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Neurobiology of Disease

Pharmacological Amelioration of Cone Survival and Vision
in a Mouse Model for Leber Congenital Amaurosis

Songhua Li,! Marijana Samardzija,? Zhihui Yang,"* “Christian Grimm,?> and Minghao Jin!
'Department of Ophthalmology and Neuroscience Center, Louisiana State University School of Medicine, New Orleans, Louisiana 70112, and ?Department
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RPE65, an abundant membrane-associate protein in the retinal pigment epithelium (RPE), is a key retinoid isomerase of the visual cycle
necessary for generating 11-cis-retinal that functions not only as a molecular switch for activating cone and rod visual pigments in
response to light stimulation, but also as a chaperone for normal trafficking of cone opsins to the outer segments. Many mutations in
RPEG65 are associated with Leber congenital amaurosis (LCA). A R91W substitution, the most frequent LCA-associated mutation, results
in a severe decrease in protein level and enzymatic activity of RPE65, causing cone opsin mislocalization and early cone degeneration in
the mutation knock-in mouse model of LCA. Here we show that R91W RPE65 undergoes ubiquitination-dependent proteasomal degra-
dation in the knock-in mouse RPE due to misfolding. The 26S proteasome non-ATPase regulatory subunit 13 mediated degradation
specifically of misfolded RO1W RPE65. The mutation disrupted membrane-association and colocalization of RPE65 with lecithin:retinol
acyltransferase (LRAT) that provides the hydrophobic substrate for RPE65. Systemic administration of sodium 4-phenylbutyrate (PBA),
a chemical chaperone, increased protein stability, enzymatic activity, membrane-association, and colocalization of R91W RPE65 with
LRAT. This rescue effect increased synthesis of 11-cis-retinal and 9-cis-retinal, a functional iso-chromophore of the visual pigments, led
to alleviation of S-opsin mislocalization and cone degeneration in the knock-in mice. Importantly, PBA-treatment also improved cone-
mediated vision in the mutant mice. These results indicate that PBA, a U.S. Food and Drug Administration-approved safe oral medica-
tion, may provide a noninvasive therapeutic intervention that delays daylight vision loss in patients with RPE65 mutations.
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LCA is a severe early onset retinal dystrophy. Recent clinical trials of gene therapy have implicated the need of an alternative or
combination therapy to improve cone survival and function in patients with LCA caused by RPE65 mutations. Using a mouse
model carrying the most frequent LCA-associated mutation (R91W), we found that the mutant RPE65 underwent ubiquitination-
dependent proteasomal degradation due to misfolding. Treatment of the mice with a chemical chaperone partially corrected
stability, enzymatic activity, and subcellular localization of RO1W RPE65, which was also accompanied by improvement of cone
survival and vision. These findings identify an in vivo molecular pathogenic mechanism for R91W mutation and provide a feasible
pharmacological approach that can delay vision loss in patients with RPE65 mutations. j

ignificance Statement

ceptors. To sustain vision, 11-cis-retinal must be regenerated.
RPEG65, a retinal pigment epithelium (RPE)-specific microsomal
protein (Hamel et al., 1993), is a key retinoid isomerase in the
visual cycle necessary for regenerating 11-cis-retinal (Jin et al,,
2005; Moiseyev et al., 2005; Redmond et al., 2005). RPE65 uses
all-trans-retinyl esters synthesized by LRAT (Ruiz et al., 1999)

Introduction
Visual signal starts with photoisomerization of 11-cis-retinal to
all-trans-retinal in the visual pigments of cone and rod photore-
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and other enzymes (Kaschula et al., 2006; Kaylor et al., 2015) as its
substrate (Moiseyev et al., 2003). Mice lacking RPE65 cannot
synthesize 11-cis-retinoids, thereby their photoreceptors almost
completely lose light-sensitivity (Redmond et al., 1998; Pang et
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al., 2005). Rpe65 '~ mice also exhibit cone opsin mislocalization
and early cone degeneration (Rohrer et al., 2005; Znoiko et al.,
2005; Fan et al., 2008).

The significance of RPE65 function in vision and retinal
health is also reflected by the facts that many mutations in RPE65
cause Leber congenital amaurosis (LCA) or retinitis pigmentosa
(RP; Gu et al., 1997; Marlhens et al., 1997; Lotery et al., 2000;
Thompson et al., 2000). RPE65 mutations are estimated to ac-
count for ~16% of LCA and 2% of recessive RP (RetNet). Al-
though night blindness is the first significant symptom in most
patients with RPE65 mutations (Felius et al., 2002), in vivo mi-
croscopy of the fovea demonstrated that many patients exhibited
severe cone photoreceptor loss at very early ages (Jacobson et al.,
2005, 2009). The importance of RPE65 for the central vision is
also supported by its abundant expression and higher retinoid
isomerase activity in the macaque central RPE layer localized to
the cone-rich area (Jacobson et al., 2007).

Recent clinical trials of gene therapy that express normal
RPEG65 in patients’ RPE have shown some improvement of vision
in some patients (Bainbridge et al., 2008; Cideciyan et al., 2008;
Hauswirth et al., 2008; Maguire et al., 2008). Subsequent studies,
however, showed that gene therapy could not stop the progres-
sive retinal degeneration and vision loss (Cideciyan et al., 2013;
Bainbridge et al., 2015). The rate of loss of photoreceptors in the
treated retinas was the same as that in the untreated retina (Ja-
cobson et al., 2015). In addition, topographic maps of visual sen-
sitivity in the treated region indicated that the areas of improved
vision had progressive diminution (Jacobson et al., 2015). It is
therefore urgently needed to develop an alternative therapy that
alleviates cone degeneration or enhances the efficacy of gene ther-
apy in patients with RPE65 mutations.

A RI1W substitution in RPE65 is one of the most frequent
mutations causing LCA (Morimura et al., 1998; Thompson et al.,
2000). Although patients with this mutation had useful vision in
the first decade of life, optical coherence tomography demon-
strated that 3- and 7-year-old patients already had cone degener-
ation (Jacobson et al., 2007, 2008). Similarly, a mouse model
carrying R91W mutation displayed early cone degeneration (Sa-
mardzija et al., 2009), due to shortage of 11-cis-retinal supply
(Samardzija et al., 2008). RPE65 in the R91W mouse was de-
creased to ~5% of wild-type RPE65 level by an unknown mech-
anism (Samardzija et al., 2008). In vitro and animal studies
showed that not only R91W mutation but also many other mu-
tations resulted in a drastic decrease of RPE65 (Chen et al., 2006;
Takahashi et al., 2006; Bereta et al., 2008; Philp et al., 2009; Niko-
laeva et al., 2010; Wright et al., 2013; S. Li et al., 2014, 2015). In
vivo identification of the underlying molecular mechanism of this
phenotype is important not only for understanding the disease
mechanisms of RPE65 mutations but also for developing a ther-
apeutic intervention that prevents or delays loss of RPE65 func-
tion in patients.

In this study, we analyzed the molecular basis and pathway
leading to degradation of RPE65 in the R91W knock-in (KI)
mouse RPE and tested whether a chemical chaperone-mediated
protein repair approach can alleviate cone degeneration and vi-
sion loss in the knock-in mouse model of LCA.

Materials and Methods

Animals. Wild-type 129S2/Sv (Charles River Laboratories), ROIW KI
(Samardzija et al., 2008) and rd12 (The Jackson Laboratory; Pang et al.,
2005) mice were maintained in 12 h cyclic light at ~30 lux. RPE65 in
these mice has a leucine residue at position 450 (Leu450). All animal
experiments followed the ARVO statement for the use of animals in
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ophthalmic and vision research and the protocols approved by the Insti-
tutional Animal Care and Use Committee. Except where noted, animals
of either sex were daily injected intraperitoneally with 50 mg sodium
4-phenylbutyrate (PBA) in saline per kilogram body weight for 3 or 8
weeks, beginning on postnatal day (P)14. Although PBA is a FDA-
approved oral medication, we performed intraperitoneal injection to
strictly control the amounts of PBA treated. Mice intraperitoneally in-
jected with the same volume of saline were used as controls.

Eyecup ex vivo experiments. After removal of the anterior section and
neural retina, the RPE in mouse eyecups were maintained in DMEM-F12
medium (Thermo Fisher Scientific) supplemented with 10% fetal bovine
serum, 100 U/ml penicillin G, and 100 ug/ml streptomycin at 37°C or
30°C <5% CO,. Transfection of plasmid DNA (pcDNA, pEGFP, pRK5,
and pPSMD13) and siRNA (PSMD13 siRNA and scrambled negative
control siRNA from OriGene Technologies) was performed using the
PolyJet transfection reagent (SignaGen Laboratories) according to the
manufacturer’s procedure. Forty hours post-transfection, the eyecups
were subjected to immunoblot analysis, immunoprecipitation or micro-
scopic analysis. For proteasome and lysosome inhibitor experiments,
mouse eyecups were incubated with increasing concentrations of MG132
(15-25 M), pepstatin A (10-30 um) or DMSO for 5 h.

Electroretinography. Overnight dark-adapted 10-week-old mice tre-
ated with PBA or saline were anesthetized with intraperitoneal keta-
mine and xylazine. The pupils were dilated with 1% tropicamide.
Electroretinography (ERG) was recorded from the corneal surface using
a silver-silver chloride wire electrode referenced to a subcutaneous elec-
trode in the mouth. A needle electrode in the tail served as the ground. A
drop of 2% methylcellulose was placed on the cornea to prevent corneal
desiccation. Animals were light adapted for 10 min by exposing to a white
32 cd/m? light, and photopic ERG responses were obtained with white
flashes (—1 to 2.4 log cd * s/m?) on the rod-saturating background (32
cd/m?). Five responses to 10 s interval flashes were averaged for each
step. Intensity-response amplitude data were displayed on log-linear co-
ordinates using the SigmaPlot 11 software. For recording S-cone ERG,
animals were light adapted for 10 min by exposing to a white 40 cd/m>
light, and S-cone ERG responses were obtained on the 40 cd/m? back-
ground with xenon flashes (0.1-1.4 log cd - s/m ?) equipped with a Hoya
U-360 filter (360 nm peak, Edmund Optics; Oh et al., 2008).

Immunoblot analysis. Protein samples in the Laemmli sample buffer
containing 50 mu dithiothreitol were heated for 10 min at 70°C, sepa-
rated by SDS-PAGE in a 10%, 12% or 4—12% gradient polyacrylamide
gel, and transferred to an Immobilon-P membrane (EMD Millipore).
The membrane was incubated in blocking buffer, primary antibody, and
horseradish peroxidase-conjugated anti-rabbit or mouse IgG secondary
antibody. Antibodies against RPE65 (Abcam and EMD Millipore; Jin et
al., 2007), PSMD13 (Proteintech), PSMD11 (Abnova), LRAT (Batten et
al., 2004; Golczak et al., 2005), ubiquitin (Enzo Life Sciences), S-opsin
(Santa Cruz Biotechnology), M-opsin (EMD Millipore), cone arrestin
(EMD Millipore), cadherin-1 (Santa Cruz Biotechnology), or B-actin
(Sigma-Aldrich) were used as the primary antibodies. Immunoblots
were visualized with the enhanced ECL-Prime and quantified as de-
scribed previously (S. Li et al., 2013b).

Immunoprecipitation. RPE cells in mouse eyecups were lysed in a lysis
buffer (S. Li et al.,, 2013b) containing protease-inhibitor mixture (Roche
Applied Science), 10 mm N-ethylmaleimide, and 100 um PR619. After
centrifugation for 5 min at 1000 X g, the supernatants were incubated
with an anti-RPE65 monoclonal antibody bound to the GammaBind G
Sepharose (GE Healthcare). Because protein levels of RO1W RPE65 in the
KI mice are <10% of RPE65 levels in WT mice (Samardzija et al., 2008),
we used 200 ug of WT and 2 mg of KI mice RPE proteins for immuno-
precipitation. The beads were washed three times with the lysis buffer
containing the inhibitors of proteases and deubiquitylating enzymes.
Precipitated proteins were dissolved in Laemmli buffer and heated at
70°C for 10 min for immunoblot analysis.

Preparation of mouse RPE membrane pellets. After removal of the an-
terior section and neural retina, RPE in mouse eyecups were homoge-
nized in ice-cold 10 mm HEPES buffer, pH 7.4, containing 280 mm
sucrose, 10 mm MgCl,, and protease-inhibitor mixture. This homoge-
nate was used as total RPE cell lysate. A portion of each homogenate was
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Figure1. Ubiquitination-dependent proteasomal degradation of R91W RPE65 in mouse RPE. A, Inmunoblot analysis of RPE65 and LRAT in WT and R9TW, KI mice eyecups treated with DMSO or

the indicated concentrations of MG132 or pepstatin A. Beta-actin served as a loading control. Relative intensities of RPE65 immunoblots were quantified, normalized by the intensities of LRAT, and
expressed in the histograms as percentage of RPE65 in DMSO-treated eyecups. Asterisks indicate significant differences between DMSO- and MG132-treated groups (*p << 0.01, **p << 0.005). Error
bars show SD (n = 4). B, RPE65 in WT and Kl eyecups treated with 20 um MG132 or DMSO was immunoprecipitated, and the immunoprecipitates were probed with antibodies against ubiquitin (Ub)

or RPEGS. Polyubiquitinated RPE65 (Ub-RPE65) and monomeric RPE65 (arrowhead) are indicated.

centrifuged for 10 min at 1000 X g. The supernatants were collected and
centrifuged for 1 h at 100,000 X g. The resulting ultra-pellets were rinsed
in the same buffer one time. The total cell lysates and ultra-pellets were
subjected to immunoblot analysis.

Proteasomal activity measurements. Chymotrypsin-like and trypsin-
like proteolytic activities of proteasomes were measured with the fluoro-
genic 7-Amino-4-methylcoumarin-conjugated peptide substrates as
described by Lobanova et al. (2013).

Retinoid isomerase assay. Mice eyecups without the neural retina were
irradiated for 10 min on ice with 365 nm light from a Spectroline Model
EN-140L ultraviolet light source to destroy endogenous retinoids. RPE
homogenates in 20 mm HEPES buffer were prepared from the eyecups.
Each assay mixture contained 500 ug cell homogenate, 10 um all-trans-
retinol, and 6% bovine serum albumin. After incubating for 2 h in dark-
ness at 37°C, retinoids were extracted with hexane and were analyzed by
HPLC, as described below.

Analysis of retinoids. Retinoids in eyecups of overnight dark-adapted
mice were extracted with hexane as described previously and analyzed by
normal-phase HPLC (Jin et al., 2009). In brief, retinoids in hexane ex-
tractions were evaporated, dissolved in 100 ul of hexane, and separated
on a silica column (Zorbax-Sil 5 wm, 250 X 4.6 mm, Agilent Technolo-
gies) by gradient (0.2-10% dioxane in hexane at 2.0 ml/min flow rate) or
nongradient (10% dioxane in hexane at 1.0 ml/min flow rate) elution of
mobile phase on an Agilent 1100 HPLC system equipped with a photo-
diode array detector (Agilent Technologies). Spectral data were acquired
for all eluted peaks. Quantitation was performed by comparison of peak
areas to calibration curves established with authentic retinoid standards.

Immunohistochemistry. Mouse retinal cryosections were prepared as
described previously (Sato et al., 2013). Briefly, mouse eyeballs were fixed
overnight with 4% paraformaldehyde in 0.1 M phosphate buffer (PB).
After removing cornea and lens, eyecups were immersed in 15% sucrose
in 0.1 M PB for 2 h, in 30% sucrose in 0.1 M PB for 2 h, and then in a 1:1
mixture of 30% sucrose and Optimal Cutting Temperature (OCT) me-
dium (Sakura Finetechnical) overnight at 4°C. After embedding eyecups
in OCT, 15-um-thick sections were cut on a Shandon Cryotome SME
cryostat (Thermo Scientific). The sections were immunostained with the
primary antibodies listed in the method of immunoblot analysis and
secondary antibodies, as described previously (S. Li et al., 2013a). Nuclei
were labeled with DAPI (Sigma-Aldrich). Images were captured with a
Zeiss LSM710 Meta confocal microscope with a 40X oil-immersion
objective.

Quantitation of cone arrestin-positive cone and M-cone numbers. Reti-
nal sections of 10-week-old mice were immunostained for cone arrestin
(CAR) and M-opsin, as described above. Numbers of CAR-positive outer
segments and middle-wavelength cones (M-cones) in whole retinal sec-
tions were counted using an Olympus BX61VS microscope equipped
with VS-ASW FL software (Sato et al., 2013).

Quantification of S-opsin mislocalization. Immunostaining of S-opsin
was performed on retinal cryosections of 5-week-old WT and KI mice, as
described above. Fluorescence intensities in the outer segments (OS) and
outer plexiform layer (OPL) were measured using the Olympus BX61VS
microscope. We determined the fraction of mislocalized S-opsin accord-
ing to the following formula. Mislocalization = [OPL fluorescence/(OS
fluorescence + OPL fluorescence)] X 100%.

Statistics. Data were expressed as the mean = SD of three or more
independent experiments. Differences between test and control groups
were determined with an unpaired two-tailed Student’s ¢ test, using Sig-
maPlot v11. P values <0.05 were considered statistically significant.

Results

Ubiquitination-dependent proteasomal degradation of R91TW
RPE65 in RPE

ROIW mutation results in dramatic decrease of RPE65 in the
R9IW KI mouse RPE (Samardzija et al., 2008). To identify the
pathway causing reduction of RPE65, we treated RPE in WT and
KI eyecups with different concentrations of MG132 (a protea-
some inhibitor) or pepstatin A (a lysosome inhibitor). Immuno-
blot analysis of the eyecups showed that protein levels of RO1W
RPE65 were increased at least twofold in MG132-treated, but not
pepstatin A-treated, eyecups (Fig. 1A). This result suggests that
the proteasome plays a critical role in degrading the mutant
RPE65. Because ubiquitination is critical for protein degradation
in the proteasomes, we tested whether ROTW RPE65 is ubiquiti-
nated in the RPE. Under conditions that inhibit protein deubi-
quitination, we performed immunoprecipitation of RPE65. We
then analyzed the immunoprecipitates by immunoblot analysis
using antibodies against ubiquitin or RPE65. As shown in Figure
1B, R91W RPE65 was strongly polyubiquitinated in the KI mouse
RPE. MG132-treatment of the KI eyecup further increased the
signal intensities of the ubiquitinated R91W RPE65 (Fig. 1B). We
observed very weak signals of ubiquitinated wild-type RPE65 un-
der the same experimental conditions (Fig. 1B).

PSMD13 promoted degradation of misfolded RPE65 in RPE

We recently showed that the 26S proteasome non-ATPase regu-
latory subunit 13 (PSMD13) promotes degradation of several
mutant RPE65s in culture cells (S. Li et al., 2014, 2015). To test
whether PSMD13 has the same function in vivo, we transfected
PSMD13-specific siRNA (100 ~ 200 nm) or control siRNA (200
nM) into RPE cells in WT and KI eyecups. Immunoblot analysis
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Figure2. PSMD13-mediated ubiquitination-dependent degradation of misfolded R91W RPE65. A, Immunoblot analysis of RPE65 and PSMD13 in RPE of WT and KI eyecups transfected with the
indicated amounts of PSMD13 siRNA (siPSMD13) or negative control siRNA (siCont, 200 nm). The 26S proteasome non-ATPase regulatory subunit 11 (PSMD11) and LRAT were detected as internal
maker for the 195 cap of the proteasome and RPE, respectively. B, C, Relative immunoblot intensities of RPE65 and PSMD13 normalized to LRAT were expressed as fold of RPE65 (B) or percentage
of PSMD13 () in eyecups transfected with control siRNA. D, Confocal microscopicimages of RPE cells in 12952/Sv mice eyecups transfected with pcDNA or pcDNA encoding EGFP. Nuclei were stained
with DAPI. E, Chymotrypsin-like and trypsin-like activities of the proteasomes in RPE of WT and KI mice eyecups transfected with 200 nu PSMD13 siRNA or control siRNA. F, Inmunoblot analysis of
RPE65, PSMD13, and the indicated proteins in WT and Kl eyecups transfected with pRK5 or pRKS encoding PSMD13. G, H, Relative immunoblot intensities of RPE65 and PSMD13 normalized to LRAT
in F. I, Chymotrypsin-like and trypsin-like activities of the proteasomes in RPE of WT and KI mice eyecups transfected with pRK5 or PSMD13 construct (pPSMD13). J, RPE65 in WT and Kl eyecups
transfected with siPSMD13 or siCont was immunoprecipitated and probed with an Ub antibody. K, Inmunoblot analysis of RPE65 and PSMD13 in RPE of WT and KI eyecups maintained at 37°Cor 30°C
aftertransfecting pRK5 or pPSMD13. L, Relative immunoblot intensities of RPE65 and PSMD13 (bottom) in the KI mice eyecups in K. Asterisks indicate statistically significant differences between test

and control groups (*p << 0.05, **p << 0.005). Error bars indicate SD (n = 4).

showed that R91W RPE65 was increased as PSMD13 decrease in
eyecups transfected with PSMD13 siRNA (Fig. 2A-C). In agree-
ment with this result, chymotrypsin-like proteolytic activity of
the proteasomes was decreased in PSMD13 siRNA-transfected
WT and KI eyecups compared with control siRNA-transfected
eyecups (Fig. 2E). Transfection efficiency test showed that 40 ~
50% RPE cells were positive for EGFP in EGFP-transfected eye-
cups whereas mock vector (pcDNA)-transfected eyecups had no
EGFP-positive cells under the same experimental conditions
(Fig. 2D). To confirm these results, we transfected pPSMD13 or
PRKS5 mock vector into RPE cells in WT and KI mice eyecups. As
shown in Figure 2F-H, R91W RPE65 was markedly decreased
in RPE overexpressing PSMD13. Both chymotrypsin-like and
trypsin-like proteolytic activities were increased 35 ~ 40% in

PSMD13-transfected KI eyecups compared with pRK5-trans-
fected KI eyecups (Fig. 21).

Mutation in the yeast Rpn9, a PSMD13 homolog, results in ac-
cumulation of ubiquitinated proteins (Takeuchi et al., 1999). We
therefore tested whether PSMD13 promotes degradation of RO1W
RPE65 via the ubiquitination-dependent pathway. We performed
immunoprecipitation of RPE65 in WT and KI eyecups transfected
with PSMD13 siRNA or control siRNA. Immunoblot analysis of the
immunoprecipitates showed that ubiquitinated R91W RPE65 was
increased in PSMD13 siRNA-transfected KI eyecups (Fig. 2]), sug-
gesting that PSMD13 promoted degradation of ubiquitinated mu-
tant RPE65 that might be misfolded.

To test whether PSMD13 promotes degradation of misfolded
RPE65 in vivo, we overexpressed PSMD13 in RPE of WT and KI
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Figure 3.

PBA increased the isomerase activity and chromophore synthesis in KI mice. 4, Inmunoblot analysis of RPE65 in RPE of 5-week-old KI mice injected intraperitoneally with the indicated

amounts of PBA or saline for 3 weeks, starting at P14. Histogram shows relative immunoblot intensities of RPE65 in PBA-treated mice versus control mice. B, Representative HPLC chromatograms
of retinoid isomerase assays of RPE from WT and KI mice treated with 50 mg PBA or saline. The peaks of 11-cis-retinol (11cROL) are indicated by arrows. Histograms show relative isomerase activities
of WT and R91W RPE65 in PBA-treated versus saline-treated mice. C, Amounts of atRE in WT and the indicated mutant mice eyes. D, Amounts of the indicated ocular retinoid (11cRAL, 11-cis-retinal;
atRAL, all-trans-retinal; 9cRAL, 9-cis-retinal and atROL, all-trans-retinol) in KI mice treated with saline or PBA. Asterisks indicate statistically significant differences between PBA- and saline-treated

Kl mice (p << 0.01). Error bars indicate SD (n = 6).

eyecups at 37°C and low temperature, which has been shown to
help proper folding of mutant proteins (Denning et al., 1992;
Vollrath and Liu, 20065 S. Li et al., 2013b). Immunoblot analysis
showed that the full-length RO1W RPE65 was further decreased
in the PSMD13-overexpressing KI eyecups at 37°C compared
with control (pRK5-transfected) KI eyecups (Fig. 2K, L). In con-
trast, cleaved fragments from the mutant RPE65, but not from
wild-type RPE65, were increased in the PSMD13-overexpressing
eyecups at 37°C (Fig. 2K). At 30°C, however, the full-length
R9IW RPE65 was drastically increased in both KI eyecups over-
expressing and not overexpressing PSMD13 (Fig. 2K, L). These
results are consistent with our previous studies showing that low
temperature rescues membrane-association and the isomerase
activity of several disease-causing RPE65 mutants, including
R91W RPE65, in culture cells (S. Li et al., 20143 2015; Jin et al.,
2016), and suggest that PSMD13 preferentially promoted degra-
dation of misfolded mutant RPE65.

PBA increased synthesis of 11-cis-retinal and 9-cis-retinal in
the KI mice

The results described above suggest that misfolding is the molec-
ular basis for the degradation of R91W RPE65. To test this pos-
sibility, we treated the KI mice with a series of varying amounts of
PBA, which has been shown to help proper folding of some mu-
tant proteins (Rubenstein and Zeitlin, 1998; Bonapace et al.,
2004; Zode et al., 2011). Protein levels of R91W RPE65 were
increased nearly threefold in 5-week-old KI mice treated with 50
mg PBA/kg body weight for 3 weeks compared with age-matched
KI mice treated with saline (Fig. 3A). Consistent with this result,

the retinoid isomerase activity in RPE homogenates of KI mice
treated with 50 mg PBA/kg were ~2-fold higher than that in
saline-treated KI mice RPE (Fig. 3B). We used 50 mg PBA/kg for
all of the following experiments.

To test the effect of PBA on the visual cycle of the KI mice, we
analyzed ocular retinoids in dark adapted 5-week-old WT, rd12
(RPE65-null) and KI mice treated with PBA or saline. In agree-
ment with the previous study on Rpe65 /™ and the KI mice (Red-
mond et al., 1998; Samardzija et al., 2008), rd12 and KI mice
treated with saline contained dramatically increased amounts of
all-trans-retinyl esters (afRE) in the eyes. WT mice contained
38 = 5.4 pmol atRE in an eye, whereas rd12 and saline-treated KI
mice contained 463 = 41.2 pmol or 476 £ 35.8 pmol afRE per
eye, respectively (Fig. 3C). In PBA-treated KI mice, the amounts
of atRE were reduced by ~15% to 404 = 33.5 pmol/eye com-
pared with saline-treated KI mice (Fig. 3C). Immunoblot analysis
of the lecithin:retinol acyltransferase (LRAT) indicates that this
reduction of atRE was not due to decrease in LRAT expression in
PBA-treated KI mice (Fig. 4C). Both 11-cis-retinal and 9-cis-
retinal were increased at least 70% in PBA-treated KI mice com-
pared with saline-treated KI mice (Fig. 3D). 9-cis-Retinal has
been shown to form functional iso-rhodopsin in Rpe65 /" mice
(Fan et al., 2003).

PBA increased membrane-association and colocalization of
R91W RPE65 with LRAT

Association of RPE65 with membranes is critical for its enzymatic
activity (Jin et al., 2007; Nikolaeva et al., 2009; Takahashi et al.,
2009; Golczak et al., 2010). We therefore tested whether PBA-
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treatment enhanced association of ROIW RPE65s with mem-
branes. We prepared membrane fractions from RPE of 10-week-
old WT and KI mice treated with PBA or saline for 8 weeks.
Immunoblot analysis of RPE65 in the membrane fractions
showed that PBA-treatment increased membrane-association of
RIOIW RPE65 at least 3.5-fold, but had no influence on wild-type
RPEG65 (Fig. 4A).

We then tested whether PBA-treatment promoted colocaliza-
tion of R91W RPE65 with LRAT that synthesizes the hydropho-
bic substrate of RPE65. As expected, immunohistochemistry
showed that the majority of RPE65 and LRAT proteins were co-
localized and distributed throughout the RPE cells in WT retinas
(Fig. 4B, top). In saline-treated KI mice, R91W RPE65 mainly
localized to the basal side of the RPE and formed aggresome-like
inclusion bodies in close proximity to the nuclei of RPE cells (Fig.
4B, middle). This distribution pattern was completely different
from that of LRAT in the same retinas (Fig. 4B, middle). In PBA-
treated KI mice, however, many R91W mutant proteins distrib-
uted to cytosol area and colocalized with LRAT (Fig. 4B, bottom).
PBA-treatment for 8 weeks increased protein level of RO1TW
RPE65, but not LRAT (Fig. 4C).

PBA reduced mislocalization of S-opsin in the KI mice

Because S-opsin is mislocalized in the KI mice (Samardzija et al.,
2009), we tested whether PBA can prevent or reduce mislocaliza-
tion of S-opsin in 5-week-old KI mice treated with PBA or saline
for 3 weeks. Immunohistochemistry showed that S-opsin was
mainly confined to the cone OS in WT retina (Fig. 5A). In KI mice
treated with saline, a greater fraction of S-opsin immunoreactiv-
ity was present in the OPL and some cell bodies of cones (Fig. 5A).
In the PBA-treated KI mice, however, S-opsin immunoreactivity

--_ N

Increase in membrane-association and colocalization of R9TW RPE65 with LRAT in KI mice treated with PBA. A, Immunoblot analyses of RPE65 and cadherin-1 (CDH1) in membrane
fractions of RPE from 10-week-old WT and KI mice treated with 50 mg PBA or saline for 8 weeks. Histograms show relative immunoblot intensities of RPE65 in the membrane fractions. B,
Immunohistochemistry showing increase in colocalization of ROTW RPE65 with LRAT in RPE of KI mice treated with PBA. Arrows indicate colocalization areas. Scale bar, 20 um. €, Representative
immunoblot analysis showing increase of ROTW RPE65, but not LRAT, in RPE of KI mice treated with PBA for 8 weeks. Histogram shows relative expression levels of RPE65 and LRAT in WT mice and
KI mice treated with saline or PBA. Asterisks indicate significant differences between PBA- and saline-treated Kl mice (p << 0.005). Error bars indicate SD (n = 4).

was largely reduced in the OPL but increased in the OS (Fig. 5A).
By measuring fluorescence intensity in the OS and OPL, we esti-
mated the fraction of S-opsin mislocalization in WT mice, saline-
treated, and PBA-treated KI mice. The fractional mislocalization
of S-opsin was reduced ~50% in PBA-treated KI mice compared
with saline-treated KI mice (Fig. 5B).

If S-opsin mislocalization is one of the pathogenic factors
leading to S-cone degeneration in the KI mice, the decrease in
S-opsin mislocalization should be accompanied by increase of
S-opsin in the PBA-treated KI mice. To test this possibility, we
performed quantitative immunoblot analysis for S-opsin. As
shown in Figure 5C, S-opsin was increased ~2-fold in PBA-
treated KI mice compared with saline-treated KI mice.

PBA reduced cone degeneration in the KI mice

To test whether PBA can protect cones from early degeneration in
the KI mice, we performed immunohistochemistry for CAR and
M-opsin on retinal sections of 10-week-old WT and KI mice
treated with PBA or saline for 8 weeks. We first detected CAR,
which expresses in both M- and S-cones. Low-magnification im-
ages for whole retinal sections showed that the KI mice exhibited
a severe loss of cones in the inferior retina (Fig. 6A), which is
consistent with our previous result (Samardzija et al., 2009). This
observation was confirmed by high-magnification images for
central areas of the superior and inferior retinas (Fig. 6B). We
then compared with total numbers of CAR-positive cone OS in
the retinas of KI mice treated with PBA or saline. Numbers of
CAR-positive cone OS in the inferior and superior retinas of
PBA-treated KI mice were increased by 38% and 21%, respec-
tively, compared with those in saline-treated KI mice (Fig.
6C). CAR-positive cone OS in PBA-treated KI mice were no-
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tably longer than those in saline-treated A WT
KI mice (Fig. 6B). Consistent with these
observations, immunoblot analysis
showed that protein levels of CAR in
retinal homogenates were increased by
~65% in PBA-treated KI mice com-
pared with saline-treated KI mice (Fig.
6D).

To know whether PBA improves
cone survival in the KI mice by partially
rescuing of the mutant RPE65-mediated
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treated KI mice superior and inferior
retinas, respectively, compared with those
in WT retinas (Fig. 7A,B). In PBA-
treatment KI mice, the numbers of
M-cone OS were increased by 28% and
41% in the superior and inferior retinas,
respectively, compared with those in
saline-treated KI mice (Fig. 7B). In addition, length of M-cone
OS was notably longer in PBA-treated KI mice compared with
that in saline-treated KI mice (Fig. 7A). Consistent with these
observations, quantitative immunoblot analysis showed that
M-opsin protein levels were increased by ~55% in PBA-treated
KI retinas compared with saline-treated KI retinas (Fig. 7C).

PBA improved cone visual function in the KI mice but not in
rd12 mice

The partial rescue of RPE65 function (Fig. 3) and cone survival (Figs.
6, 7) prompted us to test whether PBA can improve cone visual
function in the KI mice. We measured visual function by ERG on
10-week-old WT and KI mice treated with PBA or saline for 8 weeks.
ERG responses were elicited by stimulating mice with a series of
achromatic light flashes under a rod-saturating background light (32
cd/m?). Amplitudes of photopic ERG responses to high flash inten-
sities were increased by 30—45% in PBA-treated KI mice compared
with saline-treated KI mice (Fig. 8 A, B). To confirm whether S-cone
vision is improved in PBA-treated KI mice, we recorded ERG re-
sponses using 360 nm UV light flashes under a 40 cd/m* background
light. As shown in Figure 8C,D, b-wave amplitudes of S-cone ERG
responses to 0.78 and 1.08 log cd - s/m* UV light flashes were in-
creased ~90% and ~52%, respectively, in PBA-treated KI mice
compared with those in saline-treated KI mice. In contrast, S-cone
ERG responses, elicited with the same UV light flashes, in 10-week-
old rd12 mice treatment with PBA for 8 weeks were similar to those
in rd12 mice treatment with saline for 8 weeks (Fig. 8C,D).

Discussion

This study identified misfolding as the molecular basis for the
PSMD13-promoted degradation of ubiquitinated mutant RPE65
in the KI mouse RPE proteasomes. We further demonstrated that
PBA, an aromatic short-chain fatty acid functioning as a chemical

WT and KI mice treated with PBA (50 mg/kg) or saline. ONL, Outer nuclear layer; INL, inner nuclear layer. Scale bar, 20 wm. B,
Percentage of S-opsin (S-op) mislocalization estimated by dividing S-opsin immunofluorescence in the OPL by the sum of immu-
nofluorescence in OPL and 0Ss. Note the decrease in S-opsin mislocalization in KI mice after administering PBA. €, Inmunoblot
analysis of S-opsin in retinas of WT and KI mice treated with PBA or saline. Histogram shows relative expression levels of S-opsin in
PBA- or saline-treated KI mice versus saline-treated WT mice. Asterisks indicate significant differences between PBA- and saline-
treated Kl mice (p << 0.007). Error bars indicate SD (n = 4).

chaperone, partially rescued R91W RPE65-catalyzed synthesis of
the visual chromophores, thereby improved cone survival and
vision in the mutant mouse model of LCA.

RPEG65 is a highly abundant enzyme (Hamel et al., 1993) with
very low catalytic activity (Winston and Rando, 1998; Jin et al.,
2005). Therefore, decrease in protein stability will result in a per-
nicious effect on its function. In this study, we found that the
severe decrease of ROIW RPE65 in RPE was due to proteasomal
degradation (Fig. 1). The copious polyubiquitination and abnor-
mal subcellular localization (Figs. 1B,4B) suggest that ROIW
RPE65 is misfolded. Our previous studies showed that many
other RPE65 mutants were also degraded via the ubiquitin-
proteasome pathway (UPP) in culture cells (S. Li et al., 2014,
2015). These results suggest that degradation of RPE65 via the
UPP is a common pathogenic mechanism for many missense
mutations in RPE65.

The UPP plays a pivotal role in the cellular protein quality
control. In this study, we identified PSMD13 as a critical player in
eliminating misfolded mutant RPE65 via the UPP in the KI
mouse RPE. Knockdown of PSMD13 markedly increased RO1W
RPE65, including ubiquitinated mutant RPE65, possibly due to
reduction of the proteasome activity (Fig. 2A-C,E,J). Con-
versely, overexpression of PSMD13 reduced full-length mutant
RPE65 at 37°C (Fig. 2F-H,K,L), and significantly increased
RPE65 fragments cleaved only in the KI, but not in WT, RPE (Fig.
2K). These results are consistent with the previous study in yeast.
The yeast PSMD13 homolog (Rpn9) is required for the protea-
some activity. It participates in the assembly and/or stability of
the 26S proteasome (Takeuchi et al., 1999).

Low temperature has been shown to promote folding of mu-
tant proteins (Denning et al., 1992; Vollrath and Liu, 20065 S. Li et
al., 2013b). Consistent with these studies, full-length ROTW
RPE65 was dramatically increased in RPE at 30°C, even under
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Prolonged cone survival in Kl mice treated with PBA. 4, Low-magnification images of immunohistochemistry for CAR on retinal sections of 10-week-old WT and KI mice treated with

PBA or saline for 8 weeks. ON, Optic nerve. Scale bar, 500 wm. B, High-magnification images showing the superior and inferior central regions highlighted in A. Scale bar, 20 m. C, Counts of
CAR-positive cone 0S in the superior and inferior retinas from the indicated mice. D, Quantitative immunoblot analysis of CAR in WT mice, as well as Kl and rd12 mice treated with PBA or saline for
8 weeks. Asterisks indicate significant differences between PBA- and saline-treated KI mice (p = 0.01). Note that CAR expression levels in rd12 mice treated with PBA are similar to those in rd12 mice

treated with saline. Error bars indicate SD (n = 4).

overexpressing PSMD13 (Fig. 2K,L). Membrane-association
and isomerase activity of R91W RPE65 were also increased at
30°C (S. Li et al., 2015). This result and the similar amounts of
mutant RPE65 fragments in RPE at 30°C and 37°C suggest that
the increase of full-length ROIW RPE65 was due to improved
folding of R91W RPE65 rather than decrease in the proteasome
activity at 30°C. These results also suggest that PSMD13 pro-
motes degradation of misfolded, but not properly folded, RPE65.
High expression level of RPE65 and proteasomal overload ob-

served in multiple forms of inherited retinal degeneration (Lo-
banova et al., 2013) might cause incomplete degradation of
misfolded ROTW RPE65 (Fig. 2K ), which formed aggresome-like
structure in RPE (Fig. 4B).

We recently suggested that whether a mutation is mapped on
the active or near the active site of RPE65 is a critical parameter in
determining whether the isomerase function of the affected
RPEG65 can be rescued (S. Lietal., 2014, 2015). We found that the
isomerase activity of many pathogenic RPE65s with nonactive
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site mutations, but not with active site mutations, could be res-
cued at 30°C and/or with chemical chaperones (S. Li et al., 2014,
2015). Importantly, the majority of disease-causing missense
mutations are mapped onto the nonactive sites of RPE65. Similar
to many disease-causing missense mutations, R91W was mapped
onto the nonactive site of the RPE65 crystal structure (Kiser et al.,
20125 S. Lietal., 2015), and the activity of R91W RPE65 could be
rescued partially by treating cells with low temperature (S. Li et
al., 2015). Although most of missense mutations have not been
studied in vivo, our in vitro results (S. Li et al., 2014, 2015; Jin et
al., 2016) and the results presented in this study suggest that PBA
may also rescue the isomerase function in vivo for many disease-
associated RPE65s with nonactive site mutations.

Both 11-cis-retinal and 9-cis-retinal function as the light-
sensitive chromophore of the visual pigments (Crouch et al.,
1975). Administration of QLT091001 (9-cis-retinyl acetate) in
patients with RPE65 or LRAT mutation improved visual function
(Koenekoop et al., 2014). However, QLT091001 caused some
side effects in patients (Koenekoop et al., 2014). In contrast, PBA
is a FDA-approved safe medication (Perlmutter, 2002). PBA in-
creased the retinoid isomerase activity and synthesis of 11-cis-
retinal and 9-cis-retinal in the KI mice (Fig. 3). Although the
isomerase activity in the PBA-treated KI mice RPE was still <5%
of WT activity, a recent study on a mouse model with RPE65
P25L knock-in mutation (Y. Li et al., 2015) suggests that the
partial rescue of the isomerase function in PBA-treated KI mice is
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very important. The P25L RPE65 had <10% of WT activity
(Lorenzetal., 2008). However, the P25L knock-in mice exhibited
almost normal scotopic and photopic ERG responses.

It has been known that association of RPE65 with membranes
is critical for its substrate-binding and enzymatic activity (Mata et
al., 2004; Jin et al., 2007; Nikolaeva et al., 2009; Takahashi et al.,
2009; Golczak et al., 2010). Several missense mutations have been
shown to cause aggregation and mislocalization of RPE65 in cul-
ture cells (Chen et al., 2006; Takahashi et al., 2006; S. Li et al.,
2014, 2015). Similarly, we observed that R91W RPE65 formed
aggresome-like inclusion bodies in the RPE (Fig. 4B). This abnor-
mal subcellular distribution might accelerate the decrease of 11-
cis-retinol synthesis by dissociating RPE65 from the endoplasmic
reticulum where LRAT synthesizes the substrates for RPE65. In
addition, the aggregate formation of misfolded RPE65 may be
involved in the pathogenic mechanisms for RPE atrophy ob-
served in LCA patients with recessive RPE65 missense mutations
(Cideciyan et al., 2015). Importantly, PBA-treatment signifi-
cantly increased normal subcellular distribution of R91W RPE65
evidenced by the increase in membrane-association and colocal-
ization of the mutant RPE65 with LRAT (Fig. 4A, B). These re-
sults and the partial rescue of isomerase activity (Fig. 3B) suggest
that PBA enhanced proper folding of RO1W RPE65 and reduced
degradation of mutant RPE65 by the protein quality control sys-
tem. Decrease in RPE65 misfolding could reduce the potential
cytotoxic effects of RPE65 mutants in patients’ RPE.

The most clinically significant result of this study is the
improvement of cone survival and vision in the PBA-treated
KI mice (Figs. 5-8). Slowing the progression of cone loss
could greatly extend the years of useful vision of patients.
PBA-mediated alleviation of cone and vision loss may include
at least two different mechanisms: (1) PBA helped folding of
R91W RPE65, which in turn improved cone survival and func-
tion by increasing supply of 11-cis-retinal and 9-cis-retinal;
and (2) PBA promoted folding of cone opsins mislocalized due
to shortage of chromophore (Samardzija et al., 2009). In
Rpe65~’~ mice, cone opsins are mislocalized (Rohrer et al.,
2005) and M-opsin undergoes proteasomal degradation (Sato
etal., 2012). In Lrat~’~ retina lacking 11-cis-retinal (Batten et
al., 2004), S-opsin is mislocalized (Zhang et al., 2008) and
colocalized with ubiquitin (Zhang et al., 2011). These obser-
vations suggest that cone opsins are misfolded in the absence
or shortage of 11-cis-retinal. As a chemical chaperone, PBA
might act on misfolded R91W RPE65 and cone opsins in the
KI mice. However, the lack of increase in CAR protein level
and S-cone ERG responses in PBA-treated rd12 mice indicates
that PBA-mediated partial rescue of R91W RPE65 function
contributed to the improvement of the visual cycle, cone sur-
vival, and vision in KI mice.

It is remarkable that we detected S-cone function with UV-
stimulation even in saline-treated KI mice. Our earlier genetic
examination of rod and cone function in the KI mice suggested
that rods entrap most of the available 11-cis-retinal leading to
undetectable cone function after stimulation with white light
(Samardzija et al., 2009). In contrast to white light, however,
UV-light of 360 nm activates S-cones with a highly increased
efficiency because S-cones have their absorption optimum at
~355 nm (Jacobs et al., 1991; Lyubarsky et al., 1999). Thus, a
small amount of bleachable cone opsin may lead to a recordable
response after UV stimulation.

Recently, several proteins, including MYO7A, fatty acid trans-
port proteins (FATPs), and elongation of very long-chain fatty
acids-like 1 (ELOVLI1), have been identified as regulators of
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RPE65 (Guignard etal., 2010; Lopes etal., 2011; S. Lietal., 2013a;
Eroglu et al., 2016). In addition, lignoceroyl (C24:0)-CoA, a ma-
jor product of FATP, has also been shown to inhibit synthesis of
11-cis-retinol catalyzed by RPE65 (S. Li et al., 2013a). Because
FATP4 inhibits synthesis of 11-cis-retinol by competing with
RPE65 for the substrate of RPE65 (S. Li et al., 2013a), it would be
interesting to test whether knock-out of FATP4 can increase syn-
thesis of 11-cis-retinol and 11-cis-retinal in the KI mice RPE.

Although PBA can be used as a noninvasive stand-alone treat-
ment, it can also supplement RPE65 gene therapy for patients
with RPE65 mutations. A combined application of PBA, AAV-
RPE65, and tauroursodeoxycholic acid (Zhang et al., 2012) may
be a powerful therapeutic intervention that facilitates long-term
improvement of the visual cycle, cone survival and daylight vi-
sion in patients with RPE65 mutations.
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