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Given recent advances in the development of quantitative standards, particularly WHO international standards, efforts to better
understand the commutability of reference materials have been made. Existing approaches in evaluating commutability include
prediction intervals and correspondence analysis; however, the results obtained from existing approaches may be ambiguous.
We have developed a “deviation-from-ideal” (DFI) approach to evaluate commutability of standards and applied it to the assess-
ment of Epstein-Bar virus (EBV) load testing in four quantitative PCR assays, treating digital PCR as a reference assay. We then
discuss advantages and limitations of the DFI approach as well as experimental design to best evaluate the commutability of an
assay in practice.

Quantification of viral load is integral to clinical care, particu-
larly among immunocompromised patients (1–4). Increases

in viral load may trigger preemptive therapy to prevent or treat
systemic viral disease. It may also be used to monitor therapeutic
response and to determine treatment endpoints. A wide variety of
assays are used for these determinations (few FDA approved), and
the field continues to be hindered by a lack of agreement among
the results of these tests (5–8). In turn, this lack of agreement
(particularly between laboratories) prevents both the develop-
ment of standardized therapeutic breakpoints and the portability
of patient results among institutions. Numerous factors have been
shown to contribute to the variability of results (9), one of which is
a lack of standardized calibration standards. The availability of
WHO international quantitative standards for cytomegalovirus
(CMV) and, more recently, Epstein-Barr virus (EBV) should help
the process of developing such standardization; however, numer-
ous issues remain. These issues include the development of reli-
able secondary standards, which are traceable to and accurately
representative of the WHO standard material. As has been shown
for CMV secondary standards, such trueness cannot be assumed
(10).

Another issue of concern is the commutability of reference
materials, which focuses on whether standards behave like patient
samples and are consistent across different assays. Commutability
has been defined as “the equivalence of the mathematical relation-
ships among the results of different measurement procedures for a
reference material and for representative samples of the type in-
tended to be measured” (11). First defined and accepted in the
field of clinical chemistry, more recent work in clinical molecular
virology demonstrated its importance to interassay agreement,
with commutable standards improving and noncommutable
standards diminishing quantitative agreement (12–15). Cur-
rently, commutability is typically assessed via prediction interval
approaches (14) or by multivariate techniques such as correspon-
dence analysis (16), both based on evaluating whether a reference
material belongs to the same distribution obtained from measures
of human specimens using two or more assays. Prediction interval
approaches are intuitive and simple to apply; however, they are
often restricted to a two-assay setting. If there are more assays of
interest, advanced multivariate techniques are often used. A draw-

back of the current approaches is that when a series of dilutions of
a reference material is under examination, conclusions can be
difficult to interpret. The “commutability” conclusion drawn
from existing approaches is a relative concept, referring to the
behavior of a reference material between two or more assays com-
pared to that of human specimens. It cannot address whether a
reference material is commutable to human specimens in a single
assay of interest (AI). This can lead to differing determinations of
commutability depending on which assays are included in a given
evaluation. In addition, both prediction interval approaches and
multivariate approaches do not take data variability into account;
thus, a conclusion of commutability may be drawn only because
the data are too variable. Furthermore, both primary methods in
use today often produce only a “yes” or “no” determination of
commutability, failing to make a straightforward connection be-
tween interassay discrepancies in clinical values and commutabil-
ity inference. Moreover, this limitation of existing approaches
arises from the definition of commutability that does not reflect
result accuracy, hindering direct comparisons of commutability
results across assays.

Here, we seek to evaluate commutability by using traditional
approaches that produce relative commutability between assays
but also by producing absolute measures of commutability in a
single assay by normalizing both patient and reference material
results against the reference standard of digital PCR. The latter
depends on the concept of limiting dilution, using large-scale par-
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titioning of each master mix, followed by endpoint PCR. Quanti-
tation is then determined by counting the number of positive
nanoscale reactions and using Poisson statistics to produce a re-
sult that no longer depends on relation to a standard curve. Digital
PCR has increasingly been thought to represent a reference stan-
dard for quantitation, particularly of DNA viruses (17–19). In
addition to generating single-assay commutability determina-
tions, we introduce a novel statistical term that directly relates the
concept of commutability with clinical scales, asking whether de-
gree of commutability is a useful concept in establishing clinical
significance. This approach is presented together with methods
that have been widely applied in evaluating commutability. All
methods are applied here to four quantitative real-time EBV PCR
assays using commercial secondary standard material and the
WHO standard as proof-of-concept examples for this approach.

MATERIALS AND METHODS
Patient samples and quantitative standards. Reference materials utilized
in the study included the EBV B95-8 WHO international standard (NIBC,
Potters Barr, United Kingdom) and purified B95-8 virus stock (EBV type
1) inactivated cell extract (Advanced Biotechnologies [ABI], Columbia,
MD). External positive-control material was prepared by using the
AcroMetrix EBV plasma panel (Thermo Fisher Scientific, Inc., Waltham,
MA). WHO standard material was reconstituted, according to the man-
ufacturer’s recommendations, to a final concentration of 6.7 log10 IU/ml,
with subsequent 10-fold serial dilutions in human whole blood (Biologi-
cal Specialty Corporation, Colmar, PA) to concentrations of 5.7 to 1.7
log10 IU/ml. Material from ABI was diluted in phosphate-buffered saline
(PBS) to �8 log10 copies/ml and then further diluted in whole blood in
10-fold increments from �7 to 1 log10 copies/ml. The 7-log10 member of
the AcroMetrix panel was diluted in whole blood to produce high and low
controls of 5 log10 copies/ml and 3 log10 copies/ml, respectively.

Clinical patient samples included for evaluation included frozen
whole blood remaining from clinical testing performed at St. Jude Chil-
dren’s Research Hospital (SJCRH) from November 2008 to February
2013. Subsequent to clinical testing, samples were aliquoted and frozen at
�80°C prior to use. A total of 194 samples were selected for inclusion,
based on the results of routine clinical EBV load testing (using a labora-
tory-developed test [LDT]). These samples were thawed and anonymized
prior to nucleic acid extraction. Each sample was tested in duplicate by
each PCR methodology (see below). This study was classified as “exempt”
by the SJCRH Institutional Review Board (IRB), thereby allowing in-
formed consent requirements to be waived.

Nucleic acid extraction of 200-�l aliquots of all calibrators, controls,
and patient samples was carried out on the QiaSymphony SP instrument
(Qiagen, Valencia, CA) using the Qiagen QiaSymphony DNA minikit
200v6_Blood protocol, producing 200 �l of eluate in ATE buffer.

Quantitative testing by real-time and digital PCR. The reader is re-
ferred elsewhere for details regarding PCR methodologies, together with
comparisons of the performance characteristics of these methods (20). In

brief, four LDT methods were used here, three utilizing analyte-specific
reagents (ASRs), produced by Luminex Corporation (Austin, TX), Focus
Diagnostics (Cypress, CA), and ELITech Group (Bothell, WA), and the
fourth using in-house-developed reagents. Information regarding instru-
mentation, cycling parameters, and master mix composition is shown in
Table 1. Digital PCR (dPCR) was performed on a QX100 droplet dPCR
(ddPCR) system (Bio-Rad, Hercules, CA) for ddPCR amplification, using
reagents from the in-house-developed LDT. While it is ideal if the refer-
ence assay (RA) is completely independent of the methods under evalua-
tion, the same primers and probes were used for the digital PCR and for
the LDT real-time PCR methods. This lack of independence is not desir-
able but was tolerated for this teaching example.

Commutability assessment. (i) Prediction interval analysis. Simple
linear regression (SLR) was applied to log10-transformed EBV load mea-
sures of patient samples between the Luminex, LDT, Focus, and ELITech
methods with dPCR. Ninety percent, 95%, and 99% prediction intervals
were then plotted. Measures of dilution series of reference materials were
overlaid and checked for whether they all fell within the prediction inter-
vals. Commutability of a reference material in an assay was concluded
only if all measures of a reference material fell within the designated pre-
diction interval.

(ii) Correspondence analysis. Technical details of correspondence
analysis were reported previously (10, 16). In short, log10-transformed
measures of patient samples using all assays of interest and reference ma-
terials were considered active elements and projected onto a factorial
plane, with the two axes representing the first two factors explaining most
of the information in data. A 95% confidence eclipse was plotted. Mea-
sures of reference materials were then treated as supplemental or inactive
elements to avoid distortion of the pattern derived from clinical samples.
Reference material was determined to be commutable if its measures all
fell within the confidence region, indicating close proximity of the behav-
ior of that reference material to patient samples.

(iii) Deviation-from-ideal approach. For an ideal assay, the quanti-
tative relationship between the actual and measured viral loads of quan-
titative standards (often modeled by simple linear regression) is identical
to that of patient samples, and both patient samples and standard samples
should show minimal variability (Fig. 1A). We propose that commutabil-
ity be quantitatively evaluated by computing a statistical metric of an
assay’s deviation from the ideal (DFI), which is partitioned into compo-
nents that are directly attributable to certain forms of deviation from the
ideal.

There are several ways in which the actual performance of an assay
may deviate from the ideal (Fig. 1B to D), with similar quantitative rela-
tionships but with one set of samples having much larger variability or
even different regression relationships between actual and measured viral
loads. It can be advantageous for DFI to capture specific forms of depar-
ture. For example, in a setting like that shown in Fig. 1B, the variability of
the standards is the greatest contribution to the overall DFI. In such a
setting, improvements in the processing of standards that reduce variabil-
ity may greatly reduce the overall DFI.

DFI metrics are developed for studies that collect viral load measure-

TABLE 1 Key assay characteristicsa

Assay
Reagent manufacturer
(location) Chemistry Instrumentation (manufacturer)

Total reaction
mixture vol (�l)

Sample
vol (�l)

ELITech ELITech Group
(Bothell, WA)

TaqMan, MGB Alert probe/
primer mixture

7500 real-time PCR instrument (Life
Technologies, Grand Rapids, NY)

25 5

Focus Focus Diagnostics
(Cypress, CA),

Scorpion-labeled primers 3 M integrated cycler (Focus
Diagnostics)

10 5

Luminex Luminex Corporation
(Austin, TX)

MultiCode-labeled primers 7500 real-time PCR instrument 25 5

LDT In-house developed TaqMan 7500 real-time PCR instrument 25 5
a See reference 20.
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ments for both patient samples and quantitative standards and with both
the assay under evaluation (AUE) and an RA. The DFI metric is computed
from the regression of AUE viral loads on RA viral loads for the patient
samples and the regression of AUE viral loads on RA loads for the quan-
titative standards. In the appendix, we mathematically define the DFI as a
metric of the average deviation between the AUE measurements of a pa-
tient sample and a quantitative standard that have the same actual viral
load according to the RA. The interpretative implications of this defini-
tion of DFI are elaborated below.

The DFI is partitioned into three distinct components: (i) precision of
measurements for patient samples, (ii) precision of measurements for
standards, and (iii) accuracy of standards as a representation of patient
samples.

The DFI and the relative contributions of its three components may be
reported numerically and graphically. Figure 1 illustrates a graphical rep-
resentation of the DFI and its three components with a tricolored bar in
the top left corner of each panel. The height of the bar is the DFI, and the

proportions of the bar in red, violet, and gold represent the contributions
of patient sample variability, standard sample variability, and difference
between regression lines to the DFI, respectively. Thus, the short bar in
Fig. 1A indicates that the DFI is small (suggesting very good performance
of the AUE), and the very tall bar in Fig. 1D indicates that the DFI is large
(suggesting poor performance of the AUE). The long violet segment of the
bar shown in Fig. 1B indicates that most of the deviation from the ideal is
attributable to variability of standards, and the long gold segments in Fig.
1C and D indicate that most of the deviation from the ideal is attributable
to differences between the regression line of patient samples and that of
standard samples. The relative contributions of these three components to
the DFI may provide some guidance to help determine which elements of
a particular assay should be improved to enhance its performance. For
instance, one may consider revising laboratory procedures for prepara-
tion and processing of standards if 90% of the DFI is attributable to vari-
ability among standard samples.

A major advantage of DFI is that it measures deviation from the ideal

FIG 1 Idealized illustration of DFI plots showing differing types of assay performance. Each panel shows regression models of both patient samples and
standards. To the right of each regression model, a three-color bar graphically depicts contributions to the deviation from the ideal. The total height of the bar
is the DFI. The proportions of the DFI attributable to within-model variability of patient samples, within-model variability of standards, and the difference
between model regression lines are shown. (A) Nearly ideal case with almost identical regression lines that each have minimal variability, giving a small DFI. (B)
Two nearly identical regression lines but with one line having extensive variability and the other having minimal variability. (C) Two very skewed regression lines.
(D) Two parallel regression lines with distinct intercepts.
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in the same units that the AUE measures viral load, which makes it pos-
sible to perform meaningful comparisons of DFI values among a set of
assays that measure viral load in the same units. Furthermore, with con-
sensus among a range of stakeholders and the relationship between DFI
and meaningful consensus, a “clinically acceptable threshold of variabil-
ity” could be established. For example, one may consider cutoffs to inter-
pret the DFI value as showing “good” (i.e., 0.0 to 0.40 log10 copies/ml),
“intermediate” (i.e., 0.41 to 0.60 log10 copies/ml), or “poor” (i.e., �0.60
log10 copies/ml) commutability.

By definition, the DFI is an absolute measure of deviation from the
ideal only in settings in which the RA can legitimately be considered a
“gold standard.” Otherwise, the DFI can be interpreted in the more lim-
ited sense that it measures deviation relative to the particular assay.

For this study, we computed the DFI metrics of the LDT, Luminex,
Focus, and ELITech methods using WHO material and ABI standards as
assay systems under evaluation, with digital PCR as the reference assay.

All statistical analyses were performed on measures no lower than the
lower limit of quantification of all assays, as reported previously (20), on
194 samples and with SAS 9.3 unless otherwise specified. The SAS macro
and R function for generating DFI results are available as Files S1 and S2 in
the supplemental material.

RESULTS
WHO standards. Results of the prediction interval analysis for
WHO standards are shown in Fig. S1 in the supplemental mate-
rial. This analysis fits a linear regression to the clinical samples for
each pair of assay systems to determine prediction intervals. The
results for the standards are then plotted to determine whether
standards fall within these intervals. At least one standard value
fell outside the 90% prediction intervals in the evaluations of the
LDT and Luminex (see Fig. S1A in the supplemental material),
LDT and Focus (see Fig. S1D in the supplemental material), Focus
and ELITech (see Fig. S1E in the supplemental material), and LDT
and ELITech (see Fig. S1F in the supplemental material) methods.
All standards fell within the 90% prediction intervals in evalua-
tions of the Focus and Luminex (see Fig. S1B in the supplemental
material) and ELITech and Luminex (see Fig. S1C in the supple-
mental material) methods. For some comparisons, the number of
points falling within or outside the prediction intervals depends
on the arbitrary selection of 90%, 95%, or 99% prediction inter-
vals (see Fig. S1A, S1D, and S1E in the supplemental material).
This analysis shows that the performance of the LDT differs from
that of the other three assay systems. However, without a gold
standard assay system, this analysis does not clearly indicate
which, if any, of these assay systems is actually the best performer
in terms of commutability.

Correspondence analysis results are shown in Fig. S2 in the
supplemental material. One standard sample falls outside the 95%
prediction ellipse, suggesting that the standard samples do not
have a behavior similar to that of patient samples across all four
assays.

Figure 2 and Table 2 show the results of DFI analysis. The
Luminex, LDT, Focus, and ELITech methods had DFI values of
0.92, 0.29, 0.51, and 0.91 log10 IU/ml, respectively. Thus, in terms
of DFI, the LDT showed the best performance in this study, be-
cause it performed well in each of the three components of DFI.
With the LDT method, patient samples and standards had almost
identical regression lines, patient samples showed little variability
across most of the range, and standards showed little variability
(Fig. 2B). Conversely, Luminex and ELITech had poor DFI due to
large differences between the regression lines of patient samples
and standards (Fig. 2A and D). The Focus assay had an interme-

diate DFI of 0.51 log10 IU/ml, attributable mostly to variability of
patient samples, with a moderate gap between the regression lines
of patient samples and standard samples (Fig. 2C). This analysis
also shows that the LDT differs from the other three assay systems:
the LDT shows much better commutability than the other three
systems. While the other three assay systems show a considerable
shift between the regression lines of standards and patient sam-
ples, these lines are almost identical for the LDT system. This is
also observed in the numerical values for the deviation from the
ideal due to a difference between the regression lines (0.12 for the
LDT versus 0.43 for Focus, 0.86 for Luminex, and 0.87 for
ELITech). The other components of DFI did not vary so dramat-
ically across the four assay systems. The variability of standards
ranged from 0.06 to 0.09 across assay systems, and the variability
of patient samples ranged from 0.26 to 0.32 across assay systems.

ABI standards. Results of the prediction interval analysis for
ABI standards are shown in Fig. S3 in the supplemental material.
All standards fell within the 90% prediction intervals in the eval-
uation of the LDT and Luminex (see Fig. S3A in the supplemental
material) and in the evaluation of the LDT and Focus (see Fig. S3D
in the supplemental material) methods. At least one standard fell
outside the 90% prediction intervals for each of the other pairwise
evaluations (see Fig. S3B, S3C, S3E, and S3F in the supplemental
material). Again, the number of standards falling outside the pre-
diction interval varied across pairwise evaluations and according
to the arbitrary choice of using 90%, 95%, or 99% prediction
intervals.

Correspondence analysis results are shown in Fig. S4 in the
supplemental material. Overall, ABI standards behaved similarly
to patients samples in the four assays under investigation when a
95% confidence region was applied as the threshold.

Figure 3 and Table S1 in the supplemental material show the
results of DFI analysis. The Luminex, LDT, Focus, and ELITech
methods had DFI values of 0.47, 0.35, 0.50, and 0.50 log10 IU/ml,
respectively, when using the ABI standards. Notably, all assays
showed a DFI of �0.5 log10 IU/ml. Comparatively, assay systems
including the ABI standards generally showed better commutabil-
ity than did those using the WHO standards. Among the latter, the
LDT-WHO assay system showed the best commutability by DFI.
The LDT-ABI system showed the lowest DFI, and the ABI system
showed a DFI of less than half a log unit with all four reagent sets.
The partitioning of the DFI into its three sources is illuminating in
this case. The four assay systems did not differ greatly in terms of
variability of patient samples (range of 0.26 to 0.32). ELITech
showed considerably greater variability of standards (0.34 versus
0.14 to 0.21 for others), and the LDT showed considerably less
difference between the patient sample regression line and the stan-
dard sample regression line (0.20 versus 0.26 to 0.37 for others).

DISCUSSION

Evaluation of commutability with any given quantitative stan-
dards can be viewed as fundamental to the performance of viral
load assays. Commutability may directly affect quantitative accu-
racy and comparability of results among assays and therefore may
be a determinant of clinical utility. Much of the literature has
discussed commutability as a property of standards. While it is
certainly true that properties and processing of standards may
profoundly impact commutability, it is also important to recog-
nize that commutability is a property of an entire assay system. All
procedures and materials of an assay impact the data that should
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be ultimately evaluated statistically. Many studies that formally
evaluate commutability are not designed to isolate the contribu-
tions of particular components of an assay due to the excessive
cost and effort required. Thus, the conclusions of a statistical eval-
uation of commutability apply to an entire assay procedure and
not just the standards themselves.

Currently, linear regression prediction intervals and corre-

spondence analysis prediction ellipses are two statistical methods
that are commonly used to evaluate commutability in the litera-
ture. These methods have provided useful insights regarding the
commutability of several assays. However, the results of these
methods should be interpreted with caution due to a number of
technical considerations involving variability and sample size. The
sizes of prediction intervals and ellipses increase with variability of

FIG 2 DFI assessment of WHO EBV standards. Each panel illustrates regression models for patient samples and standards. Digital PCR is regarded as the
reference standard assay. To the right of each regression model, a three-color bar graphically depicts the DFI. The total height of the bar is the DFI. The
proportions of the DFI attributable to within-model variability of patient samples, within-model variability of standards, and differences between model
regression lines are shown. (A) Performance of the WHO standard with Luminex. (B) Performance of the WHO standard with the LDT. (C) Performance of the
WHO standard with Focus. (D) Performance of the WHO standard with ELITech.

TABLE 2 DFI commutability assessment of the WHO standard

Assay
Root variability of patient sample
regression line (log10 IU/ml) (%)

Root variability of WHO material
regression line (log10 IU/ml) (%)

Avg difference between 2 regression
lines (log10 IU/ml) (%) DFI (log10 IU/ml)

ELITech 0.27 (9) 0.09 (1) 0.87 (90) 0.91
Focus 0.26 (27) 0.07 (2) 0.43 (71) 0.51
LDT 0.26 (79) 0.06 (5) 0.12 (16) 0.29
Luminex 0.32 (12) 0.07 (1) 0.86 (87) 0.92
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the data. Conceptually, it is possible that an assay may produce
extremely noisy viral load measurements for patient samples so
that the prediction intervals or ellipses are very large. In such a
setting, it is essentially guaranteed that the standard samples will
fall within the 95% prediction bounds. In such a setting, this ob-
servation is not scientifically meaningful. Also, sample size must
be considered when interpreting the number of points that fall
within or outside prediction bounds. If a large number of data
points are collected, then by definition, 5% of such points are
expected to fall outside the prediction bounds when statistical
modeling assumptions are satisfied. Therefore, simply counting
the number of data points falling outside linear regression predic-
tion intervals or correspondence analysis prediction ellipses does
not always yield a scientifically, practically, or statistically mean-
ingful interpretation. Finally, as seen in our analysis of the WHO

samples, pairwise comparison of two assay systems with predic-
tion intervals can show only that the assay systems perform differ-
ently but does not indicate whether either is truly commutable.

Here, we provide a formal statistical definition of the DFI and
describe how to compute it. The DFI is developed for studies that
collect viral load measures for both patient samples and standards
from an assay under evaluation and a reference assay. The DFI is a
function of the data values and the results of linear regression of
AUE viral loads on RA viral loads for patient samples and for
standards. The DFI reports deviation of the viral load measure-
ments of the assay under evaluation from the ideal performance
and measures deviation from the ideal in the units of the assay
under evaluation. This greatly facilitates the interpretation and
practical utility of the DFI. This property makes it easier to char-
acterize the relationship between DFI and other metrics of accu-

FIG 3 DFI assessment of ABI EBV standards. Each panel illustrates regression models for patient samples and standards. Digital PCR is regarded as the reference
assay. To the right of each regression model, a three-color bar graphically depicts the DFI. The total height of the bar is the DFI. The proportions of the DFI
attributable to within-model variability of patient samples, within-model variability of standards, and the difference between model regression lines are shown.
(A) Performance of ABI standards with Luminex. (B) Performance of ABI standards with the LDT. (C) Performance of ABI standards with Focus. (D)
Performance of ABI standards with ELITech.
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racy and agreement to guide the subsequent development of
guidelines regarding clinically acceptable limits for the DFI. Also,
the DFI can be partitioned into relative contributions from three
distinct sources: precision of measurements for patient samples,
precision of measurements for standards, and accuracy of stan-
dards as a representation of patient samples. In some cases, this
partition may help focus attention on improving specific elements
of an assay to improve its performance.

Clearly, the appropriate interpretation of DFI is determined
largely by the reliability of the reference assay. This may be con-
sidered a limitation of DFI. All three of the presented methods
implicitly have the limitation that at least two assays must be used
to obtain statistical results. For linear regression prediction inter-
vals, the assay used to obtain data for the “x” axis could be implic-
itly used as a reference assay, although the usage of a reference
assay in this approach was barely touched upon in the literature.
Also, from a technical perspective, correspondence analysis eval-
uates the agreement of a set of assays. As such, the assays that are
most influential in defining the prediction ellipse in a particular
data set are implicitly serving as references. Thus, we feel that it is
appropriate to explicitly state that evaluation of commutability
is uniformly subject to the intrinsic limitation that some assay
is essentially serving as a reference, and the reliability of the
final result depends on the reliability of the reference assay.
Likewise, it is ideal if the reference assay is completely independent
of the methods under evaluation. In the work presented here, the
same primers and probes were used for the digital PCR and for the
LDT real-time PCR methods, which is a major limitation of this
study. This likely was an important factor in the lower DFI value of
the LDT assay.

The apparent advantage of the LDT in commutability was
more marked when using the WHO standard, where the DFI us-
ing the other three assay systems was more clearly elevated. When
using the ABI standard, all DFIs were within a range of 0.15 log10

copies/ml. Examination of the DFI regressions showed little dif-
ference among the four assay systems, suggesting that commut-
ability would not significantly impact interassay agreement. The
reason for the differing commutability between the WHO and
ABI material is uncertain. Previous work has shown limitations in
commutability utilizing WHO standards (21). Here, both stan-
dards were whole-virus preparations, but one still showed behav-
ior more like clinical samples. However, in the absence of DFIs for
all of the assays in the previous study, the results here are not
directly comparable. Numerous factors can affect viral load accu-
racy, and it is likely that any of these factors can also affect com-
mutability, reflected by a change in any or all components of the
DFI. Possibilities might include differing sample matrices or dif-
ferences in virus strains used for each standard.

Work here highlights the limitations of methodologies that do
not evaluate commutability based on a reference assay (here dig-
ital PCR). The analyses performed using only regression predic-
tion intervals and correspondence analysis can show only that
assay systems differ from one another but cannot indicate which is
best. In some cases, the apparent outlier assay by such methods
may in fact show the best commutability compared to a reference
standard assay. This is seen in the present study, where the LDT
would be called least commutable by prediction intervals and cor-
respondence analysis but turns out to be the most commutable
compared to a reference assay using DFI.

Like existing approaches based on regressions, there are several

other limitations of the DFI approach. If the underlying mathe-
matical relationship is not linear, or if the relationship does not
have constant variability, any approach based on simple linear
regression is questionable. Furthermore, investigation can be per-
formed only within the quantitative patient sample range. Finally,
all approaches require a well-established commutability accep-
tance criterion, which is largely missing in the field. Potential rem-
edies to the violation of linear regression assumptions could take
advantage of weighted Deming regression (22) or nonparametric
regressions (23). Commutability acceptance criteria may depend
on the intent of the investigator, but when used to determine
impact on interassay system agreement, one approach would be to
develop an agreement statistic (data not shown) using principles
introduced in this work. Empirically, an achievable upper bound
for acceptable DFI might be set, based on the data presented
above.

The DFI statistic measures how closely the behavior of the
standard material resembles that of human specimens. To estab-
lish an acceptable limit of agreement using the DFI, one can com-
bine the knowledge of the uncertainty budget and the clinical
deviation allowance (24). However, in practice, it is always opti-
mal to assess commutability or agreement of an assay(s) using DFI
together with descriptive plots, as presented in this study. DFI
describes the average deviation from the ideal defined above; thus,
the magnitude of the DFI alone may hide the fact that standard
material samples behave differently from human specimens. For
example, in Fig. 1C, the two regression lines clearly cross, and it
would be questionable to conclude commutability, while the
overall DFI value could still be small, since in the middle range, the
deviation is close to zero. In this case, the plot will clearly comple-
ment the numerical inference. Thus, we recommend that a com-
plete analysis of commutability include the generation and visu-
alization of regression plots to complement the computation of
the DFI statistic and its three components.

Although commutability is not a new concept, more in-depth
work is needed to reliably assess the performance of standard ma-
terials together with various assays and to set clinically meaningful
thresholds for acceptable commutability. Our proposal could be
regarded as a first exploratory step toward this goal. Work is under
way to develop formal statistical metrics for the evaluation of DFI
in two or more assays, allowing DFI-based prediction of interassay
result comparability, and to assess how the choices of DFI com-
ponent weighting would impact the result. The latter will help to
understand the performance of the DFI metric if, in practice, one
component is of most interest. Another future extension of the
current DFI approach includes the generalization of the definition
when Deming regression (weighted or unweighted) is applied.

APPENDIX
Here, we describe the calculation of the deviation-from-ideal (DFI) met-
ric. Suppose we have obtained measurements for i � 1,. . .,n patient sam-
ples and j � 1,. . .,m reference material samples from both the reference
assay (RA) and the assay of interest (AI). For the i � 1,. . .,n patient sam-
ples, let xi and yi represent the measurements obtained from the RA and
AI, respectively. For the j � 1,. . .,m reference material samples, let uj and
wj represent the measurements obtained from the RA and AI, respectively.
A simple linear regression is fitted on the patient measurements (xi and
yi) to obtain the estimated line y � �0 � �1x, and a simple linear
regression is fitted on the reference material measurements (uj and wj)
to obtain the estimated line w � 	0 � 	1u. Using these estimated lines,

we compute y1̂ � �̂0 � �̂ixi for each patient sample i � 1,. . .,n and
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ŵj � �̂0 � �̂1ui for each reference material sample j � 1,. . .,m. Here,
the notation ^ represents estimates from a fitted linear regression.
Now, the mean square error of the patient samples (MSPS) is defined

as MSPS �
1

n �i�1
n �Ŷi � Yi�2, the mean square error of the reference

samples (MSRS) is defined as MSRS �
1

m �j�1
m �Ŵj � Wj�2, and the

mean square difference between the lines (MSBL) is defined as

MSBL �
1

n �i�1
n �Ŷi � Ŵi�2. MSPS is a metric of the precision of

patient sample measurements, MSRS is a metric of the precision of the
reference material measurements, and MSBL is a metric of the accu-
racy of the standards as a representation of the patient samples. The
total value of MSPS � MSRS � MSBL is a metric of deviation from the
ideal scenario in which the regression lines for patient samples and
reference material are identical and both sets of samples show no de-
viation from that line. The proportional contributions of these three
terms to the total can also be reported. Finally, the DFI statistic is the
square root of the sum of these three components.
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