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Abstract

Triple negative breast cancer (TNBC) is a subtype with heterogeneous patient outcomes. 

Approximately forty percent of patients experience rapid relapse, while the remaining patients 

have long-term disease-free survival. To determine if there are molecular differences between 

primary tumors that predict prognosis we performed RNA-seq on 47 macro-dissected tumors from 

newly diagnosed patients with TNBC (n = 47; 22 relapse, 25 no relapse; follow-up median 8 

years, range 2–11 years). We discovered that expression of the MHC class II (MHC II) antigen 

presentation pathway in tumor tissue was the most significant pathway associated with 

progression-free survival (hazard ratio (HR) = 0.36, log-rank P = 0.0098). The association between 

MHC II pathway expression and good prognosis was confirmed in a public gene expression 

database of 199 TNBC cases (HR = 0.28, log-rank P = 4.5 × 10−8). Further analysis of 

immunohistochemistry, laser-capture micro-dissected tumors, and TNBC cell lines demonstrated 

that tumor cells, in addition to immune cells, aberrantly express the MHC II pathway. MHC II 
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pathway expression was also associated with B cell and T cell infiltration in the tumor. Together 

these data support the model that aberrant expression of the MHC II pathway in TNBC tumor cells 

may trigger an antitumor immune response that reduces the rate of relapse and enhances 

progression-free survival.
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Introduction

Triple negative breast cancer (TNBC) describes a clinical subtype of invasive breast cancer 

tumors that lack expression of estrogen receptor (ER−), progesterone receptor (PR−), or 

overexpression of HER2. They represent a breast cancer entity in which tumors behave 

aggressively and are not candidates for ER or HER2/Neu targeted therapy. Most patients are 

treated with surgery and receive adjuvant or neoadjuvant chemotherapy with or without local 

radiation treatment. Patient outcome is heterogeneous with 42% of patients having rapid 

relapses with a peak at three years from diagnosis while relapse rate is low from years 5–10 

(1). TNBC tumor types vary in their genomic makeup with the majority categorized as 

basal-like (BL) subtype. In general, BL and non-BL subtypes share similar aggressive 

biology (2).

Over the last 15 years, a major research effort has been directed at using genomic techniques 

to analyze the biology of breast cancer and to establish genomic signatures to assess 

prognosis (3). These data have been primarily prognostic gene expression signatures derived 

from microarray genomic platforms (Affymetrix, Illumina, etc.) with more recent studies 

using RNA-sequence (seq) technology (4). This has been most notably successful in ER+ 

breast cancer. Some of these genomic assays have received FDA approval and are used 

widely to assist therapy decision making in ER+ disease (5). Prognostic gene expression 

signatures are not as well developed for TNBC and are not used in clinical practice. Several 

large multigene signatures have performed well in multivariate analysis, which indicates that 

gene expression differences between tumors are associated with different clinical outcomes 

(6–9).

The presence of tumor-infiltrating lymphocytes (TILs) can be detected by morphology, 

immunohistology, and genomic methodologies. The presence of TILs in TNBC has been 

associated with good prognosis in several studies (9–12). The conclusions from many of 

these TIL studies are that the patient’s immune response has a positive effect on 

progression-free survival (PFS), therapy response, and overall survival, especially in TNBC 

(13, 14). It is unclear what differences between TNBC tumors leads to differences in 

lymphocyte infiltration.

In this study we utilized RNA-seq technology to examine gene expression in TNBC, which 

has multiple advantages over microarray genomic platforms (15, 16). We designed this study 

to determine which genes had significantly different expression between patients who 
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relapsed compared to those who did not experience relapse during a follow-up period 

(median 8 years, range 2–11 years). Whole transcriptome analysis of macro-dissected tumor 

tissue revealed that expression of the MHC class II antigen presentation pathway (MHC II) 

in TNBC tumors was the most significant pathway associated with good clinical outcomes 

in our dataset. We confirmed the association between MHC II pathway expression and good 

prognosis in a public gene expression database. We performed further analysis of tumor 

immunohistochemistry, laser capture micro-dissected tumors, and TNBC cell lines to 

demonstrate that tumor cells, in addition to immune cells, aberrantly express the MHC II 

pathway. We found that expression of the MHC II pathway is correlated with the presence of 

a TIL gene expression signature in the same tumors. This study provides a means to assess 

prognosis in TNBC and may also provide a coherent mechanism for the generation of 

endogenous antitumor immunity in patients with good clinical outcomes.

Materials Methods

Patient Material

The Tumor Procurement Shared Facility of the UAB Comprehensive Cancer Center has an 

IRB-approved protocol for collection of tumor and normal tissue samples for research 

purposes using de-identified clinical data and laboratory analysis. TNBC breast cancer 

tissues (n = 47) were selected for analysis on the basis that the tumors were ER and PR 

negative, HER2/Neu not over-expressed, snap frozen tissue available, adequate patient 

follow-up (> 24 months), and the patient had received no anticancer therapy prior to tissue 

collection.

Tissue Processing

The frozen tumor tissue underwent macro-dissection by a board certified pathologist (WEG) 

(see Supplementary Data). This process included taking serial frozen sections, staining them 

with H&E, and estimating tumor cell content. Areas of the specimen that contained 

uninvolved breast and/or leukocytic infiltration were removed to enrich for the malignant 

cells in the specimen. The de-identified tumor specimens had >50% tumor nuclei and were 

shipped on dry ice to HudsonAlpha Institute for Biotechnology (Huntsville, AL). More 

details are provided in the Supplementary Methods.

RNA-seq

The 47 tumor specimens were weighed and underwent RNA extraction (see Supplementary 

Data). RNA-seq libraries were constructed (17), and were quantified using the Qubit dsDNA 

High Sensitivity Assay Kit and the Qubit 2.0 fluorometer (Invitrogen). Three barcoded 

libraries were pooled in equimolar quantities per sequencing lane on an Illumina HiSeq 2000 

sequencing machine. They were sequenced using paired-end 50 bp reads and a 6 bp index 

read to a depth of at least 50 million read pairs per library. The RNA-seq data are publicly 

available through GEO Accession GSE58135 (http://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE58135).
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RNA-seq Data Analysis

Gene expression values (fragments per kilobase of transcript per million, FPKMs) were 

calculated using TopHat v 1.4.1 (18), GENCODE version 9 (19), BEDtools (20), and 

Cufflinks 1.3.0 with −u option (21)(see Supplementary Data). We performed unsupervised 

clustering on normalized gene read counts to identify subclusters of samples within our 

dataset using the ConsensusClusterPlus R package (22). TNBC subtype of each sample was 

determined using TNBCType (23). The SAMseq function was used to peform supervised 

analysis to identify genes differentially expressed between tumors from patients who did or 

did not relapse with q values of < 5% (24). Kaplan-Meier curves and survival analysis were 

performed using RNA-seq FPKM values and an R script (25). The Supplementary Data 

contains more details of these bioinformatics analyses.

Public microarray data analysis

Kaplan-Meier and survival analysis was performed on public microarray data using the 

Kaplan-Meier Plotter tool (http://kmplot.com) (26). Patients were censored at the follow-up 

threshold (8–10 years). Only JetSet best probe sets were used for each gene in the 

microarray data analysis (27). Analysis was restricted to the 199 patients whose tumors were 

ER−, PR−, and were classified as basal intrinsic breast cancer subtype (25). Basal TNBC 

tumors were identified based on the St. Gallen criteria (28) using the procedure described by 

the authors of the Kaplan-Meier Plotter tool (29).

Tumor versus Stroma Gene Expression

Five archived de-identified TNBC tumor specimens underwent standard 

immunohistochemical analysis with anti-CD74 (Leika/Novocastra) and anti HLA-DPB1 

(Sigma-Aldrich). An anatomic pathologist estimated the fraction of antibody positive tumor 

cells and the localization of the staining (see Supplementary Data). To examine gene 

expression by epithelial tumor cells versus stroma, we utilized a public laser capture micro-

dissection dataset (GEO-GSE5847) (30). The raw dataset (.cel and matrix files) was 

uploaded to Partek Genomic Suite (PGS, St. Louis, MO) for data background subtraction, 

quality control, and RMA-normalization. Of the 31 patients in this database, we selected the 

14 patients that had invasive TNBC to measure the gene expression in their epithelial tumor 

cells.

Cell Line Interferon Gamma Treatment and RNA-seq

The TNBC cell lines MDA-MB-468 (ATCC HTB-132) and MDA-MB-436 (ATCC 

HTB-130) were purchased from ATCC and RNA-seq was performed 3 months after 

purchase (21 passages). Due to the short interval between the purchase and the RNA-seq 

experiment no additional authentication was performed. MD-MB-468 was cultured in 

DMEM, 10% FBS, 1 mM sodium pyruvate, and 1x non-essential amino acids. MDA-

MB-436 was cultured in DMEM, 10% FBS, 10 μg/mL insulin, and 16 μg/mL glutathione. 

Cells were treated with 10U/mL Recombinant Human Interferon-γ (Thermo Fisher product 

# PHC4031) in duplicate for 24 hours. Cells were lysed with 350uL RLT (Qiagen) plus 1% 

BME, RNA was extracted from the lysate using the Norgen Animal Tissue RNA Purification 

Kit, and RNA-seq libraries were constructed using the KAPA Stranded mRNA-seq Kit. 
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Libraries were sequenced on the illumina HiSeq 2500 with 10 samples per lane. Data was 

aligned to the UCSC hg19 transcriptome using HISAT(31). HTSEQ was used to calculate 

gene counts(32). DESEQ2(33) was used to calculate fold changes between 2 replicates of 

Interferon-γ treated cells and the 2 replicates of untreated cells for both cell lines.

Statistical analysis

Descriptive analysis was provided for patients’ characteristics including student t test and 

chi-square statistics. The individual MHC II gene expression values were transformed to 

best fit a normal distribution using log 2 base (34, 35). High or low expression levels of 

individual genes were assessed around median value, tertiles, or quartiles. PFS is defined as 

the time from diagnosis to the first documented disease progression or death due to any 

cause, whichever occurs first. Subjects without relapse were considered censored. The 

Kaplan-Meier method and log-rank test was used to assess the expression difference. The 

hazard ratio and its 95% confidence interval from the Cox model (36) with Efron’s method 

were reported. Pearson correlation coefficient was estimated to examine the correlation 

among individual genes. The association between MHC II gene expression and good 

prognosis was independently significant in multivariate analysis by Cox regression analysis 

using the variables of age, race, stage, tumor size, node status, adjunct therapy, and breast 

cancer subtype. In addition, high levels of MHC II gene expression correlated with hazard 

ratio for relapse even when controlling for the effects of stage (which includes the variables 

of tumor size and node status).

Results

Patients

A case series of 47 women with TNBC were selected for this study with a median follow up 

time of 8 years (range 2–11 years) (Table 1). As expected, the 22 patients who had disease 

relapse had significantly higher stage (P = 0.0295), tumor size (P = 0.0029), and node 

involvement (P = 0.0394) compared to patients that did not experience disease relapse. Both 

groups received similar adjuvant therapy. Anthracycline combinations were used in the 

majority of patients. Five relapse and two non-relapse patients received no adjuvant 

treatment. Similar numbers of patients had conservative surgical management and 

radiotherapy. Median time to relapse was 18.5 months (8 to 97 months), and the follow-up 

of non-relapse patients had a median of 96 months (25 to 137 months). Racial makeup of the 

two groups was similar, and overall 81% of the tumors were basal-like using the St. Gallen 

criteria (28) and similar in both groups. This case series generally represents the diverse 

presentation and outcomes that are seen in TNBC patients in clinical practice.

Unsupervised Consensus Clustering Analysis

RNA-seq was performed on macro-dissected flash frozen tumor specimens that were 

surgically resected from the women in this study before they began chemotherapy or 

radiation. To determine if there were molecular differences between patient’s tumors that are 

associated with clinical outcomes we first performed unsupervised consensus clustering 

analysis on whole-transcriptome data. The analysis identified three main clusters (1, 2, and 

3) composed of 20, 17, and 10 patient tumors respectively (Fig. 1A). The cluster analysis did 
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not simply reflect previously defined seven TNBC subtypes (23, 37); each cluster we 

identified contained multiple TNBC subtypes and the TNBC subtypes were represented in 

multiple clusters (Supplementary Fig. S1). Figures 1B and 1C provide the PFS for the three 

cluster groups. Cluster 2 had improved PFS for the groups as a whole (P = 0.023) and when 

subdivided based on lymph node involvement (P = 0.013). Patient tumors in Cluster 2 have 

higher expression of immunomodulatory genes than tumors in the other clusters 

(Supplementary Table 1). The rate of relapse in cluster 2 (3/17; 18%) is significantly lower 

than in Clusters 1 (12/20; 60%) and Cluster 3 (7/10; 70%); P =.0067. This analysis is 

consistent with previous reports that a subset of tumors have increased expression of many 

different immune-related pathways, which is associated with better clinical outcomes (14, 

37, 38).

Gene Expression Analysis

We next performed an analysis to determine which genes in the transcriptome had the most 

significant expression differences between tumors from patients who relapsed compared to 

tumors from patients who did not relapse. Table 2 provides the list of 24 genes identified 

with a false discovery rate (FDR) of 5% (q-value < 0.05). A heatmap of the 24 genes 

(Supplementary Fig. S2) illustrated that each of the 24 genes exhibited higher average 

expression across the tumors from patients who did not relapse. Eleven of these genes are 

major components of the MHC II antigen presentation pathway including CIITA, CD74, 

HLA-DPA1, HLA-DPB1, HLA-DPB2, HLA-DQA1, HLA-DRB1, HLA-DRB5, HLA-
DRB6, CTSH, NCOA1 (Supplementary Fig. S3, Table 2). The expression of these MHC II 

pathway genes is highly correlated across patient samples (P < 0.0001), which suggests that 

they undergo coordinated expression regulation in these tumors (Supplementary Table S2). 

To our knowledge this is the first time that the coordinated expression of the MHC II 

pathway genes has been reported as the most significant independent predictor of good 

prognosis in TNBC.

The 11 MHC class II genes that we identified as significantly associated with good 

prognosis include each step in the MHC II antigen presentation process from the master 

transcriptional transactivator, CIITA, to the antigen presenting complex components, HLA-
DP, DQ, and DR. HLA-DM is another crucial pathway member that allows HLA binding of 

peptides prior to display on the antigen presenting cell surface. While the HLA-DMA and 

HLA-DMB genes did not reach the strict statistical threshold for genome-wide significance 

that the other 11 genes attained, they were highly correlated with CD74 and other significant 

genes in the pathway (r = 0.84 and 0.89 respectively (P < 0.001 for both)). This suggests that 

HLA-DM is also coordinately regulated with other MHC II pathway members in TNBC 

tumors.

To further characterize the relationship between the 13 gene MHC II pathway signature and 

prognosis we determined the statistical association between gene expression and PFS. The 

average expression value of the 13 MHC II genes in our 47 patients was used to generate 

Kaplan Meier curves which demonstrated a significant association between MHC II pathway 

expression and PFS (Fig. 2A, log-rank P = 0.0098, HR of 0.36).
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Given the strong correlation among overexpressed MHC II pathway genes, we examined the 

association between PFS and expression on a single gene basis. A summary of HR values 

for ten of the MHC II differentially expressed genes is provided in Supplementary Table S2. 

High expression of CIITA or CD74 alone was independently significantly associated with 

PFS (CIITA log-rank P = 0.0002, HR = 0.167, Fig. 2B) (CD74 log-rank P = 0.0164, HR = 

0.349, Fig. 2C). When CIITA gene expression is classified as either above or below the 

median it is an independent predictor for PFS (P = 0.008) by multivariable Cox regression 

analysis. When controlling for tumor stage, the HR for high versus low CIITA is 0.147 (CI 

0.048 – 0.450). Similarly, CD74 is an independent predictor for PFS (P = 0.0322) with a HR 

of 0.362 (0.143 – 0.917) after adjusting for tumor stage. When gene expression values are 

divided into tertiles (high, intermediate, and low values) the samples with the highest CIITA 
only had 2/16 relapses including one with relapse at > 90 months. The lowest third 

expression values for CD74 were associated with 12/16 relapses, all of which occur within 

25 months (Supplementary Fig. S4A and B). Together these statistical analyses demonstrate 

that expression of the MHC II pathway genes is strongly associated with PFS.

Confirmation that MHC II Expression Associates with a Good Prognosis

To determine if the association between MHC II expression and prognosis was specific to 

our patient case series or RNA-seq methods we sought to confirm this result in another 

dataset. We examined a large meta-analysis of Affymetrix microarray data that was 

assembled to encompass gene expression profiles from all available breast cancer studies 

that had adequate clinical follow-up (25). This database conglomerates the gene expression 

data and clinical follow-up from samples that were collected for many different studies. We 

analyzed 199 patients in this meta-analysis data set with ER−, PR−, basal intrinsic subtype 

tumors and examined the expression levels of our 13 MHC II genes. One of the MHC II 

genes was not represented in this database (HLA-DPB2). The average expression value of 

the remaining 12 MHC II gene expression levels had a striking association with PFS with a 

log-rank of P = 4.5 × 10−8 and a HR of 0.28 (0.17–0.45) as depicted in Figure 3A. Similar to 

the results in our patient data, individual MHC II gene expression were significantly 

correlated with PFS (prognosis) as depicted for CD74 in Figure 3B (log-rank P = 1.9 × 10−6; 

HR = 0.31 (0.18–0.51). Despite the differences in gene expression measurement technology 

and the multiple institutions and studies included in the public meta-dataset, MHC II 

expression was confirmed to be strongly associated with TNBC prognosis.

Tumor Cell Expression of MHC II Genes

Classically, MHC II antigen processing and presentation are attributed to dendritic cells, B 

cells, and macrophages which are found in tumor stroma, lymph nodes, and spleen. To 

determine whether the prognostic MHC II gene expression signature was derived from 

tumor cells or surrounding cells in the tumor sample, we performed immunohistochemistry 

on five randomly selected TNBC specimens. We assessed staining for CD74 and HLA-

DPB1 in the malignant epithelium, recording the percentage of tumor cells stained, pattern 

of staining (cytoplasmic, membranous or both) and scored the staining intensity as weak, 

moderate or strong with respect to background lymphocytes which served as an internal 

control. We found that all five TNBC tumor specimens had CD74 protein expression in 

tumor cells. This staining was cytoplasmic, membranous or both, with 5%–90% of tumor 
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cells showing immunoreactivity that was weak to moderate in intensity (Fig. 4A). HLA-

DPB1 protein expression was noted in 2 of 5 TNBC tumors, with weak to moderate 

cytoplasmic and membranous staining in 20% and 40% of tumor cells, respectively (Fig. 

4B). These results are consistent with previous observations that MHC II proteins can be 

detected in TNBC tumor cells (39–43).

In addition, we examined the expression of MHC II genes in laser capture micro-dissected 

breast tumor tissues using a publicly available Affymetrix microarray dataset ((30), 

GSE5847). In 14 patients with TNBC, the range of values in the tumor cells for HLA-DPA1 
was 6.70 – 11.48 RMA units and for HLA-DRB1 was 11.35 – 13.12 RMA units. T test and 

paired T analysis were not significant between stroma and epithelial expression of MHC II 

genes. These analyses further support the conclusion that TNBC epithelial tumor cells can 

express MHC II genes.

In professional antigen presenting cells (APCs) interferon gamma (IFNG) is the signal that 

induces CIITA to transcriptionally activate the MHC II antigen presentation pathway. We 

analyzed breast cancer cell line RNA-seq data from a previous study (44) and identified two 

TNBC cell lines that had little or no expression (FPKM < 0.5) of the prognostic MHC II 

pathway genes in standard media conditions. We then treated these cell lines with IFNG and 

performed RNA-seq. We found that the majority of the 13 prognostic MHC II pathway 

genes were highly expressed after IFNG induction in both TNBC cell lines (Fig. 5). This 

result confirms previous reports(41, 45, 46) that TNBC tumor cells can express components 

of the MHC class II antigen presentation pathway and demonstrates that induction of this 

pathway can occur through the same signaling pathway that activates APCs.

Tumor MHC II Gene Expression Correlation with Infiltrating Lymphocytes

The strong association between tumor cell MHC II pathway expression and PFS suggests 

that antitumor immunity is involved in conferring the good prognosis. To test if an antitumor 

immune response was associated with the MHC II positive tumors, we assessed the 

correlation of representative MHC II genes with the B- and T-cell gene signatures used by 

West, et al, (12) to identify TILs. As can be seen in our dataset (Table 3A) and the public 

database (Table 3B), there is a substantial correlation of MHC II gene expression with B-cell 

and T-cell genes in both datasets. In general, the MHC II gene correlations were higher with 

the T-cell genes than the B-cell genes (CD19 and CD20). This observation is consistent with 

MHC II antigen presentation inducing activation of T cells.

Discussion

We demonstrated that coordinated expression of the MHC class II antigen presentation 

pathway occurs in a subset of TNBC patients’ tumors and is associated with tumor 

infiltrating leukocytes and long-term progression-free survival. Previous studies have 

reported individual components of these result including the correlation between TILs and 

good prognosis (10–12, 14), the presence of an immunomodulatory gene expression 

signature in TNBC (7, 9, 37), and expression of various individual HLA proteins in tumor 

cells (39, 40, 42, 43, 46). However, this time we have linked these observations through a 

specific coherent model that suggests a mechanism for why a subset of TNBC patients have 
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long term progression free survival. Based upon the data collected in this study we propose 

that a subset of TNBC patients have aberrant expression of the MHC II pathway in their 

tumor cells that results in the presentation of tumor specific neo-antigens to CD4+ T cells, 

which become activated and induce the recruitment of other TILs. This TIL invasion may 

reflect the induction of an antitumor immune response that reduces the rate of relapse in 

patients after treatment of their primary tumor. This model suggests that endogenous 

antitumor immunity plays an important role in TNBC prognosis.

Although we associated this mode of endogenous antitumor immunity with prognosis in 

TNBC patients, the principle behind this concept had already been demonstrated in animal 

models. Elegant studies have demonstrated that ectopic expression of the MHC II pathway 

in tumors cells from mouse models of breast cancer can induce Th1-mediated antitumor 

immunity and antitumor memory in the syngeneic host mouse (47–50).

Our results indicate that a biomarker test that measures MHC class II expression could be a 

powerful way to predict risk of relapse in TNBC patients. Further studies are warranted to 

overcome the limitations of our approach and develop a clinical-scale assay to specifically 

measure expression of the MHC II pathway signature genes in clinical specimens. A qPCR 

assay or a Nanostring assay that is compatible with the fragmented RNA derived from FFPE 

clinical specimens could be a promising approach to determine if this discovery has clinical 

utility as a prognostic biomarker in a larger case series of TNBC patients. We are also 

excited by the possibility that therapies that induce MHC class II expression in tumor cells 

may be a particularly valuable strategy for converting MHC II–negative poor prognosis 

TNBC tumors into MHC-positive tumors that present tumor-specific neoantigens (45, 51, 

52) and induce antitumor immunity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Consensus clustering of gene expression values across all genes identified 3 main groups of 

TNBC tumors. (A) The heatmap shows the relative similarity of gene expression values in 

each sample compared to all other samples (darker blue indicates higher similarity). The 

dendogram at the top of the heatmap shows the pairwise similarity between samples and 

their assignment into three consensus clusters (Cluster 1 is a black bar, Cluster 2 is red, and 

Cluster 3 is green). (B) Kaplan-Meier PFS curves for patients in Clusters 1–3. Cluster 1 

(C-1, black line), 2 (C-2, red line) and 3 (C-3, green line); log-rank P = 0.023. (C) Same as B 

except patients with lymph node tumor involvement (+) are dashed lines and lymph node 

negative (−) are solid lines; log-rank P = 0.013.
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Figure 2. 
Kaplan-Meier PFS curves of patients with high or low MHC II gene expression. (A) The 

patients with high expression of the MHC II genes is depicted in red while those in the 

lowest quartile of expression are depicted in black; HR = 0.36 (0.16–0.81); log-rank P = 

0.0098. (B) The high expression (above the median) of CIITA is depicted in red and low 

expression (below the median) is depicted in black; log-rank P = 0.0002. (C) The high 

expression (above the median) of CD74 is depicted in red and low expression (below the 

median) is depicted in black; log-rank P = 0.0164.
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Figure 3. 
Kaplan-Meier PFS curves of patients in the public microarray data set. (A) High mean 

expression of the MHC II genes (red) versus the lowest tertile expression (black); HR = 0.28 

(0.17–0.45); log-rank P = 4.5 × 10−8. (B) High expression of CD74 (red) versus the lowest 

tertile expression (black); HR = 0.31 (0.18–0.51); log-rank P = 1.9 × 10−6.
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Figure 4. 
Immunohistochemistry detection of CD74 and HLA-DPB1 protein expression in TNBC 

tumor tissue. (A) IHC detection of CD74 protein in TNBC tumor tissue shows staining in 

20% of invasive tumor cells. Localization is primarily membranous (90%) with some 

granular cytoplasmic staining (large image is 10x magnification, inset is 20x magnification). 

(B) IHC detection of HLA-DPB1 protein in TNBC tumor tissue shows staining in 20% of 

invasive tumor cells. Localization is primarily membranous (90%) with some granular 

cytoplasmic staining (large image is 10x magnification, inset is 20x magnification).
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Figure 5. 
Interferon-γ treatment of TNBC cell lines induces the expression of good prognosis MHC II 

pathway genes. Log 2 fold changes in expression of MHC II genes between IFNγ-treated 

cells and untreated cells are shown for two TNBC cell lines: (A) MDA-MB-468 and (B) 

MDA-MB-436.
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Table 1

Patient Demographics

No Relapse (25) Relapse (22) Significance

Age (Years) (median) 54 (37–67) 53 (22–76) NS

Stage 0.0295

 I 8 (32%) 2 (9%)

 II 15 (60%) 12 (55%)

 III 2 (8%) 8 (36%)

Tumor Size 0.0029

 T1 11 (44%) 3 (14%)

 T2 12 (48%) 10 (45%)

 T3 1 (4%) 3 (14%)

 T4 1 (4%) 5 (23%)

 TX 0 1 (4%)

Nodes 0.0394

 Yes 10 (40%) (N1:4, N2:2, N3:4) 16 (73%) (N1:11, N2:3, N3:2)

 No 15 (60%) 6 (27%)

Grade NS

 2 5 (20%) 5 (23%)

 3 20 (80%) 17 (77%)

Adjuvant Chemotherapy NS

 Anthracycline Based Chemotherapy 19 (76%) 13 (59%)

 Other Chemotherapy 4 (16%) (2 CBP based) 4 (18%) (1 CBP based)

 No Adjuvant Chemotherapy 2 (8%) 5 (23%)

Surgery NS

 Conservative 13 (52%) 7 (32%)

 Mastectomy 12 (48%) 15 (68%)

Radiotherapy NS

 Yes 13 (52%) 11 (50%)

 No 12 (48%) 11 (50%)

Time to Relapse (Months) (Median) N/A 18.5 months (8 to 97)

Disease Free Survival (Months) (Median) 96 months (25 to 137) N/A

Race NS

 White 14 (56%) 15 (68%)

 African American 10 (40%) 6 (28%)

 Unknown 1 (4%) 1 (4%)
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No Relapse (25) Relapse (22) Significance

Breast Cancer Subtype NS

 Basal Like 19 (76%) 19 (86%)

 Others 6 (24%) 3 (14%)
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Table 2

Genes with Significantly Higher Expression in No Relapse Patients

I. MHC II Pathway

1 CIITA (activator of MHC II)

2 CD74 (invariant chain; chaperone for all MHC II)

3 HLA-DPA1 (peptide presentation to T cells)

4 HLA-DPB1 (peptide presentation to T cells)

5 HLA-DPB2 (peptide presentation to T cells)

6 HLA-DQA1 (peptide presentation to T cells)

7 HLA-DRB1 (peptide presentation to T cells)

8 HLA-DRB5 (peptide presentation to T cells)

9 HLA-DRB6 (peptide presentation to T cells)

10 CTSH (cathepsin H; endosomal protease)

11 NCOA1 (MHC II nuclear co-activator)

II. MHC I Pathway

12 CD1E (MHC I-like; lipid presentation to T cells)

13 FCGRT (MHC I-like: Fc receptor transporter)

III. Possible MHC-related

14 KRT14 (keratin 14 – epithelial cytoskeleton)

15 LPAR5 (membrane protein involved in endocytosis)

16 FGD3 (regulates actin cytoskeleton and cell shape)

17 VAMP2 (vesicle associated membrane protein)

IV. Other

18 LRRK2 (leucine rich repeat kinase – mitochondria)

19 MBNL1 (regulator of splicing specific pre-RNA targets)

20 NTRK3 (neurotrophic tyrosine receptor kinase)

21 POLR3GL (polymerase [RNA] III – embryonic stem cells)

22 PTGDS (prostaglandin D2 synthase – neuromodulator)

23 SH3BGRL – uncertain

24 TOX – DNA binding protein
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