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Carbapenem-resistant Pseudomonas aeruginosa, Acinetobacter spp., and Enterobacteriaceae pose urgent public health threats.
The differential burden, relative risks, associations with antimicrobial consumption, and temporal trends of those taxa in large,
geographically diverse U.S. health systems remain under reported. Electronic records of all patients in a geographically dispersed
280-hospital managed-care system from 2005 to 2014 were reviewed. Carbapenem-resistant strains were identified based on
Clinical and Laboratory Standards Institute guidelines and breakpoints. A total of 360,000 potentially carbapenem-resistant
strains were identified from 14.7 million cultures (80% infecting and 20% surveillance). Isolation of bacteria overseas or isola-
tion from the bloodstream was associated with a higher relative risks of carbapenem resistance (CR; P < 0.0001). Enterobacteria-
ceae were isolated 11 times more frequently than P. aeruginosa and Acinetobacter spp. However, compared to Enterobacteria-
ceae, the CR levels were 73-fold and 210-fold higher in P. aeruginosa and Acinetobacter spp., respectively. Significant differences
in the relative risk of CR between taxa, anatomic, and geographic locations persisted after adjustment for other variables, the
biggest differences occurring between taxa. Overall, CR rates increased for Enterobacteriaceae (P � 0.03) and decreased for Acin-
etobacter spp. and P. aeruginosa (P < 0.0001). These data provide a useful baseline for resistance trending and have implications
for surveillance. Infections acquired overseas and bloodstream infections are particularly important areas for continued
monitoring.

Carbapenems are one of the most important classes of antimi-
crobials because they remain effective against most infections

increasingly caused by multidrug-resistant (MDR) and extended-
spectrum �-lactamase-producing Gram-negative bacteria. Al-
though the Centers for Disease Control and Prevention lists car-
bapenem-resistant Enterobacteriaceae (CRE) as an urgent public
health threat (1) and recent focus has been on CRE (2, 3), Pseu-
domonas aeruginosa and Acinetobacter spp. are also of great con-
cern because they frequently complicate the care of immunocom-
promised patients and patients injured by war or natural disasters
(4–6). Furthermore, data on the burden of CR in these species,
especially at the population level, remain sparse. Similarly, data
are scant on whether overseas locations are associated with in-
creased relative risk of CR, which is relevant because the number
of individuals and populations (including military populations)
that are mobile or displaced by conflict has increased (7, 8). Fi-
nally, selection pressure from antibiotic use is a major driver of
antimicrobial resistance, with even brief exposure in the form of
prophylaxis for traveler’s diarrhea elevating the risk of certain
types of antimicrobial resistance (9–11). However, relative risk
and antimicrobial use-resistance associations at the population
level or the level of an entire health system in the United States
remain incompletely understood and infrequently reported.

We sought to determine here (i) the combined burden of car-
bapenem-resistant bacteria (CRB) (including Acinetobacter spp.
and Pseudomonas aeruginosa and how that differed from resis-
tance levels in Enterobacteriaceae) in the health care system of the
U.S. Department of Defense (DOD), a large and geographically

diverse managed health system; (ii) whether military treatment
facilities (MTFs) located overseas or outside the contiguous U.S.
(OCONUS) had an increased relative risk of isolation of a CRB
compared to facilities in the contiguous United States (CONUS);
(iii) whether certain anatomic sites, such as the bloodstream, had
a higher risk of isolation of CRB; and (iv) whether DOD health
care databases and electronic health records can be leveraged to
explore antibiotic use-resistance relationships.

MATERIALS AND METHODS
The health care system of the DOD, its beneficiaries, and detailed methods
for mining electronic health care records (EHR) have been described pre-
viously (3, 12). Briefly, patients of all ages, including neonates and geriat-
rics, are treated in approximately 288 fixed-location facilities throughout
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the contiguous United States, Alaska, and Hawaii. Fixed MTFs are also
located in Guam, Italy, Germany, Kuwait, Japan, South Korea, and Spain.
Transient medical surgical hospitals were and/or are located in Iraq and
Afghanistan. Beneficiaries include active duty, family members of active
duty service members, and retirees. The average annual number of bene-
ficiaries eligible to receive care is 9.2 million.

In terms of processes and quality, overseas facilities (except those in
combat zones) are comparable to CONUS facilities in that they are held to
the same requirements for Joint Commission accreditation. Similarly,
clinical laboratories at fixed MTFs of the DOD are accredited by the Col-
lege of American Pathologists and perform identification and susceptibil-
ity testing according to Clinical and Laboratory Standards Institute
(CLSI) guidelines. Automated identification and susceptibility platform
use across the DOD is fairly constant, with the Phoenix and Vitek II
platforms in use by ca. 80% of hospitals and the MicroScan by ca. 20%
(primarily by mobile hospitals in austere environments). This proportion
of use was also stable over the entire study period. Since the health system
of the DOD is geographically dispersed thought the world, it is subject to
the same influences from regional and global emergences of carbapen-
emase-encoding genes such as blaKPC, blaNDM, blaOXA-23, etc., that oc-
curred and have been documented in the literature during this study
period. Soon after the start of conflicts in Iraq and Afghanistan in 2001,
the DOD health system began to see significant increases in multidrug and
carbapenem-resistant Gram-negative bacteria. There were no major
changes to standard infection prevention and control procedures or pol-
icies during the study period.

EHR of all beneficiaries who received care at fixed MTFs were queried
for all cultures that grew a target organism (Enterobacteriaceae (ferment-
ers), Acinetobacter spp., or Pseudomonas aeruginosa (nonfermenters)
from 2005 through 2014. Incidence definition was the first resistant isolate
per patient per 30 day interval in a calendar year based on the CLSI guide-
line M39-A2 for antibiogram reporting and Hindler and Stelling (13, 14).
Carbapenem resistance was defined as being resistant to ertapenem,
doripenem, meropenem, or imipenem (for fermenters) or to doripenem,
imipenem, or meropenem (for nonfermenters) according to prevailing
CLSI and/or U.S. Food and Drug Administration susceptibility break-
points. Not all labs can simultaneously update their breakpoints as soon as
the CLSI updates them. This is an inherent and unavoidable limitation of
reporting data across entire health care systems. Therefore, the specific

breakpoints used were those in informational supplements M100-S16 to
M100-S24 (15). To further mitigate this constraint, we also leveraged a
large repository of centrally tested and characterized isolates from the
DOD health system. A total of 9,000 unique (one isolate per patient per
year) MDR Enterobacteriaceae, Acinetobacter spp., and P. aeruginosa un-
derwent same-day plate testing by the referral laboratory (16, 17). The
distribution of the MICs for each of the carbapenems are presented in
Table 1.

Unadjusted relative risk (RR) estimates and their 95% confidence
intervals (95% CI) were calculated in Excel using formulae identical to
those available elsewhere (https://www.medcalc.org/calc/relative_risk
.php), which included smoothing techniques for zero counts. Adjusted RR
estimates (adjusted for the categorical covariates of calendar year, specimen
source, and patient location) were computed with PROC GENMOD in SAS
9.4, using Poisson regression-based methods as described previously (18).
The smoothing procedure suggested by Gauvreau and Pagano (19) was
utilized for calculations involving zero counts in one or more cells of the
contingency table.

RESULTS

Of 14,725,478 clinical cultures in the study time frame, 366,075
grew a target organism. We determined that 21, 8, 2, and 2% of the
cultures were Acinetobacter spp., Klebsiella spp., P. aeruginosa,
and E. coli, respectively, and the remainder were infecting cul-
tures. Regardless of susceptibility, Enterobacteriaceae were isolated
at 11 times the rate of P. aeruginosa and Acinetobacter spp. The rate
of target organisms that were carbapenem resistant ranged from
1.25/1,000 organisms for E. coli to 277/1,000 organisms for Acin-
etobacter spp. (Table 2). The unadjusted relative risk for carbap-
enem resistance was 73-fold higher (95% CI � 66.6 to 80.1) in
nonfermenters compared to fermenters (Table 3).

For all taxa combined, OCONUS locations were associated
with a significantly increased risk of having a resistant organism:
an adjusted RR of 1.39 (95% CI � 1.26 to 1.52; P � 0.0001).
Similarly, for all taxa combined, isolation from blood was associ-
ated with a significantly higher relative risk of being CR compared

TABLE 1 Distribution of carbapenem MICs in a representative sample of multidrug-resistant isolates from the DoD health system (one isolate per
patient per year)

Organism (no. of strains)

No. of strains associated with the following carbapenem MICs

% Intermediate or resistant�0.5 �1 1 2 4 �4 8 �8 Total

Acinetobacter spp. (2,205)
Ertapenem 1 1 8 10
Imipenem 646 312 62 50 1,135 2,205 56.55

Enterobacter spp. (674)
Ertapenem 543 39 36 23 33 674
Imipenem 470 135 52 7 10 674 30.27

Escherichia coli (4,831)
Ertapenem 4,754 11 14 10 42 4,831
Imipenem 4,757 27 14 11 21 4,830 1.51

Klebsiella spp. (1,222)
Ertapenem 982 13 32 22 173 1,222
Imipenem 1,034 21 27 27 113 1,222 15.38

Pseudomonas spp. (1,433)
Ertapenem 1 1 7 9
Imipenem 158 246 102 110 817 1,433 64.69
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to all other anatomic sites: an adjusted RR of 1.94 (95% CI � 1.68
to 2.23; P � 0.0001) (Table 4).

For nonfermenters alone (P. aeruginosa and Acinetobacter
spp.), a higher relative risks of CR was observed for isolates recov-
ered from the bloodstream and for isolates recovered from over-
seas locations. For fermenters (Enterobacteriaceae), a higher rela-
tive risk of CR was associated with blood isolation (Table 5). Even
after adjusting for the other variables in the models, (adjusting for
year and patient geographic location in the anatomic source
model, and year and anatomic source in the geographic location
model) there is an increased risk of carbapenem resistance for
blood infection in both fermenters (adjusted RR � 2.21; 95%
CI � 1.27 to 3.83) and nonfermenters (adjusted RR � 1.91; CI �
1.65 to 2.21). There is also an increased risk of carbapenem resis-
tance for OCONUS locations for nonfermenters (adjusted RR �
1.43; 95% CI � 1.30 to 1.58) (Table 5).

When species were considered individually, the relative risk of CR

was higher for A. baumannii (RR � 1.27; 95% CI � 1.12 to 1.45)
and K. pneumoniae (RR � 1.83; 95% CI � 1.10 to 3.03) isolated
OCONUS compared to CONUS (Table S1 in the supplemental
material). Upon examining anatomic sites, E. coli (RR � 2.15;
95% CI � 1.02 to 4.55), we found that A. baumannii (RR � 1.45;
95% CI � 1.19 to 1.77) and P. aeruginosa (1.61; 95% CI � 1.30 to
1.99) had a higher risk of being carbapenem resistant if they were
cultured from the blood versus other body sites (unpublished data
[available upon request from the corresponding author]).

DISCUSSION

This report is notable for its size and duration, encompassing 14.7
million cultures spanning 10 years, totaling 92 million patient-
years of surveillance. Significant differences in the relative risk of
CR between taxa, anatomic, and geographic locations persisted
after adjustment for other variables (including lactose fermenta-
tion. The most striking differences occurred between taxa. These
data strongly support anecdotal observations among medical and
laboratory DOD personnel, i.e., that an OCONUS location in-
creases the relative risk of acquiring a carbapenem-resistant iso-
late, especially for Klebsiella and Acinetobacter spp. Also, the more
serious infections (i.e., bacteremia) were more likely to be CR,
particularly for E. coli, Acinetobacter spp., and P. aeruginosa. Fi-
nally, the rate of CR in this population is increasing for Enterobac-
teriaceae (P for trend � 0.03) but decreasing for Acinetobacter spp.
and P. aeruginosa (P for trend � 0.0001).

This study has several important limitations. One limitation is
that outcomes (even in the in the same study) can vary depending
on what is measured for resistance and use, e.g., dichotomous,
categorical, or continuous data, as well as individual drugs, drug
categories, or spectrum (20). A second is that cohorts and denom-
inators are based on relatively conservative deduplication meth-

TABLE 2 Rates of carbapenem resistance among selected organisms

Category

No. of resistant strains (n) and rates/1,000 organisms

E. coli K. pneumoniae K. oxytoca P. aeruginosa A. baumannii Fermenters Nonfermenters Total

n Rate n Rate n Rate n Rate n Rate n Rate n Rate n Rate

Yr
2005 19 0.92 4 1.34 1 2.61 273 93.40 203 257.29 24 1.00 476 128.23 500 17.98
2006 26 1.18 7 2.18 0 0.00 211 78.12 224 287.55 33 1.29 435 125.00 468 16.08
2007 26 1.16 8 2.51 1 2.43 235 94.61 177 306.76 35 1.35 412 134.60 447 15.41
2008 33 1.08 7 1.72 4 7.77 241 84.21 138 316.51 44 1.25 379 114.92 423 10.99
2009 48 1.47 12 2.84 2 3.75 219 79.12 98 308.18 62 1.66 317 102.72 379 9.37
2010 57 1.69 17 3.92 1 1.88 212 79.70 118 322.40 75 1.95 330 109.05 405 9.75
2011 51 1.55 25 5.52 0 0.00 225 83.49 115 363.92 76 2.01 340 112.92 416 10.18
2012 35 1.07 16 3.65 0 0.00 216 85.01 44 187.23 51 1.35 260 93.66 311 7.69
2013 35 1.28 27 7.41 2 4.37 225 101.86 23 127.78 64 2.03 248 103.81 312 9.21
2014 35 0.97 18 4.00 1 1.71 255 94.44 21 107.69 54 1.31 276 95.34 330 7.49

Specimen
source

Other 358 1.24 135 3.56 12 2.59 2,224 85.84 1,54 269.01 505 1.53 3,278 109.90 3,783 10.48
Blood 7 2.63 6 5.37 0 0.00 88 138.58 107 391.94 13 3.29 195 214.76 208 42.79

Patient location
CONUS 324 1.25 124 3.41 11 2.44 2,154 88.01 854 261.00 459 1.53 3,008 108.41 3,467 10.59
OCONUS 41 1.27 17 6.23 1 3.41 158 76.37 307 334.06 59 1.67 465 155.62 524 13.65

Total 365 1.25 141 3.61 12 2.50 2,312 87.10 1,161 277.02 518 1.55 3,473 113.00 3,991 10.91

TABLE 3 Comparison of relative risks of carbapenem resistance in
selected taxa

Category Unadjusted RR 95% CIa

Organism
E. coli 1.0
K. pneumoniae 2.9 2.4–3.5
K. oxytoca 2.0 1.1–3.5
P. aeruginosa 69.5 62.2–77.6
A. baumannii 220.9 196.4–248.5

Fermenters vs nonfermenters
Fermenters 1.0
Nonfermenters 73.1 66.6–80.1

a 95% CI, 95% confidence interval.
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ods, and the latest (i.e., those for 2014) lower CLSI breakpoints
could not be applied across the study period. Therefore, the true
burden of CR might be higher. However, one can apply the latest
CLSI breakpoints to the MICs presented in Table 1 to see the effect
of those breakpoints on a representative sample of 9,000 MDR
isolates from the study population. The results of the population
studied may not be generalizable to civilians or other health care
networks, but the health care system is large and geographically
diverse. It also treats patients of all ages and races and not just
active-duty military. There is no guarantee that all beneficiaries
who are eligible to receive care utilized fixed facilities. However,
given the high costs of external health care, the majority of patients
likely choose to receive care from the DOD.

Determining whether antibiotic use correlates with antimicro-
bial resistance is critical for designing antibiotic stewardship pro-
grams. Our ability to examine this relationship across the DOD
health care system was limited. While patient-days of antibiotic
use data are optimal for this analysis, it is nearly impossible to get
precise patient-days or patient-years of antibiotic usage for the
entire DOD health care system because even with electronic med-
ical records, manual chart review is required to determine the
exact start and stop times for each antibiotic prescription. For this
reason we did not ask whether individual use correlates with pa-
tient-level resistance but instead examined how antibiotic use by
an entire managed care system is related or associated with inci-
dences of resistance.

We defined consumption by drug class as the number of anti-

microbial prescriptions per antimicrobial class per patient en-
counter (inpatient or outpatient), meaning that, per encounter,
each antimicrobial class was only counted once, irrespective of
multiple prescriptions of antimicrobials within the class in that
encounter. Consumption by specific drugs in a class was defined
as the number of different antimicrobials per class per patient
encounter. Using both Pearson product-moment and Spearman
rank correlation coefficient tests, we did not detect a statistically
significant positive correlation between any single drug or any
combination of drugs and CR incidence for any taxa. The stron-
gest associations (r � � 0.7) were for Acinetobacter spp. for all
single antibiotics and combinations of drugs except carbapenems.
The usage values in this study reflect population level data; there-
fore, the total numbers are very large. However, when P values are
calculated based on the number of pairwise comparisons (here, 5
for each R value), even those with stronger R values (�0.70) do
not reach significance. Nonetheless, the associations (or lack
thereof) between antibiotic use and resistance are consistent with
other studies (3, 21, 22). Furthermore, the measures used provide
a baseline estimate that can be used as a crude benchmark for
comparing and trending historical or future consumption in this
system.

Despite these limitations, the study provides a useful baseline
for future resistance trending in this population. The findings also
have potential implications for surveillance, since overseas loca-
tions are important areas to continue monitoring. The findings
have implications for stewardship, since fluoroquinolone and

TABLE 4 Adjusted and unadjusted relative risks

Category

Unadjusted Adjusteda

RR 95% CI P P for trend RR 95% CI P P for trend

Yr
2005 1.00 1.00
2006 0.89 0.79–1.01 0.08 0.99 0.87–1.12 0.87
2007 0.86 0.75–0.97 0.02 1.08 0.95–1.22 0.25
2008 0.61 0.54–0.70 �0.0001 0.92 0.81–1.05 0.21
2009 0.52 0.46–0.60 �0.0001 0.87 0.76–0.99 0.03
2010 0.54 0.48–0.62 �0.0001 0.93 0.82–1.06 0.29
2011 0.57 0.50–0.64 �0.0001 0.96 0.84–1.09 0.54
2012 0.43 0.37–0.49 �0.0001 0.77 0.67–0.89 0.0004
2013 0.51 0.44–0.59 �0.0001 0.91 0.79–1.04 0.18
2014 0.42 0.36–0.48 �0.0001 �0.0001 0.79 0.69–0.91 0.001 �0.0001

Specimen source
Other 1.00 1.00
Blood 4.08 3.55–4.69 �0.0001 1.94 1.68–2.23 �0.0001

Patient location
CONUS 1.00 1.00
OCONUS 1.29 1.18–1.41 �0.0001 1.39 1.26–1.52 �0.0001

Fermenters vs nonfermenters
Fermenters 1.00 1.00
Nonfermenters 73.07 66.63–80.13 �0.0001 70.71 64.44–77.59 �0.0001

Specimen source/location
Other/CONUS 1.00
Blood/CONUS 1.28 1.16–1.40 �0.0001
Other/OCONUS 3.88 3.34–4.52 �0.0001
Blood/OCONUS 8.42 5.84–12.14 �0.0001

a That is, adjusted for calendar year, specimen source, and patient location.
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aminoglycoside use alone and in combination with carbapenems
trended toward a strong association with carbapenem resistance
in Acinetobacter spp. and, to a lesser extent, in E. coli (data not
shown). All antibiotic classes should be used judiciously. Last, the
findings have empirical treatment implications. For example,
among DOD patients with bloodstream infections acquired out-
side the contiguous United States (especially with a preliminary
microbiology report of a non-lactose-fermenting Gram-negative
organism), empirical therapy should be selected with the elevated
risk of CR in mind. Early consultation with an infectious diseases
specialist is recommended. In conclusion, enterprise-wide sur-
veillance for such pathogens is critical and should continue.
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