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Abstract The high resolution magnetic resonance (MR)
brain images contain some non-brain tissues such as skin,
fat, muscle, neck, and eye balls compared to the functional
images namely positron emission tomography (PET), single
photon emission computed tomography (SPECT), and func-
tional magnetic resonance imaging (fMRI) which usually con-
tain relatively less non-brain tissues. The presence of these
non-brain tissues is considered as a major obstacle for auto-
matic brain image segmentation and analysis techniques.
Therefore, quantitative morphometric studies of MR brain im-
ages often require a preliminary processing to isolate the brain
from extra-cranial or non-brain tissues, commonly referred to
as skull stripping. This paper describes the available methods
on skull stripping and an exploratory review of recent litera-
ture on the existing skull stripping methods.

Keywords Skull stripping . Brain segmentation . Brain
extraction .MRI brain . Brain structure segmentation

Introduction

The application of digital image processing in medicine has
increased the scope of diagnosis due to better visualization

and quantitative analysis. The dawn of digital age has
empowered medical imaging in such a way that computer-
based medical image processing techniques have gained pop-
ularity in the past few decades. The rapid progress witnessed
in computerized medical image analysis and computer-aided
diagnosis has promoted many imaging techniques to find ap-
plications in medical image processing. Among the various
imaging techniques, MRI (magnetic resonance image) is the
most widely used imaging technique in the medical field. It is
a noninvasive, nondestructive, flexible imaging tool that does
not require ionizing radiation such as X-rays. It reveals infor-
mation about the anatomy of human soft tissue that is not
externally visible [1]. MRI has a high spatial resolution and
hence provides more information on the anatomical structure,
allowing quantitative pathological or clinical studies.

MR Brain Images

MRI is particularly suitable for brain studies, because it can
image both interior and exterior brain structures with a high
degree of anatomical details, using which even the minute
changes in these structures that develop over a time period
can be detected. MRI scans can produce cross-sectional im-
ages in any direction from top to bottom, side to side, or front
to back. Therefore, the three dimensional MR brain images
have become more popular in medical applications and are
being used for research related to diagnosis, treatment, surgi-
cal planning, and image-guided surgeries.

There are primarily three types of MR brain images, T1-
weighted, T2-weighted, and PD-weighted, which focus on
different contrast characteristics of the brain tissues [2]. MR
brain images have some advantages over other imaging mo-
dalities. MR images of the brain and other cranial structures
are clearer and more detailed than the other imaging methods.
These details make MRI an invaluable tool in early diagnosis
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and evaluation of many brain-related deceases. MRI has the
ability to image the brain in any plane without physically
moving the patient whereas CT scans are limited to one plane,
the axial plane [3, 4].

The brain MRI is widely used to diagnose the brain dis-
eases such as acoustic neuroma, Alzheimer’s disease, amyo-
trophic lateral sclerosis, aneurysm in the brain, arteriogram,
arteriovenous malformation-cerebral, blood clots, brain ab-
scess, brain tumor-children, central pontine myelinolysis, ce-
rebral amyloid angiopathy, chronic subdural hematoma,
Cushings disease, dementia, dementia due to metabolic
causes, diabetes insipidus central, Huntington’s disease, hypo-
pituitarism,melanoma of the eye,Menieres disease, metastatic
brain tumor, multi-infarct dementia, multiple sclerosis, mye-
lin, normal pressure hydrocephalus (NPH), optic glioma, par-
tial (focal) seizure, petitmal seizure, pituitary tumor,
prolactinoma, Reye syndrome, sinusitis, stroke, subdural he-
matoma, TMJ disorders, toxoplasmosis, Wernicke–Korsakoff
syndrome, and Wilson’s disease [5].

Skull Stripping of MR Brain Images

The MRI system produces brain image as 3D volumetric data
expressed as a stack of two-dimensional slices and it is nec-
essary to use computer-aided tool to explore the information
contained in these brain slices for various brain image appli-
cations such as volumetric analysis, study of anatomical struc-
ture, localization of pathology, diagnosis, treatment planning,
surgical planning, computer-integrated surgery, construction
of anatomical models, 3D visualization, and research.

Several image processing methods are required before the
brain images can be explored. Image processing covers various
techniques that are applicable to a wide range of applications,
among which segmentation is an essential and important pro-
cess in medical image processing and analysis [6]. There are
number of algorithms being proposed in the field of medical
image segmentation [7]. These techniques are broadly classi-
fied into four categories: methods based on gray level features,
methods based on texture features, model-based segmentation
methods, and atlas-based segmentation methods [8–13].

The quantitative morphometric studies ofMR brain images
often require a preliminary processing to isolate the brain from
extra-cranial or non-brain tissues from MRI head scans, com-
monly referred to as skull stripping [14–17]. Because the brain
images that have preprocessed with automatic skull stripping
eventually lead to get better segmentation of different brain
regions which results for accurate diagnosis of various brain-
related diseases. The brain regions must be skull-stripped prior
to the application of other image processing algorithms such
as image registration and warping [18], brain volumetric mea-
surement [19], inhomogeneity correction [20], tissue classifi-
cation [21], analysis of cortical structure [22], cortical surface
reconstruction [23], cortical thickness estimation [24],

identification of brain parts [25], multiple sclerosis analysis
[26], Alzheimer’s disease [27], schizophrenia [28], and mon-
itoring the development or aging of the brain [29]. Some skull
stripping results of 2D brain slices and 3D brain volumes are
illustrated in Fig. 1.

Moreover, skull stripping being a preliminary step, de-
signed to eliminate non-brain tissues from MR brain images
for many clinical applications and analyses, its accuracy and
speed are considered as the key factors in the brain image
segmentation and analysis. However, the accurate and auto-
mated skull stripping methods help to improve the speed and
accuracy of prognostic and diagnostic procedures in medical
applications.

A number of automated skull stripping algorithms are
available in the literature. Several comparative studies have
also been carried out on the existing skull stripping methods to
analyze their performance using the commonly available
datasets. Each skull stripping method has their own merits
and limitations. The objective of this paper is to present the
current methods in MRI skull stripping, their scope and limi-
tations. Remaining parts of the paper is organized as follows:
in section 2, the classification and review on skull stripping
methods and their challenges are given. The conclusion is
given in section 3.

Skull Stripping Methods

Skull stripping methods which are available in the literature
are broadly classified into five categories: mathematical
morphology-based methods, intensity-based methods, de-
formable surface-based methods, atlas-based methods, and
hybrid methods.

Morphology-Based Methods

Generally, these methods use the morphological erosion and
dilation operations to separate the skull from the brain region.
These methods require a combination of thresholding and
edge detectionmethods to find the initial ROI (region of interest).
The main rawbacks of these methods are that they often depend
on many parameters such as size and shape of the structural
element for morphological operation. These parameters are fixed
by empirical experimentation; the value on these parameters
directly influences the final output of these methods.

The method, automatic detection of brain contours in MRI
datasets developed by Brummer et al. [30] is one of the first
commonly used methods for skull stripping. It consists of
histogram-based thresholding and morphological operations.
Based on the brain anatomical knowledge, it discriminates
between the desired and undesired structures. This method is
implemented using a sequence of conventional and novel
morphological operations, using 2D and 3D operations. As a
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final step, it performs overlap tests on candidates brain regions
of interest in the neighboring slice images to propagate coher-
ent 2D brain masks through the third dimension. However,
existing methods that use mathematical morphology are
sometimes sensitive to small data variations and it is difficult
to find the optimum morphology size for separating the brain
tissues from the non-brain tissues [31, 32]. A similar method
proposed by Tsai et al. [33] is based on histogram analysis and
morphological operations.

To detect anatomical brain boundaries, Sandor and Leahy
[34] used 3DMarr–Hildreth edge detector and morphological
operation as a preprocessing procedure to find and label the
cortical surface in three-dimensional MR brain images.
Exbrain [35] is a fully automatic algorithm that segments
T1-weighted MR head scans. It uses 3D morphological oper-
ations and connected component analysis. Exbrain chooses a
threshold and increments it by unit steps until there is a sig-
nificant change in the volume found after a set of morpholog-
ical and connected component operations. It works on normal
as well as certain types of abnormal brain slices. It is fully 3D
and therefore independent of scan orientation.

Brain surface extraction (BSE) for T1 and T2-weighted
brain images proposed by Shattuck et al. [36] is an edge-
based method that employs anisotropic diffusion filtering.
Edge detection is implemented using a 2D Marr–Hildreth op-
erator, employing low-pass filtering with a Gaussian kernel
and localization of zero crossings in the Laplacian of the fil-
tered image. BSE breaks connections between the brain and

the other tissues in the head using a morphological erosion
operation. After identifying the brain using a connected com-
ponent operation, BSE applies a corresponding dilation oper-
ation to undo the effects of the erosion. As a final step, BSE
applies a morphological closing operation that fills small pits
and holes that may occur in the brain surface. BSE requires
fixed parameters such as diffusion iteration, diffusion con-
stant, edge constant, and erosion size. BSE is based on an edge
detecting algorithm, sometimes it failed to work with poor
contrast images.

A method based on seed growth and threshold techniques
for automatic segmentation of brain MRI is employed by
Shanthi and Sasikumar [37]. A method described byMikheev
et al. [38] is an automatic segmentation of brain from T1-
weighted MR brain images. It uses an intensity threshold
followed by removal of narrow connections using their Bridge
Burner method, though, the Bridge Burner is not a skull strip-
ping algorithm. However, the algorithm can be modified to
produce an output similar to the other skull stripping methods
by morphologically closing the output and then filling the
holes in the mask.

Park and Lee [39] developed a skull stripping method for
T1-weighted MR brain images based on 2D region growing
method. It aims to automatically detect two seed regions of the
brain and non-brain by using a mask produced by morpholog-
ical operations. Then, the seed regions were expanded using
2D region growing algorithm, based on the general brain anat-
omy information.

Fig. 1 Skull stripping results of
2D and 3D brain volume. a
Original 2D brain slice. b Skull
stripped 2D brain slice. c Original
brain volume. d Skull stripped
brain volume
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Skull stripping MR brain images using anisotropic diffu-
sion filtering and morphological processing is described by
Gao and Xie [40]. Automatic skull stripping using image con-
tour and a method to segment the brain fromMRI human head
scans were developed in [41, 42], which uses morphological
operations and connected component analysis to identify the
brain in T1-weighted MR brain images.

Brain extraction algorithm (BEA) [43] is a brain extraction
method that uses diffusion, morphological operations and
connected component analysis to extract the brain region in
T2-weighted axial slices. Brain extraction method for T1-
weighted MR brain images based on morphological operation
and run-length scheme has also been proposed in [44].

The simple paradigm for extra-cerebral tissue removal
(SPECTRE) is based on a watershed principle and it combines
elastic registration, tissue segmentation, and morphological
operators as described by Carass et al. [45], for T1-weighted
brain images.

Intensity-Based Methods

Intensity-based methods use the intensity values of the image
pixel to separate the brain and non-brain region. For example,
histogram-based method, edge-based method, and region
growingmethods are intensity-basedmethods. Thesemethods
rely upon modeling the intensity distribution function to clas-
sify the brain and non-brain tissues in the brain images. The
main limitation of these methods is they are sensitive to inten-
sity bias due to various imperfection introduced in MRI head
scan images such as low resolution, high level of noise, low
contrast, and the presence of various imaging artifacts.

3dIntracranial [46, 47] is an automatic segmentation of
intracranial regions in T1 and T2-weightedMRI brain images.
In this, a down-hill simplex method is used to estimate means,
standard deviations, and weights of presumed gray matter
(GM), white matter (WM), and background compartments.
From these estimated values, a probability density function
(PDF) is derived to set upper and lower signal intensity
bounds. These upper and lower bounds are set to exclude
non-brain voxels. Then, the connected component analysis
is carried out slice-by-slice to identify the brain, followed by
a 3D envelope process over all the slices. Finally, a neighbor-
hood analysis is performed on each voxel to include or ex-
clude the misclassified voxels. In this technique, nine param-
eters are required to be estimated for each image. Poor results
are obtained if the estimation and initialization are not done
properly [31]. A connectivity-based threshold algorithm to
extract the brain regions of 3D sagittal MR skull stripping
was developed by [48].

Dawant et al. [49] developed an automatic method for 3D
segmentation of internal structures of the head in MR images
using a combination of similari ty and free-form

transformation. An adaptive fuzzy segmentation algorithm
for 3D magnetic resonance image was employed in Pham
and Prince [50].

The watershed algorithm (WAT) proposed by Hahn and
Peitgen [51] is intensity-based approach for T1-weighted im-
ages, which relies on a 3D algorithm with pre-flooding per-
formed on the intensity inverted image that operates under the
assumption of white matter connectivity and segments the
image into brain and non-brain components. But, it often pro-
duces over-segmentation and is sensitive to noise present in
the image. It may fail to remove dura, skull, and various non-
brain structures in the neck or eye area [52].

Statistical parameter mapping version 2 (SPM2) [53] does
not explicitly generate a brain mask; however, it can be ob-
tained from the sum of the GM and WM compartments after
tissue segmentation process in T1-weighted brain images. The
SPM5 [54], an enhanced version of SPM2 [53], like SPM2,
does not explicitly generate a brain mask. It uses a probabilis-
tic brain tissue segmentation method. This model combines
image registration, tissue classification, and bias correction.
The output images are probabilistic images per tissue class.
The nonuniformity corrected T1-weighted image and the
mask were given as inputs.

Zu et al. [55] proposed a skull stripping algorithm that
consists of foreground and background thresholding, discon-
nection of the T1-weighted brain from the skull and head
tissues by morphological operations, and removal of residue
fragments for segmenting the brain region from MR head
scans. Grau et al. [52] proposed a method which is an im-
provement over the WAT [51] which enables the use of dif-
ferent prior information based on the probability calculation
instead of the usual gradient calculation and it combines the
watershed transform and atlas registration using markers.

Graph cuts (GCUT) is a skull stripping method for T1-
weighted images proposed by Sadananthan et al. [56] relies
on graph-theoretic image segmentation techniques to position
the cuts which serve to isolate and remove dura. First, it finds a
threshold between the intensities of the GM and the CSF and
uses it to generate a preliminary binary mask which ideally
includes the brain, the skull, and some thin connections be-
tween them. Then, the graph cuts can be used to find a con-
nected submask that minimizes the ratio between the cost of
its boundary and its volume. This can be seen as a simple
shape prior. This submask is post-processed to obtain the final
segmentation. GCUT is usually quite accurate but sometimes
makes large mistakes by following a wrong edge [43].

Somasundaram and Kalavathi [57] have developed a sim-
ple skull stripping method based on 2D region growing meth-
od. Segmentation in magnetic resonance human head scans
using multi-seeded region growing method has been devel-
oped in [58]; it uses multiple seed points to extract the brain
from T1, T2, and PD-weighted brain images. Brain asymme-
try is computed on the segmented brain images in [59].
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Deformable Surface-Based Method

Skull stripping methods based upon deformation models typ-
ically evolve and deform an active contour to fit the brain
surface, which is identified using selected images characteris-
tics. Active contour is a self-regulating dynamic curve that
moves under the influence of energy functional towards the
desired object boundaries. The basic idea of any active con-
tour model starts with an initial closed curve which is itera-
tively shrunk or expanded with respect to the boundary of the
object by satisfying some constraints associated with the im-
age. The shrink/expand operations are referred to as curve
evolution. These methods are dependent on the location of
the initial curve and the image gradient to stop the evolving
curve on the object boundary. The advantage of these methods
is they can simultaneously detect both the interior and exterior
boundaries of an object and however these methods are sen-
sitive to noise. The active contour model uses the level set
theory which provides more flexibility and convenience in
its implementation. In general, deformable models have the
potential to produce more robust and accurate skull stripping
results than methods using edge detection and threshold
classification.

Aboutanos et al. [60] evolved a 2D contour to find the brain
border in T1-weighted image by maximizing its correspond-
ing one-dimensional (1D) optimization problem, which was
obtained via geometrical transformation from a 2D contour
using dynamic programming techniques. The 1D optimization
problem was described by a cost function that consists of
intensity value, morphology, gradient, the moving speed of
the contour, and the smoothness of the contour. Zeng et al.
[61] proposed a system of two level set equations whose zero
level curves represented their inner and outer boundaries of
the gray matter of the cortex. Each level set equation was
driven towards the inner or outer boundary by a force term
determined by the intensity distribution of brain tissues (i.e.,
cerebrospinal fluid (CSF), WM, and GM). The two level set
equations were further related to each other by constraining
the distance between the inner and outer boundaries (i.e., the
thickness of gray matter).

Suri [62] devised an active contour algorithm that uses the
level set methods to evolve the active contour. It uses a fuzzy
membership function to classify brain images into four com-
ponents: WM, GM, CSF, and background, then used a gradi-
ent detector and a deformable model to evolve an active con-
tour to fit the surface between the CSF and GM. Segmentation
of brain from 3D MR images using level sets and dense reg-
istration proposed by Baillard et al. [63] integrates 3D seg-
mentation and 3D registration processes. The segmentation
process is based on the level set formation, in which the speed
term was determined by the curvature of the evolving curve
and by a sign function that indicates whether to include or
exclude a pixel through which the curve passed.

Brain extraction tool (BET) developed by Smith [31] em-
ploys a deformable model that evolves to fit the brains surface
by the application of a set of locally adaptive model forces.
BET makes an intensity-based estimation of the brain and
non-brain threshold, determines the center of gravity of the
head, defines an initial sphere based on the center of gravity,
and expands the tessellated sphere until it reaches the brain
edge. It has two user-adjustable parameters, fractional intensi-
ty threshold and threshold gradient. BET produces the brain
volume smoother than the other methods and often includes
additional non-brain tissues. This algorithm was tested with
T1 and T2-weighted images. However, BET has failed to
extract the brain region in the bottom axial slices because
the head scan included much neck portion, for these slices
center of gravity of the volume was outside the brain, thus
failed to extract the brain regions [64].

BET2 [65] is based on BET [31], which finds the brain
boundary in the given MR brain image. BET attempts to find
external skull surface voxels, but does not fit a surface to the
brain boundary and the resulting crude skull image contains a
relatively large number of false negatives and positives. BET2
uses high-resolution T1 and T2-weighted images, and it ide-
ally requires a pair of T1 and T2-weighted images, preferably
of 2 mm resolution. First, the brain surface in T1 is found
using the original BET algorithm. Then T2 is registered to
the T1 image.

3dSkullStrip [66], a part of the AFNI (analysis of function-
al neuro images) package, is a modified version of BET [31]
for skull stripping the T1-weighted brain images based on the
spherical surface expansion paradigm. It includes modifica-
tions for avoiding the eyes and ventricles. Statistical shape
model for automatic skull stripping of T1-weighted brain im-
ages by Lao et al. [67] is a surface model of the brain boundary
and is hierarchically represented by a set of overlapping sur-
face patches, each of which has elastic properties and defor-
mation range that is learned from a training set. The deforma-
tion of this model is hierarchical which adds robustness to
local minima. Moreover, the deformation of the model is
constrained and guided by global shape statistics. The model
is deformed to the brain boundary by a procedure that matches
the local image structure and evaluates the similarity in the
whole patch rather than on a single vertex.

Model-based level set method (MLS) by Zhuang et al. [32]
is based on active curve to remove the skull and intracranial
tissues surrounding the brain in MR brain images. It was de-
veloped for controlling the evolution of the zero level curve
that is implicitly embedded in the level set function. The evo-
lution of the curve was controlled using two parameters in the
level set equation, whose values represented the forces that
determined the speed of the evolving curve. The first force
was derived from the mean curvature of the curve and the
second was designed to model the intensity characteristics of
the cortex inMR images. The combination of these forces in a
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level set framework pushed or pulled the curve towards the
brain surface. The MLS algorithm was tested with T1 and T2-
weighted brain volumes. John et al. [68] also proposed a 3D
skull stripping method based on mathematical morphological
operations along with statistical techniques.

Yunjie et al. [69] developed a fast automatic skull stripping
method based on an adaptive gauss mixture model and a 3D
mathematical morphology method. The gauss mixture model
is used to classify the brain tissues and to estimate the bias
field in the brain tissues. The 3D mathematical morphology is
used for skull stripping other tissues. A method based on an
implicit deformable model which is described by radial basis
functions is introduced by Liu et al. [70] for skull stripping.

A method that uses watershed segmentation, Gaussian
mixture model clustering and a modification of BET is
employed [71] to segment MR images of premature infant
brains. Tao and Chang [72] developed a deformable surface-
based algorithm that first analyzes the intensity of the entire
image to find an approximate centroid of the brain and then it
initializes an ellipsoidal surface around it. It uses tissue clas-
sification and bias field estimation to compute external force
for surface deformation and relies on the internal force, de-
rived from local surface patch to maintain the topology and
smoothness of the surface. This algorithm was tested with T1
and T2-weighted brain images.

A skull stripping method using Chan–Vese active contour
method has been developed in [73]. Hwang et al. [74] has
introduced a skull stripping method using fast 3D level set
method and a refinement process. This method uses a speedup
operator on the conventional 3D level set method in order to
accelerate the level set evolution and the accuracy of brain
extraction is improved by adopting a refinement process.

An automated and simple method for brain MR image
extraction proposed by Zhang et al. [75] uses an improved
geometric active contour model to solve the boundary leakage
problem in T1-weighted MR brain images. The method de-
fines the initial function as a binary level set function to im-
prove the computational efficiency. A novel skull stripping
method for T1-weighted MRI human head scan images is
employed by Somasundaram and Kalavathi [76]. Simplex
mesh and histogram analysis skull stripping (SMHASS) de-
scribed by Galdames et al. [77] is a brain extraction method
for T1-weighted images based on deformable models and his-
togram analysis. In this method, a pre-segmentation step is
used to find the optimal starting point for the deformation
and is based on thresholds and morphological operators.
Threshold values for this method are computed using compar-
isons with an atlas. The deformable model is based on a sim-
plex mesh and its deformation is controlled by the image local
gray levels and gray level statistical model constructed on the
pre-segmentation. A contour-based brain segmentation meth-
od [78] uses two stage brain segmentationmethods to segment
the brain from T1, T2, and PD-weighted brain images.

Atlas/Template-Based Methods

Atlas/template-basedmethod relies on fitting an atlas/template
on the MRI brain image to separate the brain from the skull. It
has an ability to separate brain and non-brain when no well-
defined relation between regions and pixel intensities in the
brain image. These methods vary in how many templates they
use in distinguishing brain regions and also how they apply
these atlases.

Dale et al. [79] described a skull stripping method as a
preprocessing step for cortical surface reconstruction process.
This procedure takes an intensity-normalized image and de-
forms a tessellated ellipsoidal template into the shape of the
inner surface of the skull. The deformation process is driven
by two kinds of forces: (i) an MRI-based force, designed to
drive the template outward from the brain and (ii) a curvature
reducing force, enforcing a smoothness constraint on the de-
formed template. This latter force can be seen as an encoding a
priori knowledge about the smoothness of the inner surface of
the skull. Wang et al. [80] study a method with initial skull
stripping by co-registration of an atlas, followed by a refine-
ment phase with a surface deformation scheme that is guided
by prior information. Active shape model-based automated
skull stripping method from infantile brain MR images has
been described in Kobashi et al. [81]. Recently, Mahapatra
[82] considered shaper prior information along with graph
cuts for neonatal brain MRI.

The multi-atlas propagation and segmentation (MAPS)
method presented by Leung et al. [83] generates brain seg-
mentation by combining many segmentations performed by
atlas registration.

BEaST is a brain extraction method based on nonlocal
segmentation technique by Eskildsen et al. [84]. In this, a
nonlocal segmentation is embedded in a multi-resolution
framework. A library of 80 priors is semi-automatically con-
structed from the National Institutes of Health sponsored MRI
study of normal brain development, the International Consor-
tium for Brain Mapping, and the Alzheimer’s disease Neuro-
imaging Initiative databases.

Hybrid Methods

It combines more than one skull stripping results from differ-
ent approaches in order to account for shortcomings of indi-
vidual approaches. Many approaches that could be classified
distinctly in one of the previous groups can be combined to
integrate some feature for other method to produce accurate
result.

Segmentation of brain tissue from magnetic resonance im-
ages developed by Kapur et al. [85] uses a combination of
three existing techniques from the computer vision literature:
expectation/maximization segmentation, binary mathematical
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morphology, and active contour models for segmenting the
brain tissues.

A method by SFU (Simon Fraser University) is a fully
automatic MRI brain segmentation algorithm developed by
Atkins and Mackiewich [86]. It uses an integrated approach
which employs image processing techniques based on aniso-
tropic filters, snake contouring technique, and a priori knowl-
edge, which are used to remove the eyes in MR brain images.
It was originally created for PD/T2-weighted axially acquired
multi-spectral datasets. Enhancements were made to the
ImageJ [87] plugin version of this algorithm to handle coronal
T1 datasets. This method is modeled for normal subjects and it
failed to extract brain containing abnormal anatomic struc-
tures. It requires complex contouring algorithm to produce
the results. The algorithm fails on the dataset with high density
noise and poor contrast resolution [35].

Bauer et al. [88] used atlas-based geodesic active contour
segmentation with level set based algorithm implementation
in ITK for skull stripping in T1-weighted, T1-contrast, T2-
weighted, T2-flair, and CT images.

McStrip (Minneapolis Consensus Stripping) for T1-
weighted images developed by Rehm et al. [89] is an auto-
matic hybrid algorithm implemented in Interactive Data Lan-
guage (IDL) that incorporates BSE [36] and requires no user
intervention; it relies on warping to a template, intensity
thresholding, and edge detection procedures. McStrip is ini-
tialized with a warp mask using automated image registration
(AIR) [90] and dilates the AIR mask to form a coarse mask. It
then estimates the threshold for brain and non-brain tissues
based on the intensity histogram and automatically adjusts this
threshold to produce a threshold mask. The volume of tissues
within the threshold mask determines the choice of the BSE
mask from among a suite of 15 masks computed using param-
eter combinations spanning both smoothing and edge param-
eters. The final McStrip mask is a union of the threshold and
BSE masks after void filling and smoothing.

Hybrid watershed algorithm (HWA) [91] is solely based on
image intensity. It combines watershed algorithm [51] and
deformable surface model [79]. This algorithm operates under
the assumption of the WM connectivity. The algorithm first
localizes a single WM voxel in a T1-weighted MR image and
uses it to create a global minimum in theWM, before applying
a watershed algorithm with a pre-flooding height. Then, the
watershed algorithm builds an initial estimate of the brain
volume, based on the 3D connectivity of the WM and seg-
ments the image into brain and non-brain components. A de-
formable surface model is then applied to locate the boundary
of the brain in the image.

In order to overcome some of the weak points of the indi-
vidual methods, Rex et al. [92] combined multiple results of
various skull stripping techniques including BSE [36], BET
[31], 3dintracranial [47], and MRI watershed techniques [79]
to segment the brain region from T1-weighted image. A

similar approach was undertaken in [93] to learn exemplars
and combine with BSE [36], BET [31].

Huang et al. [94] proposed a method to extract brain
from T1-weighted brain images. It is a hybrid method
combined with the expectation maximization (EM) algo-
rithm with a preprocessing and post-processing tech-
niques. It is based on mathematical morphology and con-
nected component analysis and finds the brain border
using geodesic active contours.

Carass et al. [95] developed a skull stripping method
that combines elastic registration, tissue segmentation,
and morphological techniques into a fast hybrid method
for extracting the brain in T1-weighted images. ROBEX
[96] is a RObust, learning-based Brain EXtraction system.
This method combines the discriminative and generative
model to achieve the final results. The discriminative mod-
el is a random forest classifier, trained to detect the brain
boundary and the generative model is a point distribution
model that ensures that the result is plausible. When a new
image is presented to the system, the generative model
explores it, to find the contour with highest likelihood in
accordance with the discriminative model. As the generic
target shape is not perfectly represented by the generative
model, the contour is refined using graph cuts to obtain the
final segmentation.

Comparative Studies on Skull Stripping Methods

Several comparative studies [14, 97–100] have been carried
out on some of the existing skull stripping methods. Lee et al.
[97] compared the performance of the two automated methods
(BET [31] and BSE [36]) and two semi-automated methods
(ANALYZE 4.0 [101] and modified region growing (mRG)
proposed by Yoon et al. [102]). Although a fully automated
method can produce good results, it requires additional man-
ual intervention either to adjust the initial parameters or to edit
the final result. This nevertheless can be mitigated by fixing
the parameters and post-processing depending on the dataset
or imaging modality. In contrast, the semi-automated methods
had produced accurate results, but they were time consuming
and prone to operator bias. Therefore, Lee et al. [97] suggested
that fully automated skull stripping method can be used as
preprocessing method for various brain image segmentation
and analysis methods as it takes less effort.

A study by Boesen et al. [98] compared the McStrip [89]
method with SPM2 [53], BET [31], and BSE [36] using T1-
weighted MR brain volumes. McStrip is a hybrid algorithm
based on intensity thresholding, nonlinear warping, and edge
detection. It consistently outperformed SPM2 [53], BET [31],
and BSE, although BET [31] and BSE outperformed McStrip
on the processing time. A comparative study on four skull
stripping methods, BET [31], 3dIntracranial [46], HWA
[91], and BSE [36] was carried out by Fennema-Notestine
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et al. [14] to investigate the effect of bias correction, type of
image set, and local anatomy of brain slice and diagnosis
group. Their findings suggested that bias correction through
the use of nonparametric nonuniform intensity normalization
(N3) [103] did not significantly improve the performance of
the methods. HWA [91] may remove substantial non-brain
tissue from the difficult face and neck regions, carefully pre-
serving the brain, although the outcome often would benefit
from further stripping of other non-brain regions; BSE [36] in
contrast, more clearly reaches the surface of the brain, and but
for few cases, some brain tissue may be removed.
3dIntracranial and BET [31] often left large non-brain regions
and sometimes removed brain regions, particularly in the
older populations.

Hartley et al. [99] compared two automated brain extrac-
tion methods BET [31] and BSE [36] to evaluate whether
method accuracy is associated with the subject demographic
and health characteristics. Both methods tend to produce
under-segmentation and over-segmentation thereby produc-
ing both positive and negative errors. The study further
showed that these methods are not entirely insensitive to sub-
ject characteristics.

Segmentation validation engine (SVE) [100] developed a
web-based resource for evaluating the performance of skull
stripping in T1-weighted MR brain images. The resource pro-
vides both the data to be segmented and an online application
that performs a validation study on the data. It allows the users
to download the test dataset which is segmented by an arbi-
trary method.

A comparative study among HWA [91], BET [31], and
BSE [36] was performed by Shattuck et al. [100] to eval-
uate the performance of their developed framework. Their
results showed that with proper parameter selection, all
the three algorithms can achieve satisfactory skull strip-
ping on the test dataset. A comparative study on various
methods [14, 97–100] revealed that HWA [91] has the
highest sensitivity in general but the lowest specificity.
HWA [91] seems to be more robust to the change of
parameters than other methods. BSE [36] had high spec-
ificity than the other methods, while BET [31] always
under-segments by including more non-brain tissues and
McStrip [89] out performs the other methods. However,
most of the existing skull stripping methods are applicable
to T1-weighted MR brain images. Moreover, none of
these existing methods give satisfactory performance
when evaluated with large-scale dataset of a wide range
of scan types (T1, T2, and PD) and all types of scan
orientations (axial, sagittal, and coronal). This is because
of the complexity and variations in the human brain struc-
tures, presence of image noise, image contrast, and image
artifacts [104–106]. The following table (Table 1) summa-
rizes the techniques used in the existing skull stripping
methods along with their input type and limitations.

Challenges in Skull Stripping Techniques

Skull stripping process is a sophisticated and challenging task
due to the intrinsically imprecise nature of the brain images.
Automated algorithms for skull stripping should be robust,
efficient, reliable, and produce consistent and more accurate
results on the large volume of datasets. However, the presence
of noise and various imaging artifacts in MRI may introduce
undesired distortions to the brain images which may substan-
tially degrade their quality [93, 94]. Perusal of the literature
reveals that the automatic skull stripping is still a persistent
and challenging problem. Some of the challenges in the skull
stripping techniques are as follows:

– The brain images are obtained using different imaging
parameters on different machines and for a given tissue
type, they produce images with different contrast and
scan quality.

– The signal intensities for different brain structures often
overlap; some non-brain tissues such as neck and scalp
have the same intensities as brain tissues.

– The echos can be seen in air/tissue borders in brain image.
– The partial volume effect blurs the intensity distinction

between tissue classes at the border of the two tissues.
– The motion artifacts (blood vessels, muscles etc.,) cause

noise or ringing around effect in the brain image.
– Brain structures are not homogeneous and vary with

individuals.
– Not all anatomic borders are intensity-based borders and

many edges are not sharp in the brain image.
– Presence of imaging artifacts and various noises due to

sensors and related electronic system may degrade the
brain image quality and increase the difficulties in skull
stripping process.

Another important problem which is gaining attention is
skull stripping applied to brain MRI images with gross defor-
mities such as glioblastoma [108, 109]. Standard skull strip-
ping methods discussed so far fail in this case mostly due to
additional difficulties in separating lesions which are located
closer to the skull border. Thus, it requires further detection of
features which can take into account shape deformities within
skull stripping methods.

Conclusions

The skull stripping being a preliminary step, designed to elim-
inate non-brain tissues from MR brain images for many clin-
ical applications and neuroimaging studies, its accuracy and
speed are considered as the key factors. A number of tech-
niques have been proposed, manual or semi-automated
methods are labor-intensive, operator-dependent, time
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consuming and thus are not desirable in large-scale studies.
The automated skull stripping methods help to improve the
speed and accuracy of prognostic and diagnostic procedures in
brain image segmentation and analysis. But, the majority of
the skull stripping methods were devised only for T1-
weighted brain images and majority of the existing methods
cannot be applied for all brain image type and orientations.
Because the appearance of the brain images may vary signif-
icantly between scans, which further complicates the task of
devising an efficient skull stripping method that works across
sequences and scanners. The existing skull stripping methods
often need to be adapted specifically for a certain type of study
or, in the best case, need to be tuned to work on a certain
population. A method that works reliably and robustly on a
variety of different brain morphologies and acquisition se-
quences without requiring adjustment of parameters would
greatly reduce the need for manual intervention and exclusion
of subjects in neuroimaging studies. Therefore, the develop-
ment of novel, robust, and automated algorithm for MRI skull
stripping that provides feasible solutions for all the challenges
posed by skull stripping methods is still demanding area of
research in field brain image processing and analysis.
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