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Abstract Corylus, Alnus, and Betula trees are among the
most important sources of allergic pollen in the temperate
zone of the Northern Hemisphere and have a large impact
on the quality of life and productivity of allergy sufferers.
Therefore, it is important to predict high pollen concentra-
tions, both in time and space. The aim of this study was
to create and evaluate spatiotemporal models for predict-
ing high Corylus, Alnus, and Betula pollen concentration
levels, based on gridded meteorological data. Aerobiolog-
ical monitoring was carried out in 11 cities in Poland and
gathered, depending on the site, between 2 and 16 years of
measurements. According to the first allergy symptoms dur-
ing exposure, a high pollen count level was established for
each taxon. An optimizing probability threshold technique
was used for mitigation of the problem of imbalance in the
pollen concentration levels. For each taxon, the model was
built using a random forest method. The study revealed the
possibility of moderately reliable prediction of Corylus and
highly reliable prediction of Alnus and Betula high pollen
concentration levels, using preprocessed gridded meteoro-
logical data. Cumulative growing degree days and potential
evaporation proved to be two of the most important pre-
dictor variables in the models. The final models predicted
not only for single locations but also for continuous areas.
Furthermore, the proposed modeling framework could be
used to predict high pollen concentrations of Corylus, Alnus,
Betula, and other taxa, and in other countries.
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Introduction

Corylus L. (hazel), Alnus Mill. (alder), and Betula L. (birch)
are considered to be among the most important sources of
allergic pollen in the temperate zone of the Northern Hemi-
sphere (D’Amato et al. 2007). According to Heinzerling
et al. (2009), approximately 21-24 % of Europeans are sen-
sitized to tree pollen from the Betulaceae family. These rates
in Poland are 22.3, 22.8, and 27.7 %, respectively, for Cory-
lus, Alnus, and Betula (Heinzerling et al. 2009). There are
also high levels of cross-reactivity between Corylus, Alnus,
and Betula (Ebner et al. 1995). As a consequence, Cory-
lus and Alnus pollination can lead to more marked clinical
symptoms during a Betula pollen season (D’Amato et al.
2007).

Pollen concentration in the air is the resultant of many
factors of different temporal and spatial variability. The
spatial distribution of the taxa and phytosociological and
habitat relationships mainly affect the temporal variability
and intensity of pollen seasons. Moreover, meteorologi-
cal factors have an impact not only on the production and
release but also on the dispersal of tree pollen grains. Pre-
vious studies found a relationship between the temperature
in the preceding year and the annual pollen sum (Latalowa
et al. 2002; Rasmussen 2002). The influence of air tem-
perature on pollen concentration has often been reported
(Rodriguez-Rajo et al. 2004; Puc 2007, 2012; Kizilpinar
et al. 2011). The impact of other meteorological parameters,
such as precipitation, wind speed, and humidity, has also
been reported (Latalowa et al. 2002; Puc 2007, 2012). In
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addition, recent studies have shown that the temporal varia-
tions in Corylus, Alnus, and Betula pollen counts are related
to three groups of factors. The temporal span of these fac-
tors are (i) daily, (ii) approximately 3.5 days, and (iii) more
than 15 days (Nowosad et al. 2015).

Spatial analyses in aerobiology mainly involve the fol-
lowing: the comparison between two or more different
localizations (Stach et al. 2008; Puc and Kasprzyk 2013;
Sauliene et al. 2014); the description of spatial varia-
tion of pollen season properties or pollen concentrations
(Emberlin et al. 2002; Rieux et al. 2008; Myszkowska et al.
2010; Nowosad et al. 2015); or the investigation of pollen
transportation using back trajectories (Skjoth et al. 2008,
2009; Veriankaite et al. 2009; Rojo and Pérez-Badia 2015).
There have been only a few studies in which spatial mod-
els of Betula pollen count were built. Vogel et al. (2008)
included the parametrisation of the emissions of Betula
pollen into a non-hydrostatic mesoscale model. Sofiev et al.
(2013) used the SILAM dispersion model to create a Betula
pollen emission model. According to the author’s knowl-
edge, spatial models of Corylus and Alnus pollen concentra-
tion have not been reported.

The main aim of this study was to develop spatiotem-
poral predictive models of Corylus, Alnus, and Betula
pollen concentration levels, using preprocessed gridded
meteorological data. Based on the final models, it is
possible to predict pollen concentration levels, not only
in aerobiological monitoring sites but also at unsampled
locations.

Materials and methods

The development of spatiotemporal predictive models of
Corylus, Alnus, and Betula pollen concentration levels was
a main goal of this study. For each taxon, the workflow
was as follows. Aerobiological data were split into a train-
ing set and two test sets, whilst gridded meteorological
data were preprocessed. Using data from the training set,
optimal model parameters were estimated. Final model per-
formance was obtained by comparison of model prediction
with true pollen concentration levels from both of the test
sets. Afterwards, the final model and processed gridded
meteorological data were used to create spatiotemporal pre-
dictions for every available day for each grid cell in the
study area (Fig. 1). All the calculations were carried out
using R (R Core Team 2014) and R packages (Liaw and
Wiener 2002; Pebesma and Bivand 2005; Wickham 2009;
Kuhn 2015). The workflow is described in detail in the
subsections below.
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Fig. 1 A flowchart of the processes for the predictive mapping of the
pollen concentration levels

Aerobiological data

The monitoring of the concentrations of Corylus, Alnus, and
Betula pollen was conducted in 11 cities in Poland: Byd-
goszcz, Gdansk, Krakéw, Lublin, £.6dZ, Olsztyn, Poznan,
Rzeszow, Siedlce, Sosnowiec, and Szczecin. The aerobio-
logical studies covered between 2 (Siedlce) and 16 (Poznari)
years of measurements (Table 1).Daily pollen concentra-
tions were measured using the recommendations of the
European Aerobiology Society’s Working Group on Quality
Control (Galan et al. 2014).

The Corylus, Alnus, and Betula pollen season limits at
each location, and each year was calculated using the 99 %
method. According to this method, the onset of the pollen
season was determined when 0.5 % of the total annual
pollen count was noted, whereas the end of the season was
determined when 99.5 % of pollen grains were recorded.
The maximum range of the Corylus pollen season, using all
the data, was between 6 and 150 days of the year; for Alnus,
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Table 1 Population and area of the cities with the aerobiological monitoring sites; longitude, latitude, altitude, and the studied years of the

aerobiological monitoring sites

Site Population (in thousands) Area (km?) X (DD) ¢ (DD) Altitude (a.s.l.) Studied years

Bydgoszcz 361 176 18.13 53.14 51 2009-2011
Gdarnsk 460 262 18.61 54.39 12 1998-2005, 2009-2011
Krakow 758 327 19.96 50.06 207 1998-2005, 2009-2011
Lédz 719 293 19.47 51.77 216 2003-2005, 2009-2011
Lublin 348 147 22.54 51.24 194 2001-2005, 2009-2011
Olsztyn 175 88 20.49 53.78 132 2009-2011
Poznan 551 262 16.92 52.47 93 1996-2011
Rzeszow 182 116 22.02 50.03 201 1997-2005, 2009-2011
Siedlce 76 32 22.31 52.18 147 2010-2011
Sosnowiec 214 91 19.14 50.30 253 2001-2011
Szczecin 409 301 14.55 53.44 28 2002-2011

the number of days ranged from 14 to 145 days; for Betula,
from 35 to 164 days. Models were built and evaluated using
the data from these periods (Fig. 2).

Based on first symptom values for patients allergic to
each taxon, two levels of concentration (low and high) were
distinguished (Rapiejko et al. 2007). The limits were set
at 35 grains/m> for Corylus, 45 grains/m® for Alnus, and
20 grains/m3 for Betula (Fig. 2).

Grid data

AGRI4CAST Interpolated Meteorological Data (Baruth
et al. 2007) were used as the main input data. The
AGRI4CAST database is a collection of daily meteoro-
logical parameters from weather stations interpolated to a
25 x 25 km grid and contains data from 1975 to 2014.
For the purpose of this study, grid data were restricted to
the area of Poland and a zone of 200 km around Polish
borders. The buffer value was based on the longest dis-
tance between the nearest aerobiological sites (Szczecin and
Poznan): approximately 200 km.

Data split

The models were designed to predict pollen concentration
levels (i) in the aerobiological monitoring sites, and (ii) in
sites without aerobiological monitoring. For this purpose,
data were split into the following three sets:

— Training set, which contained 2/3 of the data from eight
cities in Poland (Gdarisk, Krakéw, Lublin, Olsztyn,
Poznan, Rzeszéw, Siedlce, and Szczecin). The data

were split randomly based on the dates available in this
study.

— First test set, which contained the remaining 1/3
of the data from the same eight cities (Gdansk,
Krakéw, Lublin, Olsztyn, Poznan, Rzeszéw, Siedlce,
and Szczecin).

— Second test set, which contained data from Bydgoszcz,
1.6dz, and Sosnowiec.

Predictor variables

The pollen concentration level at each site and on each
day from the training set was used as an outcome vari-
able. The daily meteorological variables were prepro-
cessed. Afterwards, preprocessed meteorological variables
from the grid cells corresponding to the location of
aerobiological sites were selected as predictor variables
(Table 2):

— The average monthly temperatures for each month over
the previous year for each site

— Four- and 16-day averages, calculated for each of the
meteorological parameters. The temporal span of these
factors was based on a recent study which showed that
the temporal variations in Corylus, Alnus, and Betula
pollen counts are related to factors that change (i) diur-
nally, (ii) approximately every 3.5 days, and (iii) in
more than 15 days (Nowosad et al. 2015). These values
were then lagged by 1 day

— Cumulated growing degree days (GDD), lagged by
1 day

— Longitude, latitude, and altitude of grid cell
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Fig. 2 Pollen count of Corylus,
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For each day and each grid cell, growing degree days
(GDD) were calculated as follows:

Daily GDD = — Thase 1

Tiax + Tmin
2
where Thax is the daily maximum temperature, T, is the
daily minimum temperature, and Ty 1S the base tempera-

ture.

GDDs were accumulated by adding the number of degree
days that accumulated each day from January 1. The base
temperature was designated as 5 °C, which is the standard
threshold temperature for growth in temperate species (Dahl
et al. 2013). If the daily maximum temperature is not higher
than the base temperature, then no degree days accumulate.

Model development

Random forest (Breiman 2001) was used to spatiotempo-
rally predict the pollen level of Corylus, Alnus, and Betula.
For classification tasks, it is an ensemble of unpruned clas-
sification trees. The prediction is made by aggregating the
prediction of the ensemble. The random forest algorithm
uses two parameters: ntree (the number of trees) and mtry
(the number of input variables randomly chosen at each
split). In this study, ntree was set to 500, while optimal
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values of mtry were obtained by using 100 repetitions of
ten-fold cross-validation on the training set.

The random forest algorithm focuses on overall accu-
racy and, consequently, does not work well for imbalanced
data. The Corylus, Alnus, and Betula pollen concentration
levels were highly imbalanced. In the period analyzed, the
proportion between high and low levels was 330 to 13,182
for Corylus, 966 to 11,348 for Alnus, and 2104 to 9933
for Betula. In this study, an optimizing probability thresh-
old technique was applied (Kuhn and Johnson 2013). This
approach determines alternative cutoffs for the predicted
probabilities. Using resampling, 20 different threshold val-
ues were tried on the training sets. Optimal threshold values
were obtained by minimizing the distance between obtained
sensitivity (Sens), specificity (Spec), positive predictive
value (Ppv), negative predictive value (Npv), and the best
possible performance (Fig. 3). In all cases, the best possible
performance was equal to 1.

. = Sens)? + (1 — Spec)2
Distance = \/ (1 — Ppv)? + (1 — Npv)? 2

A permutation importance (mean decrease in accuracy)
was used to determine input variable importance (Breiman
2001; Liaw and Wiener 2002).
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Table 2 Explanation of the predictor variable abbreviations used in spatiotemporal modeling of Corylus, Alnus, and Betula pollen concentration

levels

Abbreviation Predictor variable name Unit
TAVG_JANUARY_PREVYEAR Average monthly temperature for January in the preceding year °C
TAVG_FEBRUARY_PREVYEAR Average monthly temperature for February in the preceding year °C
TAVG_MARCH_PREVYEAR Average monthly temperature for March in the preceding year °C
TAVG_APRIL_PREVYEAR Average monthly temperature for April in the preceding year °C
TAVG_MAY_PREVYEAR Average monthly temperature for May in the preceding year °C
TAVG_JUNE_PREVYEAR Average monthly temperature for June in the preceding year °C
TAVG_JULY_PREVYEAR Average monthly temperature for July in the preceding year °C
TAVG_AUGUST_PREVYEAR Average monthly temperature for August in the preceding year °C
TAVG_SEPTEMBER_PREVYEAR Average monthly temperature for September in the preceding year °C
TAVG_OCTOBER_PREVYEAR Average monthly temperature for October in the preceding year °C
TAVG_NOVEMBER_PREVYEAR Average monthly temperature for November in the preceding year °C
TAVG_DECEMBER_PREVYEAR Average monthly temperature for December in the preceding year °C
TMAX_4DAYS_AVG_1DAYLAG Average maximum temperature in preceding 4 days °C
TMAX_16DAYS_AVG_IDAYLAG Average maximum temperature in preceding 16 days °C
TMIN_4DAYS_AVG_1DAYLAG Average minimum temperature in preceding 4 days °C
TMIN_16DAYS_AVG_1DAYLAG Average minimum temperature in preceding 16 days °C
VAPORPRESSURE_4DAYS_AVG_1DAYLAG Average vapor pressure in preceding 4 days hPa
VAPORPRESSURE_16DAYS_AVG_1DAYLAG Average vapor pressure in preceding 16 days hPa
WINDSPEED_4DAYS_AVG_1DAYLAG Average wind speed in preceding 4 days m/s
WINDSPEED_16DAYS_AVG_1DAYLAG Average wind speed in preceding 16 days m/s
PRECIPITATION_4DAYS_AVG_1DAYLAG Average daily precipitation in the preceiding 4 days mm
PRECIPITATION_16DAYS_AVG_1DAYLAG Average daily precipitation in the preceiding 16 days mm
EVAPORATION_4DAYS_AVG_1DAYLAG Average potential evaporation in the preceding 4 days mm/day
EVAPORATION_16DAYS_AVG_1DAYLAG Average potential evaporation in the preceding 16 days mm/day
RADIATION_4DAYS_AVG_IDAYLAG Average total global radiation in the preceding 4 days KJ/m?/day
RADIATION_16DAYS_AVG_1DAYLAG Average total global radiation in the preceding 16 days KJ/m?/day
GDD_1DAYLAG Cummulated growing degree days (GDD) lagged by one day GDD
LONGITUDE Grid cell longitude degrees
LATITUDE Grid cell latitude degrees
ALTITUDE Average altitude of grid cell m a.s.l.

Evaluation of the models performance

The accuracy of a model is not an appropriate measure
of performance of prediction with highly imbalanced data.
Instead, Kappa statistic, sensitivity, specificity, positive pre-
dictive value, and negative predictive value were used to
evaluate the performance of the models:

O—-E

K =
appa —Z

3

where O is the observed accuracy, and E is the accuracy
expected to be achieved based on the marginal totals of the
confusion matrix. The Kappa statistic values range from -
1 to 1. A value of 1 indicates perfect agreement between
the observed and predicted classes; a value of 0 indicates no

agreement; negative values indicate that the predicted class
is the opposite of the reference class (Kuhn and Johnson
2013).

o TP

Sensitivity = ————— “4)
TP+ FN

TN
Specificity = ——— 5
pecificity TN+ FP 5)

.. .. TP
Positive predictive value = ———— (6)
TP+ FP
. .. TN
Negative predictive value = ———— @)
TN+ FN

where T P are the true positives (high levels predicted
correctly), F P are false positives (high levels incorrectly
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Fig.3 Resampled values of
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predicted), TN are true negatives (low levels correctly pre-
dicted), and F N are false negatives (low levels incorrectly
predicted).

Corylus, Alnus, and Betula models were evaluated on two
test sets. Firstly, the temporal modelsS performance was
determined by comparison between true pollen concentra-
tion levels and predictions on the first test set. Secondly,
models’ predictions were compared with true pollen con-
centration levels from Bydgoszcz, L.6dZ, and Sosnowiec
(the second test set). Data from these cities were not used
for model creation. Thus, the evaluation was used to deter-
minate spatial quality of the models.

Results
Probability threshold

For each taxon, the final model had different probability
thresholds. In the Corylus models, the probability threshold
dividing low and high pollen concentration levels was opti-
mized to 0.22. In the other taxa, the class imbalance was less
severe, and thus the optimal probability threshold value was
higher: 0.32 for Alnus and 0.42 for Betula (Fig. 3).
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Variable importance

Using a random forest model, it is possible to examine pre-
dicted class probabilities for each variable in the dataset
(Fig. 4). Figure 5 shows the relationship between the prob-
ability of high pollen concentration levels and the values
of the four most important variables on the training set of
the Corylus, Alnus, and Betula models. Cumulated grow-
ing degree days (GDD) was the most important variable in
the Alnus and Betula models and the second-most important
variable in the Corylus model. For each taxa, the highest
probability of high pollen concentration level had a differ-
ent range of GDD values. In the Corylus model, there was
more than 0.5 probability of a high pollen concentration
level when the GDD value was between 3 and 77. The high-
est probability (0.79) was connected with a GDD of 32. The
range of probabilities and GDD values was slightly differ-
ent in the Alnus model. A probability higher than 0.5 of
high pollen concentration levels occurred when GDD was
between 15 and 90. The peak of probability was 0.82 for a
GDD value of 44. In the Befula model, the optimal value
of GDD was between 94 and 323, with the highest peak
(0.93) for a GDD of 183. Moreover, the distribution of high
pollen concentration level probability in the Betula model
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Fig. 4 Variable importance of Corylus Alnus Betula
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mean value of variable RADIATION_16DAYS_AVG_1DAYLAG - 1.48 3.08 5.05
I ) TMIN_16DAYS_AVG_1DAYLAG - 1.56 2.48 4.97
importance for all of the taxa in VAPORPRESSURE_16DAYS_AVG_1DAYLAG - 1.60 2.08 4.87
descending order EVAPORATION_4DAYS_AVG_1DAYLAG 1.83 3.13 3.24
TMAX_4DAYS_AVG_1DAYLAG - 1.58 3.32 2.34
RADIATION_4DAYS_AVG_1DAYLAG - 0.96 2.13 2.26
VAPORPRESSURE_4DAYS_AVG_1DAYLAG - 0.92 1.94 2.48
TMIN_4DAYS_AVG_1DAYLAG - 0.80 1.46 2.14
& PRECIPITATION_16DAYS_AVG_1DAYLAG - 0.20 0.56 1.74
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o TAVG_MAY_PREVYEAR -| 0.17 0.52 0.64
o TAVG_JULY_PREVYEAR - 0.17 0.42 0.70
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ALTITUDE - 0.24 0.40 0.65
TAVG_MARCH_PREVYEAR - 0.16 0.47 0.64
WINDSPEED_4DAYS_AVG_1DAYLAG - 0.15 0.40 0.69
TAVG_FEBRUARY_PREVYEAR - 0.17 0.42 0.62
TAVG_NOVEMBER_PREVYEAR - 0.19 0.44 0.56
LATITUDE - 0.20 0.44 0.54
TAVG_JUNE_PREVYEAR - 0.17 0.39 0.61
LONGITUDE 0.21 0.36 0.60
TAVG_APRIL_PREVYEAR - 0.18 0.41 0.51
TAVG_AUGUST_PREVYEAR - 0.13 0.44 0.54

was noticeably right-skewed. The 16-day average Penman
potential evaporation from a free water surface also proved
to be a highly important variable in all of the models. The
optimal values of potential evaporation for predicting high
pollen concentration levels were similar in the Corylus and
Alnus models. In these models, potential evaporation val-
ues were between 0.6 and 1.7 (Corylus) and between 0.6
and 2 (Alnus) for at least 0.5 probability of high pollen
concentration level. In the Betula model, optimal values of
potential evaporation for high pollen concentration levels
were between 1.7 and 3.6. In contrast, average monthly tem-
peratures for the preceding year and spatial variables such
as latitude, longitude, and altitude were the least impor-
tant variables in the Corylus, Alnus, and Betula models
(Fig. 4).

Performance of the models

The comparison of the models’ performance on the test sets
showed several trends (Fig. 6). In general, the Betula model
produced the best prediction on both test sets, while the
Corylus model was the least accurate. Moreover, there was
a difference between the quality of the temporal and spatial
models. For each taxon, the model was better in predicting

Mean decrease in accuracy: 25 5.0 75

the pollen concentration level on the first test set. The dif-
ferences between sensitivity and positive predictive value
were visible between the first and second test set. All of the
models were very accurate in predicting low pollen concen-
tration levels. Specificity ranged between 0.96 for the Betula
model on the second test set and 0.99 for the Corylus model
on the first test set. The average model specificity was 0.97
for both the first and second test set.

Temporal performance of the models

The positive predictive value of the Corylus model pre-
diction on the first training set was 0.47. However, it is
more important to correctly predict high pollen concen-
tration levels than to misclassify low pollen concentration
levels. The Corylus model performed reasonably well in
predicting high levels of pollen concentration, with a sensi-
tivity of 0.61. The Alnus model correctly predicted 203 out
of 288 occurrences of days with high pollen concentration
(sensitivity = 0.70). Moreover, the Alnus model’s positive
predictive value was distinctly higher than that of Corylus.
The Betula model showed the best performance on the first
test set. The model correctly classified approximately 88 %
of days with high pollen concentration levels. The Kappa
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Fig. 5 Relationship between
probability of high pollen
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statistic value was 0.83, indicating a very high fit for the
model.

Spatial performance of the models

The spatial quality was distinctly different in the models of
each taxon. The Corylus model showed the lowest predic-
tive capability. The model correctly predicted high pollen
concentration levels in 40 out of 81 days (sensitivity = 0.49).
The same model incorrectly classified 40 cases as high lev-
els of pollen. The Alnus model performed better on the
second test set. Both the models’ sensitivity and positive
predictive value were clearly higher: 0.61 and 0.59, respec-
tively. The Alnus model correctly predicted 110 occurrences
of high pollen concentration levels and misclassified 76
cases as high level. On the second test set, the performance
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of the Betula model was found to be the best. The model
Kappa statistic was 0.80, the sensitivity was 0.87, and the
positive predictive value was 0.81. High Betula pollen con-
centration levels were correctly predicted in 394 of 451
cases. At the same time, only 94 days were incorrectly
classified as high level.

Predictive maps

The Corylus, Alnus, and Betula models were built using pro-
cessed variables from gridded meteorological data. Thus, it
was possible to predict the probability of high pollen con-
centration levels for each cell and each date in the available
data. Figure 7 shows examples of the Corylus, Alnus, and
Betula models’ prediction for nine regularly distributed days
in the year 2011.
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Discussion social and financial burdens. Many aerobiological studies

have been conducted in response to this problem, some of
Corylus, Alnus, and Betula pollen have an enormous impact ~ which have tried to build predictive models of pollen con-
on the quality of life and the productivity of allergy suffer-  centration (Bringfelt et al. 1982; Cotos-Yafiez et al. 2004;
ers. Therefore, these tree pollen are the origin of significant ~ Castellano-Méndez et al. 2005; Rodriguez-Rajo et al. 2006;
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Fig. 7 Examples of Corylus, Alnus, and Betula models’ prediction for nine regularly distributed days in the year 2011, based on the data for
Poland and the area within 200 km of the Polish border
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Vogel et al. 2008; Hilaire et al. 2012; Puc 2012; Sofiev et al.
2013). As a result of these studies, it is possible to predict
high pollen concentration levels with considerable accuracy
in the analyzed sites. However, in many countries, the aer-
obiological network is not dense, and therefore, it is not
possible to predict pollen counts in unsampled locations. In
this study, gridded meteorological data were used as predic-
tor variables to build a model of high Corylus, Alnus, and
Betula pollen concentration levels for spatially continuous
areas of Poland.

The days with high pollen concentration levels of the
analyzed taxa occur rarely. This property should be taken
into consideration when building predictive models. This
study used a novel technique of obtaining an optimal
threshold, by minimizing the distance between sensitivity,
specificity, positive predictive value, and negative predictive
value and the best possible performance. Preliminary stud-
ies showed that, in this two-class problem, the optimizing
probability threshold technique surpasses other strategies
for overcoming class imbalances, such as upsampling and
downsampling.

In the Corylus, Alnus, and Betula models, cumulated
growing degree days lagged by 1 day proved to be one of the
most important variables. The fully growth competent buds
need stimulation before they can burst; therefore, the occur-
rence of temperatures above a certain base level is required
(Dahl et al. 2013). Secondly, most of the 16-day aver-
ages of meteorological factors (daily potential evaporation,
total global radiation, vapor pressure, minimum tempera-
ture, and maximum temperature) showed high values of
the variable importance. Previous studies showed that the
readiness to flower is dependent on, inter alia, light inten-
sity, and evaporation (Pacini and Hesse 2004; Dahl et al.
2013). In contrast, the importance of the preceding years
average monthly temperatures for each month and grid cell
longitude, latitude, and altitude had little impact on the
model. Although the studies of Latalowa et al. (2002) and
Rasmussen (2002) found a relationship between the annual
pollen sum and the mean temperature in the preceding year,
this relationship has a small influence on the daily pollen
concentration.

The Corylus, Alnus, and Betula models varied in terms
of predictive quality. The Corylus model predicted cor-
rectly approximately 55 % of the high pollen concentration
levels on the test sets. This model misclassification could
be connected with very rare (330 cases, about 2.5 % of
the analyzed days) occurrences of high Corylus pollen
concentration levels. Corylus inflorescences produce about
two times fewer pollen grains than Alnus inflorescences
(Piotrowska 2008). Thus, a dataset of longer time periods or
a denser monitoring network could result in a more precise
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model. The Alnus model performed better, with correct pre-
diction of approximately 2/3 of high pollen concentration
levels on the test sets. The problem of class imbalance was
less severe in the Alnus dataset. Nonetheless, Alnus (and
Corylus) pollen seasons are highly changeable from year
to year. In addition, the location of aerobiological moni-
toring sites influences the variability of the pollen count
of these taxa (Nowosad et al. 2015). The Betula model
had the best values of model evaluation statistics. Almost
88 % of high pollen concentration levels were correctly
predicted on the test sets. The negative impact of class
imbalance was modest due to the relatively frequent occur-
rence of high Betula pollen concentration levels. Moreover,
the Betula pollination period is relatively short and less
changeable, and therefore, the Betula pollen count is more
predictable.

The predictive quality of the Betula model is comparable
to previous work. Castellano-Méndez et al. (2005) created
a neutral network model for prediction of the risk of pollen
concentration values exceeding a given level, using pollen
and meteorological data. That model was built and validated
in only one location: the city of Santiago, Spain. In con-
trast, in this study data from 11 aerobiological sites, as well
as gridded meteorological data, were used in the process of
model creation; therefore, model prediction should be ver-
ifiable in substantial areas surrounding the aerobiological
monitoring sites.

Relationships between pollen concentration in the air and
meteorological factors are complex and strongly nonlinear.
Thus, classical statistical models, such as logistic regres-
sion or linear discriminant analysis, tend to perform poorly.
Machine learning techniques could find patterns in nonlin-
ear, noisy data, and generate prediction with relatively high
accuracy (Recknagel 2001). Some of the most often used
machine learning methods include nonlinear classification
models (e.g., neural networks and support vector machines)
and tree-based models (e.g., classification trees and random
forest) (Kuhn and Johnson 2013). Random forest proved
to give more accurate prediction than single tree models
(Breiman 2001). In addition, this technique was compared
to neural networks, and support vector machines require
minimal preprocessing of the data. However, none of the
single modeling techniques work best for every problem
(Wolpert 1996). Therefore, it would be worthwhile to com-
pare performance of different machine learning models for
predicting pollen concentration.

Prediction errors of the Corylus, Alnus, and Betula mod-
els are the result of a combination of numerous factors: (i)
omission of some non-meteorological predictors, (ii) influ-
ence of medium- and long-range pollen transport, and (iii)
temporal and spatial uncertainty of pollen data. Meteoro-
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logical conditions are also not the only factor that influence
pollen concentration values. After the same meteorologi-
cal conditions, high or low pollen concentration levels of
Corylus, Alnus, and Betula can be observed on different
occasions. Pollen concentration in the air is a result of
nonlinear interactions between many factors, such as the
land cover, topography, and human impact (Piotrowska and
Kubik-Komar 2012). Taking into account the proportion of
the analyzed taxa in the local vegetation could positively
influence model quality. Previous studies also showed that
most of recorded airborne pollen comes from local sources
(Adams-Groom et al. 2002; Damialis et al. 2005). Nev-
ertheless, medium- and long-range transport is also often
recorded, as pollen grains are found hundreds or thou-
sands of kilometers away from their source (Damialis et al.
2005; Ranta et al. 2006). In the Corylus, Alnus, and Betula
models, the effect of long-range transport is not included.
Moreover, uncertainty in the results of models could be con-
nected with several characteristics of the data. The results
of aerobiological monitoring are not the exact values of the
pollen concentration of the surrounding area but are subject
to errors from various sources, such as device, prepara-
tion of the sampling surface and slides, and slide analysis
(Gottardini et al. 2009). In addition, there is diurnal varia-
tion in the number of pollen grains in the air (Galén et al.
1991; Skjoth et al. 2008). It is estimated that approximately
10 % of Corylus, Alnus, and Betula pollen count variations
can be due to diurnal fluctuations and measurement errors
(Nowosad et al. 2015). Only 11 aerobiological monitoring
sites, which are not randomly distributed in Poland, were
used in this study. The sites are located mainly in large
cities, where the local climate is modified by human activi-
ties. These cities are significantly warmer than the surround-
ing rural areas, on average by 0.8-1.3 °C (Szymanowski
2005). Furthermore, the local airflow and turbulence are
affected by buildings and non-building structures (Emberlin
and Norris-Hill 1991). As a result, the deposition patterns in
cities are different from those in the countryside (Emberlin
and Norris-Hill 1991; Gonzalo-Garijo et al. 2006). More-
over, given the lack of sites in mountainous areas, caution
should be exercised when using prediction models in those
areas. In the long term, it will be valuable to add monitor-
ing sites in remote rural areas, as well as in mountainous
areas.

The modeling framework used in this study can be used
as the basis for further research. The models are built based
on meteorological factors and could be easily implemented
in other countries. Moreover, it would be worthwhile to
analyze the possibility of improving the models’ quality
by utilizing non-meteorological parameters, such as the
distribution of tree species and local land use.

Conclusions

— In this study, the probability of high pollen concentra-
tion levels of Corylus, Alnus, and Betula was predicted
using preprocessed gridded meteorological data. The
result of the models could be used for prediction in
continuous areas rather than just in single locations

— The models built allow moderately reliable predictions
of high pollen concentration levels of Corylus and
highly reliable predictions of high levels of Alnus and
Betula pollen

— Temporal verifiability was higher than spatial veri-
fiability in each of the Corylus, Alnus, and Betula
models

— Average monthly temperatures for the preceding year
were not very important for the results of the models

— Cumulated growing degree days was one of the most
important variables in the Corylus, Alnus, and Betula
models. In addition, sixteen-day averages of potential
evaporation, total global radiation, vapor pressure, min-
imum temperature, and maximum temperature were
important variables for the models.

— Spatial variables such as latitude, longitude, and altitude
had little impact on the models

—  The modeling framework could be applied in predicting
high pollen concentrations of the different pollen taxa
in the study sites and also in other areas
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