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Abstract

Alcoholic liver disease (ALD) progresses from a normal liver, to steatosis, steatohepatitis, fibrosis 

and hepatocellular carcinoma (HCC). Despite intensive studies, the pathogenesis of ALD is poorly 

understood, in part due to a lack of suitable animal models which mimic the stages of ALD 

progression. Furthermore, the role of IL-17 in ALD has not been evaluated. We and others have 

recently demonstrated that IL-17 signaling plays a critical role in development of liver fibrosis and 

cancer. Here we summarize the most recent evidence supporting the role of IL-17 in ALD. As a 

result of a collaborative effort of Drs. Karin, Gao, Tsukamoto and Kisseleva, we developed several 

improved models of ALD in mice: 1) chronic-plus-binge model that mimics early stages of 

steatohepatitis, 2) intragastric ethanol feeding model that mimics alcoholic steatohepatitis and 

fibrosis, and 3) diethylnitrosamine (DEN)+alcohol model that mimics alcoholic liver cancer. These 

models might provide new insights into the mechanism of IL-17 signaling in ALD and help 

identify novel therapeutic targets.
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I. Introduction

Alcoholic liver disease (ALD) is a major cause of cirrhosis and liver failure, which is the 

12th leading cause of death in patients in the United States1. ALD progresses from steatosis, 

to steatohepatitis, fibrosis, cirrhosis, and finally hepatocellular carcinoma (HCC)1. Several 

injury-triggered events (see below) play a critical role in the pathogenesis of ALD. To-date 

there is no effective treatment of ALD, in part because there are no pre-clinical models 

available to study ALD progression. Furthermore, the majority of preclinical models focuses 

on the effect of chronic alcohol consumption on pathology of a single organ, such as liver, 

brain, heart or kidneys. In reality, alcohol-induced injury produces a systemic effect, and the 

failure of the damaged liver to perform detoxifying function also has a profound effect on 

the brain, and other organs. Here we summarize the recent evidence for the role of IL-17 

signaling pathway in alcohol-induced injury of the liver and the brain, and regulation of the 

intestinal permeability, the critical factors that drive development of alcoholic liver disease, .

II. ALD progression in patients

Progression of ALD from steatohepatitis to fibrosis

ALD studies have been hampered by the absence of suitable animal models. In patients 

ALD progresses from fatty liver to steatohepatitis and fibrosis, and often leads to 

development of HCC. Each stage is characterized by specific morphological changes and 

upregulation of specific sets of cytokines. Recently, we developed a chronic-plus-binge 

ethanol feeding model, which induces significant liver inflammation and neutrophil 

infiltration but not fibrosis 2,3, and reflects early stages of steatohepatitis. Alcohol-induced 

damage to hepatocytes is induced via up-regulation of cytochrome P4502E1, SREBP-1c 

causing accumulation of fat droplets (mainly triglycerides and phospholipids), centrilobular 

ballooning of hepatocytes, and formation of Mallory–Denk hyaline inclusions4. Serum 

levels of about 250IU/L ALT and 420 IU/L AST were found post single binge gavage, and 

correlated with increased expression of inflammatory cytokines IL-8, IL-6, IL-1β and 

development of hepatic oxidative stress 1,4. Neutrophilic infiltration is the major feature of 

alcoholic steatohepatitis. Apoptotic hepatocytes release TGF-β1 and factors, including IL-8, 

CXCL1 (Gro-α), and IL-17, that facilitate recruitment of inflammatory cells to the fatty 

liver. Infiltrating BM-derived neutrophils kill sensitized hepatocytes, and further exacerbate 

alcohol-induced liver injury5. A rodent model of ASH has demonstrated a pivotal role of 

neutrophils in pathogenesis of ALD 1,2. Recruited T and B lymphocytes also contribute to 

liver damage causing activation liver resident Kuppfer cells, which secrete TGF-β1 and 

activate hepatic myofibroblasts. Myofibroblasts are the primary source of extracellular 

matrix (ECM) in fibrotic liver6–11. Activated Hepatic Stellate Cells (aHSCs) have been 

recently demonstrated to serve as a major source of myofibroblasts in alcohol-damaged liver 

Under physiological conditions HSCs store Vitamin A and function as liver pericytes, but in 
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response to sustained exposure to alcohol, HSCs rapidly differentiate into fibrogenic 

myofibroblasts, start producing Collagen Type I, the major component of extracellular 

matrix, and make liver fibrotic. Up-to-date the intragastric model of ethanol feeding 

(Tsukamoto-French model)12 is the best rodent model of alcohol-induced liver fibrosis 

mimics this stage of alcoholic fibrosis in patients, and these mice develop significant level of 

liver fibrosis after 2 months of alcohol12,13. This stage is characterized by release of TGF-

β1, mostly by Kupffer cells4, and activation of Hepatic stellate cells (HSCs)13,14. 

Furthermore, a recent study has demonstrated that addition of ethanol to drinking water 

increased tumor incidence in DEN-injected male mice15, suggesting that this model can be 

used to study the effects of ethanol on HCC progression.

Hepatocellular carcinoma (HCC)

HCC is the firth most common cancer worldwide and the third most common cause of 

cancer death16. HCC is a malignant tumor made of cells resembling hepatocytes with a 

plate-like organization around sinusoids17, usually arises in a cirrhotic liver of patients with 

ALD16,18, and is identified by expression of alpha-fetoprotein (AFP), CD90, CD133, YAP 

and EpCAM expression19. Several mechanisms contribute to development of HCC in 

patients with alcoholic cirrhosis, including sustained inflammation, immunosuppressive 

effect of alcohol, impaired hepatocyte proliferation, loss of cell cycle checkpoints and 

increased tumor cell survival, telomere shortening and chromosomal instability1,2. Three 

potential cellular sources of HCC have been suggested: 1) mature hepatocytes as 

unipotential stem cells which rapidly regenerate to restore the liver mass in response to acute 

injury, 2) oval cells as bipotential stem cells which are activated and proliferate in response 

to chronic injury when proliferation of hepatocytes is exhausted or inhibited, 3) BM-derived 

stem cells20,21. Accumulating evidence suggests that HCC originates from dedifferentiation 

and transformation of mature hepatocytes, or maturation arrest of oval cells18,19. Progression 

of HCC in patients with ALD is associated with upregulation of IL-622, IL-1723,24 and 

IL-2225 and constitutive activation of Stat326. Consistent with this, IL-22-/- mice are less 

susceptible to DEN-induced HCC than wild type mice. In addition to Stat327, NFκB, Wnt/β-

catenin, and Hedgehog signaling pathways were implicated in HCC development23,28–31.

After injury and loss of hepatic mass, the liver regenerates mainly via proliferation of 

remaining adult hepatocytes. Oval cells (ductular reaction) activate when proliferation of 

hepatocytes is inhibited or exhasted1. Oval cells are bipotential liver progenitor cells, which 

reside in the Canal of Herring32, and give rise to hepatocytes and cholangiocytes20,33. Oval 

cells exhibit a CD45−/11b−/31−/MIC1-1C3+/133+/26− phenotype34. Several studies indicate 

that these may originate from Sox9-expressing clonogenic progenitors33–36. Therefore, 

recently generated Sox9creERT2-R26RYFP mice34 may be useful for lineage tracing of oval 

cells. The oval cell reaction includes a broader progenitor population which can be identified 

by expression of A6, AFP, FoxJ134,36 and other markers37 in mice. Chronic alcohol 

consumption inhibits hepatocyte proliferation, increasing the number of oval cells in patients 

with ALD. Proliferation of oval cells correlates with the severity of ALD and risk of 

alcoholic HCC. It has been suggested that tumor progenitors may originate from the oval 

cell reaction emerging in response chronic alcohol exposure38. Recent studies have 

implicated IL-22 in the regulation of alcohol-induced oval cell response and HCC 
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progression. Thus, overexpression of IL-22 in the liver (IL-22TG mice) drives exaggerated 

oval cell proliferation via Stat3 activation26,39, suggesting that IL-22/Stat3 signaling may be 

critical in HCC40.

Systemic effect of alcohol on liver-brain axis and intestinal permeability

Liver metabolizes alcohol, and therefore, is directly affected by chronic alcohol 

consumption. In turn, liver dysfunction contributes to systemic release of proinflammatory 

microbial products, toxic lipids (such as ceramides) and cytokines into the circulation, and 

exacerbates cytotoxic effect of alcohol on other organs, including development of insulin 

resistance and oxidative stress. The central nervous system (CNS) is the other major target 

of alcohol toxicity and degeneration. In addition to its direct neurotoxic effects, alcohol 

misuse establishes a liver-brain axis of neurodegeneration mediated by toxic lipid trafficking 

across the blood-brain barrier, leading to a range of complications that begin with mild 

neurocognitive impairment but can progress to more severe dementing disorder. The 

neuroanatomic underpinnings of these neurocognitive disorders include disruption of white 

matter integrity as evidenced by reduction in fractional anisotropy and increase in diffusivity 

measures on diffusion tensor imaging; and loss of volume in hippocampus, frontal cortex, 

subcortical structures and cerebellum. On structural brain imaging brain volume loss may be 

manifested by cortical thinning, white matter loss, and corresponding enlargement of sulci 

and ventricles. These changes may be accompanied by neuropathologic findings of 

astrogliosis, loss of synaptodendritic complexity, loss of cytoskeleton, and ultimately 

neuronal loss. When complicated by thiamine deficiency there may be additional damage to 

thalamus, and mammillary bodies with clinical presentation of Wernicke Korsakoff 

syndrome [amnestic-confabulatory syndrome]41–45.

III. Evidence of the role of IL-17 signaling pathway in ALD

Interleukin 17 (IL-17)

Interleukin-17 (IL-17)-producing effector CD4+ T (Th17) cells46,47 originate from naïve T 

cells via activation of lineage specific transcription factors48,49, regulated by TGF-β1 and 

IL-6, and other cytokines50,51. IL-17 is mainly produced by CD4+ Th17 cells, but also by a 

variety of cells, including γδ T cells, CD8+ T cells, NKT cells, NK cells, innate lymphoid 

cells, eosinophils, neutrophils, and monocytes52. Th17 cells secrete IL-17 cytokines, a 

family of cytokines comprised of IL-17A, IL-17F, IL-17B, IL-17C and IL-17E53. IL-17A 

homodimers (also known as IL-17) is the most abundant in Th17 cells, exhibit higher 

biological activity, and signal through their cognate receptors IL-17RA and IL-17RC52. 

IL-17RA is ubiquitously expressed, but is strongly induced in hematopoietic cells54 and 

fibroblasts55 in response to stress. IL-17A signaling activates inflammatory signaling in 

target cells, including Stat3, TRAF6, Act1, JNK, ERK, NF-κB54,56. IL-17 mediates 

autoimmunity, and the autoimmune inflammatory diseases psoriasis and rheumatoid arthritis 

respond to anti-IL-17 biological therapies57. Most recently, IL-17 has been implicated in 

liver, lung, and skin fibrosis, and in tumorigenesis52,53,58–60,5,61–64. Although anti-TNF-α 

therapy has been ineffective in patients with ALD1,65, the corollary of our underlying 

hypothesis is that anti-IL-17 therapy is a potential novel therapy for ALD. The autoimmune 

inflammatory diseases psoriasis and rheumatoid arthritis respond to anti-IL-17 biological 
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therapies57. Most recently, IL-17 has been implicated in liver, lung, and skin fibrosis, and in 

tumorigenesis 52,66. We have demonstrated that IL-17 is a critical mediator of liver fibrosis 

of different etiologies2,67.

IL-17 in liver fibrosis

Patients with ALD have a high serum level of IL-17. Accumulation of Th17 cells was 

significantly increased in the livers of patients with ALD, and the numbers of Th17 cells 

correlated with fibrosis score5. Several events play a critical role in progression of alcohol-

related liver fibrosis. Hepatocyte apoptosis causes recruitment of inflammatory cells to the 

damaged liver and release of pro-fibrogenic cytokines (TGF-β1, IL-6, IL-1β, TNF-α). Our 

group has recently demonstrated that IL-17A and its receptor IL-17RA are highly 

upregulated in injured livers, and IL-17 signaling plays a critical role in the pathogenesis of 

liver fibrosis. IL-17 regulates production of TGF-β1 by activated Kupffer cells, and can 

directly activate Collagen Type I production by HSCs, the major source of fibrogenic 

myofibroblasts in fibrotic liver. Deletion of IL-17 signaling in mice resulted in inhibition of 

liver fibrosis by 75%. Abrogation of IL-17 signaling in hematopoietic cells (as demonstrated 

by deletion of either IL-17A or IL-17RA in BM) decreases liver fibrosis by 50%. Kupffer 

cells are the primary targets of IL-17, IL-17 regulates approximately 30% of TGF-β1 

production by Kupffer cells. Meanwhile, deletion of IL-17RA in non-immune liver resident 

cells decreases liver fibrosis by 25%67. In this case, HSCs are the primary non-parenchymal 

targets of IL-17 in fibrotic liver, and IL-17A can directly stimulate activation of HSCs or 

induce IL-6 production, which stimulates Collagen Type I production in HSCs67. Increased 

expression of IL-17A was detected in livers from patients with liver fibrosis and cirrhosis of 

different etiologies (compared to patients with no fibrosis), and correlated with the severity 

of the disease23.

Regulation of Th17 differentiation in liver fibrosis

TGF-β1, IL-6 are strongly upregulated during development of ALD-induced fibrosis. In the 

mean time, TGF-β1, IL-6 and IL-21 drive differentiation of Th17 cells from naïve Th0 

cells50 via activation of retinoid-related orphan receptor γt (ROR γt)48. IL-23 is required for 

Th17 proliferation52. IL-23 is expressed by the macrophages and DCs, signals through 

IL-12Rbeta1 and IL-23R receptors, and activate Jak2/STAT3 signaling pathway68. Mice 

deficient of IL-23p19, have very few Th17 cells69,70, suggesting that and the main biological 

functions of IL-23 is regulation of Th17 cell expansion. IL-23 is upregulated along with 

IL-17 in fibrotic liver, and IL-23−/− deficient mice develop less fibrosis in response to 

cholestatic and toxic liver injury67, indicating that the IL-23/Th17 axis may become a 

promising target for suppressing liver inflammation during ALD71,72. Furthermore, IL-23 is 

upregulated in multiple human cancers, and ablation of IL-23p19 gene resulted in reduced 

tumorigenesis in a mouse model of skin cancer73, colitis-associated cancer (CAC)66. There 

is emerging evidence that IL-23 also promotes HCC development74–76. IL-27 antagonizes 

expansion of Th17 via inhibition of IL-23-producing cells. is formed from IL-27p28 and 

Ebi3 subunits 77 and IL-27p28−/−78 and Ebi3−/ −79 knockout mice have been generated. 

IL-27 signals via IL-27RA and common receptor chain gp130, activating STAT3 and Stat1 

in target cells77,80. IL-17RA−/ − mice81 exhibit a dramatic increase in Th17 activity, 
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demonstrating that IL-27 suppresses de novo Th17 cell differentiation driven by IL-6 and 

TGF-β178.

IL-25 also blocks Th17 cell proliferation via inhibition of IL-23, IL-1β1 and IL-6 secretion 

by dendritic (and other) cells 52. IL-25 propagates allergic responses82–84. IL-25 binds to 

IL-17RA and IL-17RB heterodimers (of which IL-17RB represents an IL-25 specific 

moiety85,86), and induces Act1-dependent activation of NFκB signaling pathway in target 

cells87. IL-25 drives the expression of IL-1388, which is required for suppression of Th17 

responses82–84,89,90. We have demonstrated that IL-25 attenuates liver fibrosis in mice, 

suggesting that IL-25 agonists may become targets for ALD treatment67.

IL-17 in brain and spinal cord

In addition to immune cells, glial cells in the CNS also express IL-17 under physiological 

conditions91. IL-17R is widely expressed within the CNS and upregulated under 

inflammatory conditions92. Genetic deletion of IL-17 increased the number of adult-born 

neurons. Furthermore, IL-17 deletion altered the network of the cytokines, facilitated basal 

excitatory synaptic transmission, enhanced intrinsic neuronal excitability, and increased 

expression of proneuronal genes in neuronal progenitor cells (NPCs), suggesting a profound 

role of IL-17 in the negative regulation of adult hippocampal neurogenesis under physiology 

conditions93. In an ischemic brain injury model, IL-17, highly expressed by γδ T 

lymphocytes, has been shown to play an important role in mediating the evolution of brain 

infarction and accompanying neurological deficits in the delayed phase of injury94. In a 

spinal cord injury model, IL-17 deletion improved tissue sparing and locomotor recovery 

without significantly affecting microglial activation and astroglial reactivity95.

IL-17 in blood-brain barrier

In addition, Th17 lymphocytes promote blood-brain barrier disruption and central nervous 

system inflammation92,96. Aging augments T cell-derived release of IL-17 and granzyme B 

that mediate neuronal cell death. IL-17 and IL-22 receptors are expressed on blood-brain 

barrier endothelial cells (BBB-ECs), and elevated levels of IL-17 and IL-22 disrupt BBB 

tight junctions in vitro and in vivo. Furthermore, Th17 lymphocytes transmigrate efficiently 

across BBB-ECs, highly express granzyme B, and kill neurons and promote CNS 

inflammation through recruitment of CD4+ lymphocytes.

IL-17 and intestinal permeability

The translocation of bacteria and bacterial products into the circulation, and subsequent 

changes in the microbiome composition are associated with chronic alcohol consumption. 

Thus, overgrowth of Bacteroidetes and Verrucomicrobia bacteria was observed in alcohol-

fed mice (compared with a predominance of Firmicutes bacteria in control mice), and was 

associated with downregulation in gene and protein expression of bactericidal c-type lectins 

Reg3b and Reg3g in the small intestine97. Commensal bacteria regulate efficiency of 

immune response, and vice versa. For example, mono-colonization of mice with segmented 

filamentous bacteria (SFB) results in induction of proinflammatory factors that favor 

expansion and accumulation of Th17 cells in the small intestine, and elicits a systemic Th17 
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response. Intestinal microbiota have also been shown to play a critical role in the absorption 

of lipopolysaccharide (LPS)98.

IL-17 and aging

Aging is associated with change of liver function caused by increased steatosis, 

inflammation, and fibrosis99. Changes in hypothalamic-pituitary-adrenal (HPA) activity are 

one of several proposed mechanisms involved in brain aging100. Recent studies have also 

implicated IL-17 in the process of aging in humans and mice101. For example, it has been 

suggested that aging is associated with changes in the immune system that affect specific T 

cell functions. The immune response to infection, immunization, and tumors in aged 

individuals is quite different from that found in the young. Specifically, aged naive CD4 T 

cells do not differentiate well to Th1 and Th2 effector subsets, but exhibit an increased 

ability to generate functional Th17 effectors, which can be found readily in older 

individuals. Therefore, the levels of IL-17 are highly increased in older individuals. Th17 

effectors produce high levels of IL-17 family cytokines (IL-17, IL-21, and IL-22). In 

addition to the greater prevalence of Th17 effectors, aging is associated with expansion of 

regulatory T cells (Treg)101. Since IL-2 was shown to inhibit the expression of IL-17, and 

blocking IL-2 promotes the differentiation of Th17 effectors102. Therefore, it has been 

suggested that the presence of regulatory T cells during an immune response may favor the 

development of a Th17 polarized response because the regulatory cells consume IL-2, which 

is needed for the development of Th1 and Th2 but not Th17 effectors. These observations 

also suggest that aging has very specific effects on CD4 T cell populations and does not lead 

simply to an overall downregulation of T cell function101.

IL-17 and HIV

Th17 cells play a crucial role in protection against infections. Therefore, it is not surprising 

that IL-17-producing T cells play an important role in pathogenesis of HIV and 

opportunistic infections observed in AIDS patients103. Specifically, the loss of balance 

between Th17 cells and Tregs was linked to increased immune activation and HIV 

progression. Although the numbers of Th17 cells in the peripheral blood often vary in AIDS 

patients, Th17 cells are substantially depleted from the gastrointestinal tract, leading to a 

loss of mucosal integrity, increased microbial translocation, and further impairment of 

systemic immune responses103. Furthermore, excessive alcohol use is common among AIDS 

patients, and greatly augments HIV-associated neurocognitive deficits104. However, the role 

of IL-17 signaling in HIV progression complicated by chronic alcohol abuse has not been 

evaluated. A longitudinal assessment of functional changes in circulating and tissue Th17 

cells is urgently needed in order to better determine the dynamic of Th17 cells in peripheral 

blood, and IL-17-specific regulation of liver-brain axis and intestinal permeability in AIDS 

patients with a history of chronic alcohol abuse.

Regulation of Th17 differentiation by gut microbiota

The composition of microbiota has been linked to the differentiation of Th17 cells in the gut, 

specifically in the small intestine lamina propria. In vitro, IL-17 expressing T-helper cells are 

induced by the interactions of cytokines TGF-β, IL-6, IL-21 & IL-23; these cytokines also 

play an important role in Th17 differentiation in vivo and regulation of inflammatory 
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immune response. Recent studies have demonstrated the correlation between Th17 in vivo 
differentiation and induction in the small intestine lamina propria with the presence of 

intestinal Cytophaga-Flavobacter-Bacteriodes bacteria105. Here, Th17 differentiation was 

observed independent of IL-21 & IL-23 signaling, the cytokines typically associated with 

regulation of Th17 expansion. Additionally, the abrogation of Th17 inducing bacteria in the 

gut microbiota was linked to increased Foxp3+ T regulatory cells in the lamina propria. 

These findings implicate gut microbiota composition in the induction of Th17 cells and the 

regulation of Th17:Treg balance in the lamina propria; this in turn suggests that certain 

populations of bacteria influence host defense and predisposition to inflammatory bowel 

diseases105. A subsequent investigation narrowed the search for Th17 inducing bacteria 

down to segmented filamentous bacteria (SFB). Germ-free mice were used as a model for 

Th17 deficient mice; the colonization of SFB in these mice led to the expression of IL-17 

and IL-22 in the CD4+ T cells found in the intestine lamina propria. SFB colonization was 

also associated with a more potent host defense against Citrobacter rodentium, an intestinal 

pathogen. SFB is the first specific microbiota component that has been linked to Th17 cell 

differentiation, an important step in the still-growing understanding of the commensal 

mechanisms that shape host immunity106. The discovery that microbiota induce CD4+ T 

cells expressing IL-17 arouses speculation that alcoholic liver disease can be curbed through 

antibiotics that target specific microbiota components. However, studies have found that 

germ free mice associated with immune deficiency exhibit elevated levels of cirrhosis 

compared to those with active microbiota. Given this, the implications commensal bacteria 

carry for alcoholic liver disease97, as well as any roles they may hold in its treatment107, 

have yet to be conclusively defined.

IV. Conclusion

Considerable progress has been made in our understanding of the effects of alcohol on liver 

function, brain function, intestinal permeability, composition of the gut microbiota, and 

dysregulation of immune responses. However, we are still far from achieving a 

comprehensive understanding of the systemic interactions between affected organs, and 

mechanisms underlying pathological changes associated with chronic alcohol abuse. 

Therefore, further interdisciplinary collaborative studies are required to identify targets 

which mediate a crosstalk among injured organs, and that can either protect from or 

exacerbate alcohol-induced systemic multi-organ damage. IL-17 signaling may function as 

one of these potential targets, and more studies are required to address this question. The 

new animal models described above might provide new insights into the mechanism of 

IL-17 signaling in ALD and identify novel therapeutic targets.
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α-SMA α-smooth muscle actin

qHSCs quiescent Hepatic Stellate Cells

aHSCs activated Hepatic Stellate Cells

iHSCs inactivated Hepatic Stellate Cells
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