletes present a higher corticospinal excitability indicating
the presence of an activity-dependent alteration in the balance and interactions between
inhibitory and facilitatory circuits determining the final output from the M1. Furthermore, the
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high correlation between corticospinal excitability and coordination performance could sup-
port sport-specific neurophysiological arrangements.

Introduction

The primary motor cortex (M1) is a complex network of interconnected localized groups of
neurons, located in the frontal lobe of the brain,. The role of the M1 is to generate neural
impulses that control the execution of movement [1]. Heavily involved in voluntary move-
ments, the M1 shows a high degree of plasticity and adaptation, due to motor learning and
practice [2, 3], which determine modifications in the number of synapses, synaptic strength,
and topography of stimulation-evoked movement representations [4]. In particular, training
induces persistent encoded behaviors within the adult nervous system [5, 6] to allow the precise
execution of difficult motor tasks [7, 8].

Karate is considered as one of the most popular martial arts practiced worldwide [9]. It is
divided into two competitive disciplines: kata and kumite. Kata consists of prescribed
sequences of offensive and defensive techniques and movements, while kumite is a free form of
sparring against an opponent. In competitions, kata performers are judged based on specific
parameters: technique, rhythm, power, expressiveness of movements, and kime (i.e., short iso-
metric muscle contractions performed at the end of a technique) [10, 11]. The karate fight (i.e.,
kumite) requires high technical skills (i.e., kick and punch) with precision and high velocity to
adequately execute effective attack and defense techniques [12-15]. In addition, technical per-
formance in karate is considerably saturated by cognitive abilities and efficient attentional pro-
cesses allowing more time for preparation and organization of motor behavior and ensuring
quick and correct responses to visuospatial stimuli.

Because it requires a high level of coordination for the precise execution of technical skills in
static and dynamic conditions, karate could represent a valuable model to investigate the effects
of training on the corticospinal system excitability of athletes [16]. In fact, differences in motor
control between expert and novice karate athletes have been observed, mainly attributed to the
microstructure of white matter in the cerebellum and M1 [17].

As a non-invasive technique, transcranial magnetic stimulation (TMS) and neuroimaging
techniques have been largely used to investigate adaptive changes in human motor cortex [18,
19], contributing to understand how networks in the brain build and optimize the motor pro-
grams responsible for coordination of muscle activity involved in complex motor learning [5].
Due to the measurable characteristics of the motor evoked potential (MEP) from peripheral
muscles, motor cortex excitability has become a relevant topic in TMS studies [3]. The repeti-
tive practice of simple movements, such as ballistic movements of the digits [18] showed evi-
dence of motor cortex adaptations with similarity to motor learning processes. The
improvement in task performance was accompanied by an immediate increase in MEP
response, and cross-sectional studies have revealed comparable changes among individuals
with varying degrees of motor skill [20]. The motor cortex reorganization is highly dependent
on the specific behavioral demands of the training experience. Highly skilled racket players
have larger hand motor representation and enhanced MEP amplitudes compared with less pro-
ficient players and nonplaying controls [21]. Moreover, highly skilled volleyball players have
significantly larger and more overlapping representations of medial deltoid and carpi radialis
muscles, than runners [22]. Furthermore, TMS could be suitable for investigating the effect of
acute exercise on the excitability of the motor pathway [23]. In particular, augmented ampli-
tudes of MEP have been reported as a result of acute exercise bouts, substantiating the
increased neuronal excitability during fatigue [24-27]. Finally, the cortical excitability has been
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also used as a neurophysiological basis for the inter-limb coordination of young adults [28].
However, no study investigated the chronic effects of training in both MEP and inter-limb
coordination performance.

The aim of this study was to examine the differences between karate athletes and non ath-
letes in resting motor threshold (rMT) and MEP responses, and to analyze the relationships
between neural activity in M1 and inter-limb coordination performance. Therefore, we
hypothesized that athletes might show different cortical excitability in resting condition com-
pared to non athlete counterparts, and that such a difference might be correlated to inter-limb
coordination performances, thereby proving that better performance in motor coordination
test would reflect higher cortical excitability.

Materials and Methods
Participants

Thirteen right-handed male black belt-karate athletes (age: 25.0+5.0 years; height 176.6+6.3
cm; body mass: 78.4+3.6 kg) and 13 age-matched non athlete controls (age: 26.7+6.2 years;
height 176.0£7.1 cm; body mass: 80.1+7.1 kg) were recruited. All ssubjects were all right-
handed as revealed by the Edimburg inventory test [29]. The karate athletes were members of
the local karate team, regularly competing at national and international levels and undergoing
a training regimen of at least five 2-hr sessions'week ' for the previous 10 years. The control
subjects declared to be engaged neither in competitive, nor in amateur sports. The Institutional
Ethics Committee of the University of Foggia approved the study. Participants were provided
with comprehensive information regarding the possible risks and discomforts by TMS, and
were ensured that they were free to withdraw from the study at any time. Furthermore, a medi-
cal examination ascertained the absence of psychoactive or vasoactive drugs consumption, or
any other contraindication to TMS [30]. All subjects gave their written informed consent
before participation.

TMS and Electromyographic Recordings

To minimize possible circadian influences, measurements were performed between 2:00 and
4:00 p.m., with the subject sitting on an armchair in a quiet room. The motor cortex excitability
was evaluated using a 70-mm figure-of-eight coil connected to a Magstim Rapid” (maximum
output 2.2 T) Transcranial Magnetic Stimulator (Magstim Company Ltd, UK), placed over the
left motor cortex. Surface recording electrodes were placed over the first dorsal interosseous
(FDI) muscle. A mechanical arm maintained the handle of the coil tangential to the scalp with
the handle pointing backward at 45° away from the midline, while delivering stimulus. The
location of stimulation was identified on each subject’s scalp using the SofTaxic navigator sys-
tem (E.M.S. Italy, www.emsmedical.net). Individual resting motor threshold (rMT) was deter-
mined from the left motor cortex, according to a standardized procedure [31]. This threshold
has been defined as the minimum stimulation intensity needed to elicit an MEP of at least

50 pV with 50% probability (e.g. 5 out of 10 stimuli) in a fully relaxed muscle [31].

Therefore, to ensure the same relative intensity of stimulation across participants, the stimu-
lation intensity was set at 110-120% of the intensity that elicits rMT, considered as the ‘basic
unit of dosing’ [32].

Following TMS, MEP latencies (i.e., the velocity at which the neural signal is propagated
from the motor cortex to the muscle) and amplitudes (i.e., the magnitude of corticospinal excit-
ability) at rMT, 110% of rtMT (110%rMT), and 120% of rMT (120%rMT) were measured by
means of surface electromyography (EMG) recordings (Biopac MP150, BIOPAC Systems, Inc.,
CA, USA) in the first dorsal interosseus (FDI) muscle of the right hand. Using a classical belly-
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tendon montage, surface electrodes (1 cm, diameter) were placed in correspondence of the FDI
muscle (active electrode) and over the associated joint or tendon (reference electrode), whereas
the ground electrode was placed on the dorsal part of the forearm. The magnetic stimulator
was connected to the PC, and interfaces with the EMG recording software. The stimulator
sends a square wave signal (Trigger) each time it is activated. So on the EMG trace first was
shown the trigger and immediately after the muscle response. The latency time was considered
the time between the trigger itself (onset of the square wave) and the start of muscle response.

Raw EMG signals were processed and analyzed (Acknowledge software, version 4.1, BIO-
PAC Systems, Inc., CA, USA) with a high pass filter (cutoff frequency: 10 Hz). For rMT condi-
tion, five responses were averaged. For 110%rMT and 120%rMT conditions, ten responses
were averaged. We tested the protocol on left cortex for all subjects.

Interlimb Coordination Performance

Homolateral hand and foot coordination was evaluated by means of a field test [33], which
proved to discriminate the effects of training in situational and closed skill sports [34, 35].
Capranica et al. has been validated a field interlimb coordination test in children, adults, and
older individuals using the time of correct execution as the main dependent variable [36]. The
participants were seated shoeless on a table with elbows and knees flexed at 90 degrees. Observ-
ing the spatial and temporal constraints of the movement patterns, they had to perform cyclic
flexion and extension movements around the wrist and ankle joints with a 1:1 ratio. Two
homolateral coordination modes were tested: in-phase (IP) (i.e., association of hand extension
with foot dorsal flexion and hand flexion with foot plantar flexion) and anti-phase (AP) (i.e.,
association of hand flexion with foot dorsal flexion and hand extension with foot plantar flex-
ion). Each test condition was performed at 3 different frequencies (80, 120, and 180 bpm,
respectively) dictated by a metronome for a total duration of 60 s. During the 2-minute rest
between test trials, the subjects were allowed to stand. Following 15 seconds of the required
metronome pace, a “ready-go” command indicated the start of a trial. Using a stopwatch, an
observer measured the time (s) of correct execution from the beginning of the movement until
the subject failed to meet either the spatial and/or the temporal task requirements. To avoid
disagreement among observers, a single competent observer scored the inter-limb
performances.

Statistical Analysis

The R Project for Statistical Computing software (version 3.1.0) was used for statistical analy-
ses. Means (M) and standard deviations (SD) were calculated for each of the analyzed variables
and statistical significance was set at p < 0.05. The Shapiro-Wilk test was used to verify the
normal distribution of variables. T-test was used to ascertain differences between groups for
rMT. Analysis of variance (ANOVA) for repeated measure was performed to investigate the
differences between groups for MEP latency and amplitude. A 2 (Groups: Athletes, Controls) x
2 (Coordination Mode: IP, AP) x 3 (Execution Frequency: 80, 120, 180 bpm) ANOVA for
repeated measures was applied to the time (s) of correct execution of the inter-limb coordina-
tion test. If the overall F test was significant, Tukey’s post-hoc comparisons were used. Pearson
product-moment correlation was performed to ascertain the relationship between rMT and
MEP latency, and between rMT and coordination performances. Cohen’s effect sizes (ES) were
also calculated for significant differences. An ES <0.2 was considered trivial, from 0.3 to 0.6
small, <1.2 moderate, and >1.2 large, respectively.
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Fig 1. Motor Evoked Potential (MEP) Latency. Means and SDs of MEP latency in the three experimental
conditions for karate athletes and controls.

doi:10.1371/journal.pone.0155998.g001

Results

No discomfort or adverse effects during TMS were noticed or reported. In general, karate ath-
letes showed lower (p<0.01; ES = 1.7) rMT (57.3+4.3%) with respect to controls (64.8+4.5%).
Shorter MEP latencies (F(5,84) = 14.38; p<<0.0001) were observed in karate athletes. For MEP
latency, post-hoc analysis maintained differences between groups for rMT (p<0.01; ES = 1.8),
110% rMT (p< 0.01; ES = 0.73), and 120%rMT (p< 0.01; ES = 0.7) conditions (Fig 1). With
respect to controls, higher MEP amplitudes (F(3,56) = 146.9; p<0.001) were found in karate
athletes. Post-hoc analysis (Fig 2) showed differences between groups only for 110% rMT
(p<0.01; ES =7.1).

Fig 3 shows the interlimb coordination performances in the IP and AP conditions. Main
effects emerged for group (F(1,20) = 353.67, p<0.0001), with athletes showing higher values
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Fig 2. Motor Evoked Potential (MEP) Amplitude. Means and SDs of MEP amplitude in the three
experimental conditions for karate athletes and controls.

doi:10.1371/journal.pone.0155998.9002

PLOS ONE | DOI:10.1371/journal.pone.0155998 May 24, 2016 5/11



@‘PLOS | ONE

Corticospinal Excitability in Karate Athletes

20 - s . @ Athletes
OControls
60 4 * ok ok
* ok ok

Z 50
.2
g
2 40 4 * ok ok
o
3
Z 30 4
=3
O
2
o 20 4
ﬁ

10 4

0 4
80bpm 120bpm 180bpm 80bpm 120bpm ’ 180bpm
A In-Phase Anti-Phase
**=p<0.001 Frequency bf Execution

Fig 3. Interlimb coordination performance. Means and SDs of the time of correct execution of homolateral
hand and foot synchronized movements in relation to execution mode (i.e., in-phase and antiphase) and
velocity of execution (i.e., 80, 120, and 180 bpm) of karate athletes and controls.

doi:10.1371/journal.pone.0155998.9003

with respect to controls; frequency of execution (F(2,20) = 1593.72, p<0.0001), with higher val-
ues at the lower frequencies of execution; and for coordination mode (F(1,20) = 747.05,
p<0.0001), with better performances during the IP conditions with respect to AP ones. Signifi-
cant interactions emerged for frequency of execution x coordination mode (F(2,20) = 85.32,
p<0.0001) and for frequency of execution x group (F(2,20) = 57.09, p<0.0001). Except for the
time of correct execution at 80 bpm of the IP condition, post hoc analysis showed differences
between athletes and controls (ES range: 0.63-4.57).

Post hoc analysis for frequency of execution x coordination mode showed significant differ-
ences at 80 bpm IP vs 80 bpm AP (59.9+3.4 seconds vs, 51.4+15.1 seconds; p<0.001), 120 bpm
IP vs 120 bpm AP (51.0+13.6 seconds vs 27.6%5.0 seconds; p<0.01) and 180 bpm IP vs 180
bpm AP (23.7+17.5 seconds vs, 8.6£11.9 seconds; p<0.001) (Fig 4).

mIp

OAP

Time of correct executions (s)

80 bpm 120 bpm 180 bpm

Fig 4. Post hoc analysis for frequency of execution x coordination. Means and SDs of the time of correct
execution of homolateral hand and foot synchronized movements in relation to execution mode (i.e., in-phase
and antiphase) and velocity of execution (i.e., 80, 120, and 180 bpm).

doi:10.1371/journal.pone.0155998.9004
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Table 1. Pearson product-moment correlation.

Parameters Sample size Pearson's r p value
rMT vs MEP latency 26 0.5 <0.01
rMT vs IP 80 bpm 26 -0.37 n.s.
rMT vs IP 120 bpm 26 -0.44 <0.05
rMT vs IP 180 bpm 26 -0.57 <0.01
rMT vs AP 80 bpm 26 -0.63 <0.01
rMT vs AP 120 bpm 26 -0.41 <0.01
rMT vs AP 180 bpm 26 -0.72 <0.01

Correlation coefficients and p values for the relationship between rMT (%) and MEP latency (ms), and rMT
(%) and Interlimb task.

doi:10.1371/journal.pone.0155998.1001

Whilst a positive correlation (p<0.01) emerged between rMT and MEP latency, negative
correlations emerged between rMT and interlimb coordination performances (Table 1).

Discussion

The main findings of this study highlighted differences between groups in rMT, MEP, and
interlimb coordination, and significant correlation between rMT and MEP response, and
between rMT and coordination parameters. In particular, the lower rMT, shorter MEP latency
and higher MEP amplitude observed in karate athletes support the hypothesis that training
determines specific brain organizations to meet specific sport challenges. According to litera-
ture [5], in this study karate athletes showed different M1 excitability compared to controls,
substantiating the role of acquisition and maintenance of specific motor skills on plastic
changes in the controlling neural system. Similarly, a decrease in rMT was shown in subjects
trained to produce skilled digit movements on a piano, accompanied by an increase in the cor-
responding area of digit representation [19]. Furthermore, with respect to controls, subjects
trained on skilled ankle [37] or tongue tasks [38] also showed increases in the movement repre-
sentation area and MEP amplitude. The present results showed differences between groups in
MEP amplitude at rtMT and 110% rMT only. Whereas at 120% rMT the difference resulted not
significant. These results indicate that the differences between trained and untrained subjects
are observed only on the values of rMT, by increasing the intensity of stimulation, 110-120%
of relative rMT, disappear the differences in MEP amplitude. However increasing the intensity
of stimulation athletes showed shorter MEP latency demonstrating more efficiency in central
motor conduction time. Thus, in athletes, the velocity at which the neural signal is propagated
from the motor cortex to the muscle is higher than non-athletes in each condition.

According to the literature [33, 36, 34, 35], spatial and temporal constraints of synchronized
interlimb coordination tasks have been used to investigate the effects of chronic training on the
capability of the central nervous system to maintain a stable phase relation between segments
with different mechanical characteristics. Independently from training, the present findings
confirmed that interlimb coordination performances are function of frequency of execution
and coordination mode, with better performances shown on isodirectional tasks and at slower
execution frequencies [33, 39, 40]. However, at the lowest velocities of the IP condition karate
athletes succeeded in maintaining the synchronized movements for the total duration of the
test and showed a significant decrease only at the highest execution frequency, which requires
a high level of attentional monitoring. These results are in line with that reported for soccer
[34, 41, 42] and basketball [35] players, confirming that the practice of sports with high
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coordinative demands enhances the efficiency of those executive and attentive control func-
tions involved in complex motor behaviors. Furthermore, in the AP condition karate athletes
showed better performances with respect to sedentary counterparts, confirming that chronic
training assists players to avoid the spontaneous switch to easier IP movement patterns [33, 36,
34, 35, 41, 42], probably due to its positive effects on executive functions [43] in addition to an
enhanced attentional control [44]. Coordinated cyclic movements of the ipsilateral hand and
foot are more unstable and inaccurate when they are moved in opposite directions than when
they are moved in the same direction [19]. Furthermore, this test succeeded in discriminating
coordination performances between karate athletes and non athletes, contributing to the
understanding of the effects of training on movement coordination. For the IP condition, a sig-
nificant difference emerged for frequency of execution, indicating that karate practice can
improve even the more natural interlimb coordination. In particular, with increasing velocity
of execution, karate athletes did not show any decrement in performance between 80 bpm and
120 bpm, and show lower decrease in performance between 120 bpm and 180 bpm compared
to non athletes. This phenomenon reflects the higher coordination of professional karate ath-
letes. Also, in the AP condition, karate athletes always showed significantly better perfor-
mances than sedentary counterparts at 120 bpm and 180 bpm, indicating that chronic karate
practice helps athletes to overrule the easier movement patterns, which spontaneously emerge
under stressful conditions or during the acquisition of new skills. This study showed that
motor practice seems to induce changes in cortical excitability. The inputs from the environ-
ment, and also from motor practice, provide feedback for the motor system to accurately per-
form motor tasks and are essential for motor learning. However, reduced sensory function
results in decreased manual motor function and interferes with the recovery of voluntary
movements [45]. Neuroanatomical, imaging, neuromagnetic, and electrophysiological studies
have investigated the effect of motor learning. These studies have revealed increased activation
of the contralateral primary sensory cortex, supplementary motor area, dorsal premotor cortex,
posterior parietal cortex, and secondary sensory cortices bilaterally [46-48]. In fact, changes in
corticospinal excitability measured at rest, as in our study, may reflect the altered state of
circuits.

The significant negative correlation between rMT and MEP latency and positive correlation
between rMT and the coordination tests, suggest that the acquisition of new motor skill and
the repetition of complex movement, are associated to a high cortical excitability. Athletes’
changes in MT and MEP values might be the result of plasticity of the motor cortex, due to
sport practice which improves cortical excitability. It is commonly accepted role of an
increased MEP amplitude in the plasticity response that usually accompanies motor skill learn-
ing [49]. In fact as show by Cirillo et al. an increase in MEP amplitude of the target muscle fol-
lowing a simple motor-training intervention is thought to reflect use-dependent plasticity, via
long-term potentiation-like mechanisms in cortical circuits [50]. A similar increase in MEP
amplitude has been observed following visuomotor tracking in young subjects [51, 52], with
these complex tasks expected to rely more heavily on processing within cortical circuits and
demand more attentional focus for accurate performance [53].

Conclusion

The differences found in our study could be caused by better cortical connectivity due to train-
ing. In fact the adult brain has the ability to modify its organization (Brain plasticity) through
physiological mechanisms such as the repetitions of simple movements [21]. However in a
changing environment, brain plasticity enables the nervous system to ensure that proper acti-
vation of muscles may be acquired and maintained to serve the behavioural goal, and, recently,
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a genetic component has been observed for brain plasticity [54]. Therefore, further studies are
needed to clarify the nature of the differences emerged in cortical excitability between trained
and untrained subjects.
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