
Elucidation of Mechanisms of Ceftazidime Resistance among Clinical
Isolates of Pseudomonas aeruginosa by Using Genomic Data

Veronica N. Kos,a Robert E. McLaughlin,a Humphrey A. Gardnerb

Infection Innovative Medicines Unit, AstraZeneca R&D Boston, Waltham, Massachusetts, USAa; Early Clinical Development Innovative Medicines Unit, AstraZeneca R&D
Boston, Waltham, Massachusetts, USAb

Ceftazidime is one of the few cephalosporins with activity against Pseudomonas aeruginosa. Using whole-genome comparative
analysis, we set out to determine the prevalent mechanism(s) of resistance to ceftazidime (CAZ) using a set of 181 clinical iso-
lates. These isolates represented various multilocus sequence types that consisted of both ceftazidime-susceptible and -resistant
populations. A presumptive resistance mechanism against ceftazidime was identified in 88% of the nonsusceptible isolates using
this approach.

Pseudomonas aeruginosa is an opportunistic pathogen associ-
ated with numerous nosocomial infections, where �-lactam

antibiotics remain key in treatment (1, 2). One of the major anti-
microbials used to fight P. aeruginosa infections is ceftazidime
(CAZ), a well-known cephalosporin that acts primarily as a pen-
icillin-binding protein 3 (PBP3) inhibitor (3, 4).

A significant proportion of ceftazidime-resistant isolates arise
through the horizontal acquisition of �-lactamases or altered ex-
pression of the chromosomal drug-inducible wide-spectrum class
C �-lactamase AmpC (reviewed in reference 5). The overproduc-
tion of AmpC can result from mutations affecting the peptidogly-
can (PG) recycling process, where accumulation of cell wall inter-
mediates ultimately induces ampC overexpression (5).

We focused our study on a panel of 181 clinical P. aeruginosa
isolates, where comparative analysis between multiple isolates be-
longing to the same multilocus sequence types (MLSTs) allowed
for identification of chromosomal gene variants unique to the
ceftazidime-resistant population (6).

The initial MIC to ceftazidime was determined using frozen
plates (Thermo Scientific) following the Clinical and Laboratory
Standards Institute guidelines (7, 8). Of the 181 isolates in the
analysis set, 99 (55%) were resistant to ceftazidime (MIC, �16
�g/ml), and 82 were susceptible (MIC, �8 �g/ml) (Table 1; see
Table S1 in the supplemental material).

Genomic analysis (see Table S1 in the supplemental material)
was performed using CLC Genomic Workbench 7.0.4 (CLCBio).
Unique sequence variants exclusive to the resistant population of
each MLST group were flagged for further analysis as outlined in
the summary column of Table S1. To account for resistance in the
99 ceftazidime-resistant isolates in a parsimonious manner, we
followed a triage process—accounting first for resistance-induc-
ing �-lactamases, second for mechanisms allowing for derepres-
sion of ampC, and third for other candidate causes of resistance.

Forty-six isolates had �-lactamases that have been reported to
hydrolyze ceftazidime (Table 1). Analysis of the ampC regulon
and additional cephalosporin targets was also completed for these
isolates (see Table S1 in the supplemental material); however, re-
sistance was attributed primarily to the presence of the �-lactama-
ses, as clinically, detection of such an element would rule out treat-
ment with ceftazidime. It was apparent that certain MLST lineages
were enriched in �-lactamases, particularly sequence type 111
(ST111) and ST233, which were the predominant carriers of

blaVIM-2. This is consistent with previous reports that these lin-
eages represent global disseminators of the class B metallo-�-lac-
tamases (9–12).

Comparative analysis of the ampC regulons from the remain-
ing 53 ceftazidime-resistant isolates identified mutations in ampR,
ampD, and dacB (Table 1; see Table S1 in the supplemental mate-
rial). In the global transcriptional regulator ampR, which directly
controls expression of the intrinsic �-lactamase ampC, unique
amino acid changes were identified in five isolates of the resistant
population. Of these isolates, three (AZPAE14890, AZPAE14909,
and AZPAE15058) had a mutation that resulted in the D135N
amino acid change. This mutation has previously been reported to
affect the regulatory function of ampR, leading to derepression of
ampC (13). Two of these isolates were obtained in France and were
of different STs (ST175 and ST235) and 1 was from Spain (ST175),
suggesting this mutation can be independently acquired by an
isolate rather than being unique to a single lineage. Two other
isolates (both ST319) had a G154R variation in AmpR. This
change occurs within a region that has been purported to interact
with the permease, AmpG (14). Reverse transcription-PCR (RT-
PCR) analysis revealed a �20-fold increase in ampC expression in
the presence of ceftazidime from these two isolates. As no other
changes in the ampC regulon were apparent in these isolates, the
increased expression level was attributed to the change in AmpR.

The most common sequence variations identified within the
ampC regulon were located in the 1,6-anhydro-N-acetylmu-
ramyl-[scapi]l-alanine amidase, AmpD, with 32 isolates having
unique sequence changes. Mutations of ampD were easily identi-
fied in 14/32 isolates as they introduced early stop codons, frame-
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shifts, or in-frame deletions known to result in inactivation of
ampD. The remaining isolates had unique amino acid variations
within AmpD. These differences were aligned with the sequence of
AmpD from Citrobacter freundii, for which a structure (PDB ac-
cession no. 1J3G) has been determined (15), to deduce changes
that may affect the activity of this enzyme (Fig. 1). Of the 18 P.
aeruginosa isolates with unique variations, 6 were deduced to af-
fect the activity of this enzyme in C. freundii (15). Another 6/18
isolates had changes that have been experimentally noted to affect
the activity of AmpD in multiple Enterobacteriaceae (16). Addi-

tional unique sequence variants were identified among the re-
maining 6 isolates (Fig. 1), and RT-PCR was used to determine the
impact of these variations on the level of ampC expression (Table
2). Briefly, isolates were grown to the mid-log phase in Mueller-
Hinton broth II (MHB II) at 37°C with shaking (200 rpm). The
culture was split into two aliquots, where one was exposed to 1/2
the respective MIC of ceftazidime for 15 min and the other was
treated as an unexposed control. Samples were treated with
RNAprotect cell reagent (Qiagen), and RNA was prepared using a
Maxwell 16 LEV simplyRNA purification kit (Promega). A total of

- - M L L D E GWL A EA RRV PS PH YD C RPDD EN P SL LV V HN I S L P PG E FGG PW I D A L FT GT I D P NA H P YFAG I A H L R VS
MH FD SV T GWV RGV RH C PS PN FN L RPQGD A V SL LV I HN I S L P PGQ FGT GK V Q A F FQN R L DP NE HP YF E E I R HL T VS

A HC L I R RD GE I V QY VP FD K R AWH AG VS SYQ GR ER CN D F S I G I E L EG TD T L A YT DA QYQQ L A A V TN A L I T R Y PA I A
A H F L I E RD GA I T QF VSCHD R AWH AG VSC FD GR EA CN D F SL G I E L EG TD T E P YT DA QYT A L AG L TR L LRA A F PG I T

- NNMT GH CN I A PE R K TD PGP S FDWA R F RA L V T P SSH KEMT
P ER I Q GH CD I A PE R K TD PGE A FDWS RY RAG L TD S- - K E E T

C. freundii
P. aeruginosa

C. freundii
P. aeruginosa

C. freundii
P. aeruginosa

FIG 1 Changes identified within AmpD responsible for derepression of ampC. Alignment of the protein sequence of Citrobacter freundii and P. aeruginosa PAO1
for comparative purposes. Red boxes above the sequence of C. freundii denote residues identified from structural studies and mutational analysis as being
important in the activity and functionality of AmpD (15, 31). Blue dots below indicate residues that had changes exclusive to the ceftazidime-resistant population
and which previously have been shown to be important in increasing ampC expression in other Enterobacteriaceae (16). Yellow dots indicate newly identified
changes that were exclusive to the ceftazidime-resistant P. aeruginosa population.

TABLE 2 Summary of AmpD variants identified among the clinical population of P. aeruginosaa

Variant type Isolate MLST
MIC of CAZ
(�g/ml) Allelic variationb

��CT:

Relative to
PAO1c

Induced/uninduced
ratiod

Control PAO1 1 1.00 1.91

With structurally important
residue identified in C.
freundii crystal structure

AZPAE14403 175 16 P41S (39) 0.56 3.69
AZPAE14892 313 64 P41S (39) 3.61 7.52
AZPAE14860 308 32 A96T (94) 54.16 1.13
AZPAE15054 298 16 A96T (94) 49.38 6.06
AZPAE14886 111 16 R164S (161) 0.05 4.18
AZPAE14983 111 16 R164S (161) 0.18 5.94

With structurally important
residue identified in
Enterobacteriaceae

AZPAE14394 175 64 R82C (80) 3.96 70.67
AZPAE15006 235 16 G84D (82) 3.50 6.82
AZPAE14842 235 16 G84D (82) 24.18 2.01
AZPAE14422 235 32 G84D (82) 5.24 2.63
AZPAE14979 235 32 G84D (82) 28.56 4.82
AZPAE14843 235 32 G84D (82) 13.99 6.35

With unique changes
identified among isolates

AZPAE14722 175 32 H77Y (75) 2.33 16.00
AZPAE14730 235 64 F89S (87) 3.96 12.45
AZPAE15015 235 32 C92Y (90) 6.60 2.00
AZPAE14987 298 32 G121R (119) 12.26 1.47
AZPAE15035 560 16 T139A (137) 1.26 2.29
AZPAE14710 235 32 P162L (159) 0.69 2.28

a Presented are mutations that have been shown to be important based upon the C. freundii structure, those identified to be important from the study of other Enterobacteriaceae,
and those changes that were unique and identified among isolates in this study. RT-PCR values for ampC are provided for these isolates to confirm overexpression of the intrinsic
�-lactamase.
b The positions listed are numbered according to the sequence of the AmpD from P. aeruginosa PAO1. Positions provided in parentheses are for the corresponding position in
AmpD of C. freundii.
c Results are representative of 3 independent experiments. The ��CT ratio is calculated relative to the RT-PCR result for the housekeeping gene rpsL. The values listed represent the
ratio of the ��CT of the isolate in MHB II relative to that of strain PAO1.
d The values listed represent the ratio of the ��CT of the isolate in MHB II in the presence of 1/2 the MIC of ceftazidime for 15 min in the log phase compared to that in MHB II at
the same point in time.
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5 ng RNA was used in an RT-PCR assay using a QuantiTect SYBR
green RT-PCR kit (Qiagen) with a Bio-Rad CFX96 instrument.
The level of expression of rpsL was used for normalization, and the
relative quantification of ampC expression was performed using a
comparative threshold cycle (CT) method. The oligonucleotides
used to quantify transcript expression for ampC and rpsL were
obtained from previous publications (17, 18).

Isolates were examined for constitutive expression of ampC in
MHB II and derepressed ampC expression in the presence of sub-
MICs of ceftazidime (Table 2). Elevated constitutive expression
(�4-fold) of ampC relative to the sensitive control strain PAO1
was evident in 8/18 isolates, and elevated induced expression was
present in the remainder.

Additional analysis of the data set identified two isolates of the
ST111 lineage (AZPAE14727 and AZPAE14728) with the same
unique variation in the dacB gene. DacB is a nonessential low-
molecular-weight PBP that is involved in maintaining PG compo-
sition and mediates �-lactam resistance through increased expres-
sion of AmpC and the two-component system, BrlAB, also known
to mediate resistance (19, 20). RT-PCR of ampC expression from
these isolates also indicated derepression of ampC (ampC/rpsL
ratio of �10-fold; ampC expression relative to PAO1, 4.82-fold).

No unique changes to the ampR/ampC promoter region were
identified in the resistant population, and examination of addi-
tional genes of the amp regulon did not identify variants unique to
the ceftazidime-resistant population (see Table S1 in the supple-
mental material). It is interesting to note that the comparative
analysis of alleles by MLST grouping showed almost identical se-
quence profiles, with the exception of genes encoding the lytic
transglycosylases, which were quite diverse. Further studies on the
structure of these enzymes and the effect of changes in the mature

protein are needed to understand the genetic diversity and poten-
tial impact of these changes in the lytic transglycosylases.

Mutations within or near the active sites of the essential PBPs
(PBP3, PBP1a, and PBP1b) may mediate decreased susceptibil-
ity to ceftazidime in P. aeruginosa (21). Unique changes to the
PBP3 sequence were identified in two of the clinical isolates
(AZPAE13850 and AZPAE12156). Both had the same PBP3 mu-
tation resulting in the change of R504C. This residue is part of an
important hinge region of the PBP (22) and may cause interfer-
ence with ceftazidime binding. These isolates were of different STs
from India and the United States, strongly indicating independent
acquisition of this amino acid variation. Examination of PBP1a
and PBP1b, which can both be inhibited by ceftazidime at high
concentrations (4), did not identify any sequence variations
unique to the resistant population.

Overexpression of efflux components has also been impli-
cated in reduced susceptibility to ceftazidime (23, 24). Al-
though 3 (AZPAE12150, AZPAE13876, and AZAPE14872) of
the remaining 12 ceftazidime-resistant isolates did have muta-
tions in efflux regulatory components (nalD and mexZ), exami-
nation of the whole population showed that they were not exclu-
sive to the ceftazidime-resistant population. However, it is likely
that these mutations contribute to the overall resistance or re-
duced susceptibility of the organisms.

Additional alleles associated with resistance, including genes
identified in studies with transposon libraries (25), mutator-asso-
ciated genes (26), and quorum sensing genes (26, 27), were also
evaluated (see Table S2 in the supplemental material). Analysis of
these alleles did not reveal any variants that were unique to the
resistant isolates (data not shown).

The 12 isolates and all other strains belonging to the same STs

ST233

ST111

ST175

ST235

Susceptibility (Inner Circle)

Susceptible

Resistant

Genomic Markers Contributing to 
Resistant Phenotype 

Acquired β-lactamase

PBP3

AmpD

DacB

AmpR

Unidentified

FIG 2 Summary of resistance mechanisms among ceftazidime-resistant clinical isolates of P. aeruginosa by MLST. Global lineages are highlighted on the MLST
tree in pink and labeled accordingly. The 12 isolates for which a genomic marker for resistance could not be determined are highlighted on the outer circle with
black boxes.
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were mapped to the reference strain P. aeruginosa PAO1 in an
attempt to identify common polymorphisms unique to this pop-
ulation; however, no single target gene was identified from this
analysis. In part, this may be due to the small number of isolates
spread across a diverse genetic background. Additionally, this is
not unexpected as resistance can occur singularly or in a multifac-
eted manner through direct target changes, expression-level
changes of numerous factors, as well as changes to membrane
permeability, to name but a few. Indeed, 6 of these 12 isolates had
a MIC to ceftazidime (16 �g/ml) 1 doubling dilution higher than
the nonsusceptible breakpoint. This level of elevation could easily
be due to the combinatorial changes in several factors, as opposed
to a single predominant factor.

It may also be prudent to consider the pathogenic/disease as-
sociation of the isolates. Two of the isolates for which a mecha-
nism of resistance was not clearly defined were highly resistant to
ceftazidime (MIC, 128 �g/ml) and were collected from cystic fi-
brosis (CF) patients. Isolates associated with CF are often multi-
drug resistant due to phenotypic traits that change and develop
with adaptation to the lung environment (28). For example, the
overproduction of alginate may affect the susceptibility of an iso-
late as it provides another barrier to antibiotic entry (29). A mu-
tation in mucA, an anti-sigma factor that controls alginate pro-
duction (30), was identified in isolate AZPAE12416 and may be
one of many contributory factors to resistance of this isolate.

Using a comparative genomic approach with alleles previously
associated with ceftazidime resistance in P. aeruginosa, we were
able to identify the probable factor(s) mediating resistance in 88%
of the 99 resistant isolates in our data set (Fig. 2). This type of
analysis provides a real depiction of the probable mutations that
are mediating resistance among a relevant population and is in-
valuable in aiding our understanding of resistance mechanisms
and designing new antimicrobials that evade these pathways.
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