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Abstract

Background: Aedes aegypti is the key vector of both the Yellow Fever and Dengue Fever viruses
throughout many parts of the world. Low and variable transgene expression levels due to position
effect and position effect variegation are problematic to efforts to create transgenic laboratory
strains refractory to these viruses. Transformation efficiencies are also less than optimal, likely due
to failure to detect expression from all integrated transgenes and potentially due to limited
expression of the transposase required for transgene integration.

Results: Expression plasmids utilizing three heterologous promoters and three heterologous
enhancers, in all possible combinations, were tested. The Hr3/IEl enhancer-transactivator in
combination with each of the constitutive heterologous promoters tested increased reporter gene
expression significantly in transiently transfected Aedes albopictus C7-10 cells.

Conclusions: The addition of the Hr3 enhancer to expression cassettes and concomitant
expression of the |E| transactivator gene product is a potential method for increasing the level of
transgene expression in insect systems. This mechanism could also potentially be used to increase
the level of transiently-expressed transposase in order to increase the number of integration
events in transposon-mediated transformation experiments.

Background

Through the efforts of many individuals in the past few
years, it has become possible to genetically transform a
wide variety of non-drosophilid insects of medical and
agricultural importance [1]. The ability to genetically
transform mosquito species allows researchers to better
understand mechanisms of vector competence, design
novel methods to disrupt vector-pathogen relationships
and develop new insect control strategies [2-5]. New
molecular methods could potentially augment continued
traditional efforts to control malaria and other re-emerg-
ing arthropod-borne diseases. Similar approaches may
also be used to stem the devastating infestation of eco-

nomically important crops by insecticide-resistant pest
strains.

Mosquitoes transmit to humans some of the most debili-
tating and deadly diseases known. According to the World
Health Organization, malaria alone is responsible for one
million deaths annually [6]. Additionally, the transmis-
sion of yellow fever, dengue fever, West Nile virus and a
variety of other encephalitis viruses permanently disrupt
or end untold numbers of lives. Both anopheline [7-10]
and culicine [11-17] mosquito species have been success-
fully transformed. In all cases, the process is labor-inten-
sive with a few successful experiments vyielding
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transformation efficiencies ranging from 0.5% to 13%.
These transformation efficiencies are low compared to the
nearly 50% previously reported in Drosophila with vectors
up to 8 kb in size [18]. Additionally, transgene expression
in the yellow fever mosquito varies considerably both
between and within families [11,12,19], likely due to dif-
ferences in the transcriptional environments of specific
insertion sites within the genome, such as the proximity
of the transgene to enhancers or heterochromatic stretches
of DNA. This phenomenon is of particular concern in the
Ae. aegypti genome given its large size (~780 Mb) and its
apparent pattern of short-period interspersion where sin-
gle copy genes (1 to 2 kb) alternate with short (200-600
bp) or medium (1-4 kb) length repetitive sequences [20].
The problem is complex, however transposition has been
shown to be dependent upon the amount of transiently
available transposase to catalyze vector integration
[21,22]. Also, the effective use of genetically-altered mos-
quitoes to augment current disease vector control requires
the ability to create and maintain transgenic lines with
consistent, predictable and high-level expression patterns
of effector transgenes.

Looking to maximize the transcription of rare transgenes
that do land in favorable environments and to potentially
increase the levels of transiently available transposase, we
tested the ability of three different enhancer elements;
SV40 [23], copia ULR (Drosophila) [24] and Hr3 (Bombyx
mori nuclear polyhedrosis virus or NPV) [25], to increase
the levels of transcription from each of three heterologous
promoters from the following genes: actin5C [26] and
polyubiquitin (Ubi-p63E - hereafter referred to as pUb)
[27] from Drosophila and the intermediate early gene (IE1)
[28] from the Autographa californica multicapsid nuclear
polyhedrosis virus (MNPV). Additionally, we tested the
ability of the B. mori baculovirus IE1 gene product [29],
which binds to repetitive sequences within the baculovi-
rus homologous regions (Hrs) [30,31] and has previously
been shown to function as a powerful transactivator in
transfected lepidopteran cells [29], to yet further increase
gene expression in mosquito cells.

Results

The Hr3 enhancer and the IE| transactivator increase
reporter gene activity in transiently transfected C7-10
Aedes albopictus cells

In transiently transfected C7-10 cells, the Act5C promoter
resulted in the highest luciferase reporter activity in com-
parison with the remaining promoters alone (Fig. 1A).
The level of measured activity directly corresponds to the
amount of luciferase protein expressed by the transfected
cells and thus presumably the level of transcription.
Among the enhancers, Hr3 improved luciferase expres-
sion by 4-fold, 47-fold and 22-fold over the basal level
expression from the Act5C, IE1 and pUb promoters

http://www.biomedcentral.com/1471-2199/5/8

respectively; cULR improved luciferase expression over
basal level from the Act5C, IE1 and pUb promoters 2-fold,
11-fold and 10-fold respectively; and eSV40 resulted in 2-
fold, 8-fold and 7-fold increases respectively in luciferase
expression from the Act5C, IE1 and pUb promoters (Fig.
1A). Addition of the IE1 transactivator unexpectedly
resulted in large increases in expression from the Renilla
control plasmid, as well as from the Hr3-containing
reporter plasmids. This is seen in the apparent drop of
expression indicated by the red-shaded bars in Fig. 1A.
This was confirmed in several independent experiments
and was seen even with decreased concentrations of the
Renilla plasmid (see additional file 1). In order to see the
relative effect of the IE1 transactivator on expression from
the Hr3/promoter constructs, the raw firefly luciferase val-
ues were converted to a % of average pSLIE1Luc expres-
sion and plotted on a log scale (Fig. 1B). Firefly luciferase
expression increased 50-200-fold over the basal level
expression of all of the promoters with the addition of the
IE1 transactivator.

IE| transactivator interacts with promoter sequences in
addition to the Hr3 enhancer

Analysis of multiple experiments (Fig. 2, Table 1, and data
not shown) revealed an interesting trend regarding the
effect of the IE1 transactivating protein upon the promot-
ers themselves. This effect was different for each promoter
when co-transfected with an identical plasmid expressing
the Renilla luciferase control. Addition of the IE1 transac-
tivator resulted in a 17-fold increase in expression of fire-
fly luciferase from the Act5C promoter over its basal level
expression and a concomitant 30-fold increase from the
Renilla luciferase reporter under the control of the hsp82
promoter from Drosophila pseudobscura [32]. When the IE1
promoter was used to drive expression of firefly luciferase,
expression increased 169-fold over the basal level expres-
sion, while Renilla luciferase expression from the hsp82
promoter increased 138-fold. Finally, firefly luciferase
expression increased 11-fold relative to basal level expres-
sion from the pUb promoter with a corresponding 202-
fold increase in Renilla luciferase expression from the
hsp82 promoter.

Discussion

Unexpectedly, the internal control for transfection and
protein recovery, Renilla luciferase, could not reliably be
used as such in the presence of the transactivator. The data
presented reveal a differential effect of the IE1 transactiva-
tor (Fig. 2 and Table 1) that profoundly affects expression
levels from the two luciferase plasmids in an enhancer/
promoter-dependent manner. This compromises the abil-
ity to compare expression values both within an experi-
ment where IE1 is present in some samples but not in
others and between experiments where different batches
of cells and assay reagents are employed. The results of a

Page 2 of 8

(page number not for citation purposes)



BMC Molecular Biology 2004, 5:8 http://www.biomedcentral.com/1471-2199/5/8

A replications

=

= (A)

L p]

u k]

= 00 A

=

LL

w  BO0 A

L p]

& 500 1

e B cULR
3 400 4 [ 5440
= B H3
5 3007 O Ha+
o 200 1 O none
==

T 100 -

s 0

E |:u',_||:I ++ 1 std error
ke

— (B)

[

3

% 1000 1

el

3 N W cUR
= 1002 [l eSvil
T B Hr3
= Bl Hr3+
% 10 7 E none
[ak}

=

=

m 1 \n

o

ACt5C E1 Pub +- 1 std error
5 replications

Figure |

Firefly luciferase expression from various promoter/enhancer plasmids in Aedes albopictus C7-10 cells. Cells were assayed for
luciferase expression 24 hrs. post-transfection. The averages of five replications are reported and error is reported as +/- |
standard error. (A) To normalize for differences in transfection efficiency and cell cycle state within the experiment, the firefly
luciferase luminescence values for each construct were divided by the corresponding Renilla luciferase luminescence values
measured in a dual luciferase assay. Bars in red indicate the presence of the IE| transactivator. The Hr3 enhancer clearly out-
performs both the cULR and the eSV40 enhancers in combination with each of the promoters. (B) Raw firefly luciferase values
are reported as a % of pSLIEILuc expression on a log scale. The bars in red show levels of firefly luciferase expression in the
presence of the IE| transactivator. Addition of the IE| transactivating protein (Hr3+) increased firefly luciferase expression 2.5—
4-fold over all Hr3-promoter combinations alone and 50-200-fold over basal promoter expression.
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Differential effect of the IE| transactivator on the transcription levels from various promoters. Each promoter-Luc construct
was co-transfected with phsp82RenillaLuc, both in the absence and presence of the IE| transactivator, and assayed for both fire-
fly and Renilla luciferase expression, 24 hrs. post-transfection. One experiment with six replicates was performed with the
same batch of cells, DNA/liposome complexes and luciferase reagents. Error is reported as +/- | standard error. Each set of
data is plotted both on a linear and a log scale. (A) Addition of the transactivator (+) caused a |6-fold increase in firefly luci-
ferase expression from the Act5C promoter, a 169-fold increase in expression from the IEl promoter and an | |-fold increase
in expression from the pUb promoter. (B) The same data as shown in (A) but plotted on a log scale. (C) Addition of the trans-
activator resulted in different levels of expression from the phsp82RenillaLuc construct depending upon which promoter was
used to drive expression of the firefly luciferase construct. (D) The same data as shown in (C) but plotted on a log scale.

single experiment involving the transactivator are reported
here, however additional experiments show similar
results. The ratio of firefly to Renilla luciferase is reported
for all promoter/enhancer combinations to allow accurate
comparison of the three promoters alone and in combina-
tion with each of the three enhancers. It should be noted
that the addition of the transactivator does significantly
increase firefly luciferase expression from all three pro-
moters with the Hr3 enhancer sequence, though this is
masked by the simultaneous increase in expression from
the Renilla luciferase control plasmid.

The IE1 transactivator is clearly interacting with the pro-
moters in trans, even in the absence of the Hr3 enhancer

element (Fig. 2, Table 1 and data not shown). This obser-
vation agrees with previously published data that the cyto-
plasmic A3 actin gene promoter of B. mori was
upregulated as much as one hundred-fold by the co-trans-
fection of a plasmid encoding the B. mori IE1 gene product
(BmIE1) [29]. When the Hr3 enhancer is present, there is
a cooperative effect, and luciferase expression increases as
much as 200-fold (Fig. 1) over that of the promoter alone.
This cooperativity is consistent with results obtained with
Hr3-enhanced CAT expression cassettes driven by the B.
mori cytoplasmic actin gene promoter co-expressed with
the BmIE1 protein in lepidopteran cell lines Bm5 and Sf21
(an increase of up to three orders of magnitude) [29].
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Table I: Change in Basal Luciferase Expression from Promoters with Addition of the IEl Transactivator

Promoter Firefly Luciferase Renilla Luciferase Ratio
Act5C 17 x 130x d1.9x
IEI T 169 x T 138 x T2x
pUb Tl x 1202 x 1183 x

This summary of the data presented in Fig. 2 shows the fold change of firefly luciferase expression from each basal promoter following addition of
the IEI transactivator, the fold-increase in expression from the control Renilla luciferase plasmid under control of the hsp82 promoter and the

overall change in ratio.

The significant differences seen in expression from each of
the promoters tested (Fig. 2 and Table 1) reveal that not
all promoters are affected in the same manner, nor is the
co-transfected plasmid. The presence of the Hr3 enhancer
region upstream of the promoter driving expression of the
IE1 transactivator protein, results in high levels of IE1 pro-
tein from a relatively low amount of plasmid DNA.
Despite this abundance of IE1 protein, it appears that
transcription from the pUb promoter, in the absence of
the Hr3 enhancer, increases only 11-fold (Fig. 2A and
Table 1), while transcription from the hsp82 promoter
driving Renilla luciferase expression is exceptionally high
(Fig. 2B and Table 1). The simplest explanation is that the
IE1 protein has different affinities for binding sites on the
various promoters and/or the IE1 protein is sequestering
necessary basal transcription factors. It has also been
observed that some viral promoters, IE-0, IE-2 and PE-38,
are inhibited by IE1 expression [33-35]. Clearly, the
actions of the IE1 transactivator in this study are consistent
with its ability to bind Hrs [36-38]. In addition, the pro-
tein has two independent functional acidic activation
domains and two potential positively-charged inhibitory
domains [39,40], consistent with its observed ability to
both enhance and inhibit expression from different pro-
moters. Also, lower concentrations of the plasmid bearing
the IE1 gene sequence in these transient assays result in
greater increases in luciferase expression (see additional
file 2). This observation is consistent with the mechanism
of negative regulation by the IE1 protein previously pro-
posed [35] where the cooperative binding of the Hrs
occurs at a lower concentration than that required for
binding to the half sequence regions (Hs) present in neg-
atively regulated promoters. It is also consistent with the
presence of the Hr3 enhancer sequence on the plasmid
producing the IE1 transactivating protein, which results in
up-regulation of IE1 transcription, consequently reducing
the number of plasmid copies needed to produce optimal
protein levels. When this experiment was repeated using
pUDb to drive Renilla luciferase expression (data not shown
and additional file 3), significant differences between pro-
moters were also observed, though not the same differ-
ences described above with the hsp82-Renilla expression

plasmid. Finally, it should be noted that each of the
enhancers alone also differentially affected the expression
from each promoter. These data collectively highlight the
value of evaluating the effects of new promoter/enhancer/
transactivator combinations on the expression of a
reporter gene within a related cell line, prior to investing
significant time and effort in the creation of transgenic
lines. Though cell lines do not completely mimic the cel-
lular and nuclear environment of an entire organism, they
can yield significant insight into both the potential inter-
action between regulatory elements driving transgene
expression and the potential impact of unknown endog-
enous transacting factors.

Conclusions

Clearly, we have shown that the baculovirus homologous
region, Hr3, along with the IE1 transactivating protein,
significantly increases transgene expression from each of
the three heterologous, constitutive promoters tested in
mosquito cells. Some concern does exist that endogenous
promoters might be down-regulated by the presence of
the IE1 protein, and that available host cell transcription
factors might be sequestered by complexes stabilized by
the IE1 transactivator, however a lower concentration of
IE1 transactivator would likely mitigate these effects. Pre-
liminary transposition assays confirm the ability of the
Hr3 enhancer/IE1 transactivator combination to function
in syncytial preblastoderm mosquito embryos and to sig-
nificantly increase observed transposition frequencies
when used to drive transposase expression (Coates, et al.,
unpublished data). Use of tissue-specific promoters/
enhancers and/or inducible expression may effectively
reduce any potential fitness load imposed by interactions
of the iel protein with endogenous regulatory elements.
Perhaps the most promising application is the use of HR/
IE1 in helper plasmids transiently expressing transposase
in an attempt to increase the number of stable transgene
integration events by increasing the amount of available
transposase, particularly if germline-specific promoters
were used to express the transactivator protein. The HR/
IE1 strategy is a promising tool for high-level transgene
expression and/or increased transposition frequency in
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culicine mosquitoes and possibly other insect species as
well.

Methods

Construction of the luciferase expression plasmids

A 2.7-kb Hindlll-Sall fragment from pGL2-Basic
(Promega), containing the firefly luciferase coding region
and the SV40 poly-Adenylation signal, was inserted into
the corresponding sites of pBCKS+ (Stratagene) to create
pBCLuc. A 2.7-kb Smal-Sall fragment from pBCLuc was
inserted into the Smal-Sall sites of pSLfal1180fa ([41] to
create pSLLuc. The Drosophila Actin5C promoter was
excised from pHermesA5CEGFP [13] by PstI and BamHI
digestion and inserted into the corresponding sites of PSL-
Luc to create PSLAct5CLuc. The Sacll site was removed
from plIE1-3 (Novagen) and then the 657-bp EcoRI-
BamHI fragment containing the ACMNPV IE1 promoter
was inserted into the corresponding sites of pSLLuc to cre-
ate pSLIE1Luc. A 2-kb Kpnl-BamHI fragment from pB
[pPUB-nls-EGFP] [42] containing the Drosophila polyubig-
uitin promoter was inserted into the corresponding sites
of pSLLuc to create pSLpUbLuc. The copia ULR was ampli-
fied by polymerase chain reaction (PCR) from copia LTR-
ULR-CAT [43] wusing the primers 5'-AAGCIT-
GGGCCCAGTCCATGCCTA-3' and 5'-CCGCGGAT-
TACGTTITAGCCITGTC-3', cleaved by digestion with
HindIIl and Sacll and inserted into the corresponding sites
of pBCKS+ to create pBCcULR. The HindlIII-Sacll fragment
from this plasmid was then inserted into the correspond-
ing sites of pSLAct5CLuc and pSLIE1Luc to create
pSLcULRAct5CLuc and pSLcULRIE1Luc. pBCcULR was
digested with HindIll and the site filled with the Klenow
fragment of DNA polymerase I (Promega), then digested
with Sacll and ligated into pSLpUbLuc which had been
cut with Notl and the site filled with Klenow fragment,
then cut with Sacll to create pSLcULRpUbLuc. The SV40
enhancer region from pRL-SV40 (Promega) was PCR-
amplified using the primers 5'-AAGCTTCTGAGGCG-
GAAAGAACCA-3' and 5'-CCGCGGAAAATT-
AGCCAGCCATGG-3', digested with HindIIl and Sacll and
inserted into the corresponding sites of pBCKS+ to make
pBCeSV40. The HindlIl-Sacll fragment of pBCeSV40 was
then inserted into the corresponding sites of pSLAct5CLuc
and pSLIE1Luc to create pSLeSV40Act5CLuc and
pSLeSV40IE1Luc. pBCeSV40 was digested with Hindlll,
the site filled with Klenow fragment, then digested with
Sacll and ligated to pSLpUbLuc digested with Notl, the site
filled with Klenow fragment and subsequently digested
with Sacll to produce pSLeSV40pUbLuc. A 1.2-kb Pstl-
BamHI fragment containing the B. mori NPV Hr3
enhancer from p153 [25] was inserted into the corre-
sponding sites of pBCKS+ to create pBCHr3. The Pstl-
BamHI fragment of pBCHr3 was inserted into the corre-
sponding  sites of  pSLAct5CLuc to  create
pSLHr3Act5CLuc. The Hindlll-Sacll fragment of pBCHr3
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was inserted into the corresponding sites of pSLIE1Luc to
create  pSLHr3IE1Luc. The EcoRV-Sacll fragment of
pBCHIr3 was ligated to pSLpUbLuc digested with Notl, the
site filled with Klenow fragment, and then digested with
Sacll to create pSLHr3pUbLuc. phsp82Renillaluc was cre-
ated by inserting a 1-kb Kpnl-BamHI fragment from
pKhsp82 [44] into the corresponding sites of pBCKS+ and
then inserting the Kpnl-PstI fragment from this plasmid
into the corresponding sites of pRL-SV40. ppUbRenillaluc
was created by first digesting pSLpUbLuc with Notl, filling
in the site with Klenow fragment, then digesting with PstI
to produce a2-kb fragment which was ligated to pRL-SV40
prepared by digestion with BgIII, the site filled with Kle-
now fragment and then digested with Pstl.

Cell cultures and transfections

Aedes albopictus C7-10 cells were maintained at 25°C with
5% CO, in Eagle's media plus 5% fetal calf serum with the
following additions per liter: 10 mL 10% (wt/vol)
D(+)glucose, 10 mL 200 mM L-glutamine, 10 mL MEM
vitamin solution, 20 mL MEM non-essential amino acids,
10 mL Penicillin/Streptomycin (10,000 U/mL), 29.3 mL
sodium bicarbonate (7.5% w/v) [45]. 400 pL of cells at a
density of 2 x 10 cells/mL were seeded into 24-well
microtiter plates and incubated at 25°C for 24 hrs. Cells
were transfected with 0.4 pg total DNA and 0.8 pL Lipo-
fect AMINE 2000 (Life Technologies) in 10 pL serum-free,
antibiotic-free media. phsp82Renillaluc and the firefly
constructs were transfected at a 1:2 ratio. The IE1 transac-
tivator plasmid [25] was present as 1/10 of the total DNA.

Luciferase assays

Transfected cells were assayed 24 hrs. post-transfection
using a Turner Designs 20/20 luminometer and a Dual
Luciferase Assay (Promega). The manufacturer's passive
lysis protocol was followed. In addition, cell lysates were
snap frozen in liquid nitrogen immediately after lysis to
minimize luciferase protein degradation. All samples were
diluted 20-fold in 1 x PLB (passive lysis buffer) in order to
obtain a reading within the range of the luminometer.
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Additional material

Additional File 1

The IE1 transactivator significantly affects expression from the Renilla
luciferase control plasmid. Cells were transfected as detailed in the meth-
ods with 0.27 ug Hr3Act5CLuc (firefly) plasmid, 0.04 g IE1 transacti-
vator plasmid and the indicated amount of Renilla luciferase control
plasmid. Because this is a control plasmid with no Hr3 enhancer element
present, one would expect the expression levels to parallel those shown in
the absence of the IE1 transactivator (solid bars).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2199-5-8-S1.pdf]

Additional File 2

Lower concentrations of the IE1 transactivator result in greater expression
from both the Hr3Actin5C (firefly luciferase) and the hsp82 (Renilla
luciferase) promoters. Cells were transfected as detailed in the methods
with 0.27 ug Hr3Act5CLuc (firefly) plasmid, 0.14 ug hsp82RenillaLuc
plasmid and the indicated amount of IE1 transactivator plasmid.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2199-5-8-S2.pdf]

Additional File 3

The hsp82 versus the pUb promoter for Renilla luciferase expression. Cells
were transfected as detailed in the methods with the only difference being
the promoter used to drive expression of the Renilla luciferase control plas-
mid. The pUb promoter seems to be upregulated more than the hsp82 pro-
moter in the presence of the transactivator. Interestingly, the
corresponding expression from the Hr3Act5C firefly luciferase plasmid is
less when the pUb Renilla plasmid is co-transfected. Other differences
were seen when this experiment was repeated with Hr3IE1 and Hr3pUb
firefly luciferase plasmids. Clearly, the IE1 transactivator binds sequences
other than the Hr3 enhancer sequence in eukaryotic promoters and the
effect is dependent upon the combination of promoters present.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2199-5-8-S3.pdf]
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