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Multidrug-resistant (MDR) Enterobacteriaceae infections are increasing in U.S. children; however, there is a paucity of multicen-
tered analyses of antibiotic resistance genes responsible for MDR phenotypes among pediatric Enterobacteriaceae isolates. In this
study, 225 isolates phenotypically identified as extended-spectrum �-lactamase (ESBL) or carbapenemase producers, recovered from
children ages 0 to 18 years hospitalized between January 2011 and April 2015 at three Chicago area hospitals, were analyzed. We used
DNA microarray platforms to detect ESBL, plasmid-mediated AmpC (pAmpC), and carbapenemase type �-lactamase (bla) genes. Re-
petitive-sequence-based PCR and multilocus sequence typing (MLST) were performed to assess isolate similarity. Plasmid replicon
typing was conducted to classify plasmids. The median patient age was 4.2 years, 56% were female, and 44% presented in the outpatient
setting. The majority (60.9%) of isolates were Escherichia coli and from urinary sources (69.8%). Of 225 isolates exhibiting ESBL- or
carbapenemase-producing phenotypes, 90.7% contained a bla gene. The most common genotype was the blaCTX-M-1 group (49.8%);
1.8% were carbapenem-resistant Enterobacteriaceae (three blaKPC and one blaIMP). Overall, pAmpC (blaACT/MIR and blaCMY) were
present in 14.2%. The predominant E. coli phylogenetic group was the virulent B2 group (67.6%) associated with ST43/ST131
(Pasteur/Achtman MLST scheme) containing the blaCTX-M-1 group (84%), and plasmid replicon types FIA, FII, and FIB. K. pneu-
moniae harboring blaKPC were non-ST258 with replicon types I1 and A/C. Enterobacter spp. carrying blaACT/MIR contained plas-
mid replicon FIIA. We found that �-lactam resistance in children is diverse and that certain resistance mechanisms differ from
known circulating genotypes in adults in an endemic area. The potential impact of complex molecular types and the silent dis-
semination of MDR Enterobacteriaceae in a vulnerable population needs to be studied further.

The dissemination of antibiotic-resistant Enterobacteriaceae
during the last 2 decades has been rapid, resulting in a pan-

demic of infections associated with significant morbidity and
mortality (1–3). The major driving force of antibiotic resistance
within this family of Gram-negative bacteria is the �-lactamases
(2, 4). Currently, more than 1,600 known �-lactamases are cata-
loged; a list that continues to expand (5).

Genes encoding �-lactamases (bla) may be chromosomal in
origin; however, much of the global spread of �-lactam resistance
is facilitated by mobile genetic elements (such as plasmids and
transposons) harboring bla genes encoding extended-spectrum
�-lactamases (ESBL), AmpC cephalosporinases (AmpC), and car-
bapenemases (e.g., Klebsiella pneumoniae carbapenemase [KPC]
and New Delhi MBL [NDM]) conferring carbapenem resistance
in Enterobacteriaceae (CRE) (2, 4, 6, 7). Many of these �-lacta-
mase-producing organisms carry additional plasmid-borne genes
against other classes of antibiotics rendering them multidrug re-
sistant (MDR) (4, 7), i.e., resistant to three or more classes of
antibiotics (8), leaving few, if any, antibiotics to treat these infec-
tions (9).

Recent studies describe the prevalence of MDR Enterobacteri-
aceae as increasing in the United States, including in children (10–
12). However, few studies report the genetic determinants associ-
ated with MDR Enterobacteriaceae in pediatric populations, and
there is a paucity of multicenter studies defining the molecular
epidemiology of these organisms. Knowledge of the molecular
epidemiology of MDR Enterobacteriaceae can have a profound

effect on clinical practice, infection control measures, and public
health policies for children. In this study, we sought to determine
whether children cared for at three distinct institutions located in
the same geographic area would be subject to similar antibiotic
resistance threats. Understanding the composition and distribu-
tion of antibiotic resistance genotypes is a critical step in defining
the impact of MDR Enterobacteriaceae infections in children and
future treatment decisions.

MATERIALS AND METHODS
Study settings and population. Hospital A is a tertiary care medical center
that includes a children’s hospital composed of 115 pediatric beds (level
III neonatal, cardiac surgery, and pediatric intensive-care units and gen-
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eral pediatric and psychiatric wards) and a mother-newborn infant unit.
Hospital B contains a 125-bed children’s hospital (general pediatrics and
newborn infant, neonatal, and pediatric intensive care units). Hospital C
is a 288-bed, academic free-standing children’s hospital providing com-
plex quaternary pediatric care, including solid organ and stem cell trans-
plantation services. All of the hospitals are located in the Chicago area.

This study included patients 0 to 18.99 years of age found to have a
positive culture for an Enterobacteriaceae with an ESBL and/or carbap-
enem-resistant phenotype due to a carbapenemase. Isolates were collected
between January 2011 and April 2015, and only one isolate per patient per
admission was included. The study was approved by the institutional re-
view boards of the three participating institutions. The institutions joined
the study at various time points during the study period.

Bacterial isolates and antibiotic susceptibility testing. The clinical
microbiology laboratories of hospitals A, B, and C performed phenotypic
identification and susceptibility testing of ESBL- and carbapenemase-pro-
ducing isolates at the respective institutions using the MicroScan Walk-
Away system (Siemens Healthcare Diagnostics, Tarrytown, NY). Based on
the guidelines of the Clinical and Laboratory Standards Institute (CLSI),
screening �-lactam antibiotics for ESBL-producing bacteria included any
one of the following: cefpodoxime, cefotaxime, ceftazidime, ceftriaxone,
or aztreonam (13). ESBL production was confirmed by disk diffusion as
necessary (BBL; Becton, Dickinson and Company, Sparks, MD) or on the
Microscan instrument by comparing MICs of cefotaxime and ceftazidime
with or without the addition of clavulanic acid. A 4-fold reduction in MIC
or an increase in zone diameter of �5 mm associated with cefotaxime or
ceftazidime in combination with clavulanic acid compared to the MIC of
the antibiotic when tested alone confirmed an ESBL phenotype (13).

Isolates were considered to have a carbapenemase phenotype by Cen-
ters for Disease Control and Prevention criteria, if they were resistant to all
expanded-spectrum cephalosporins (ceftriaxone, cefotaxime, or ceftazi-
dime) and nonsusceptible to at least one carbapenem (ertapenem, mero-
penem, imipenem, or doripenem) (14). The presence of carbapenemases
was phenotypically assessed using the Modified Hodge Test and/or the
MBL Etest (bioMérieux, Athens, GA), as appropriate.

Analysis of bla genes. Genomic DNA was purified from bacterial iso-
lates by using a DNeasy blood and tissue kit (Qiagen, Inc., Valencia, CA).
A DNA microarray-based assay was performed to evaluate for the pres-
ence of bla genes in isolates (Check-MDR CT101; Check-Points, Wage-
ningen, The Netherlands). The assay detects blaCTX-M-1 group, blaCTX-M-2

group, blaCTX-M-8 plus -25 group, blaCTX-M-9 group, and blaTEM-WT (wild
type) and blaTEM-type ESBL genes, blaSHV-WT (wild type) and blaSHV-type

ESBL genes, plasmid-based AmpC cephalosporinases (pAmpC; blaACC,
blaACT/MIR, blaCMY II, blaDHA, and blaFOX), and carbapenemases (blaKPC

and blaNDM) (15). A more comprehensive DNA microarray (Check-MDR
CT103XL; Check-Points) was performed on isolates identified as bla neg-
ative by the Check-MDR CT101 kit. The Check-MDR CT103XL kit in-
cludes additional ESBL (blaVEB, blaPER, blaBEL, and blaGES) and carbapen-
emase (blaVIM, blaIMP, blaGES, blaGIM, blaSPM, blaOXA-23, blaOXA-24,
blaOXA-48, and blaOXA-58) targets (16). Experiments were performed ac-
cording to the manufacturer’s protocol.

Rep-PCR. To assess for clonal relatedness among strains of E. coli,
Klebsiella spp., and Enterobacter spp., repetitive-sequenced-based PCR
(rep-PCR) was performed using DiversiLab (bioMérieux, Athens, GA) E.
coli, Klebsiella, and Enterobacter fingerprinting kits. Genomic DNA was
extracted using an UltraClean microbial DNA isolation kit (MO BIO Lab-
oratories, Carlsbad, CA), followed by PCR amplification and separation
of rep-PCR amplicons by electrophoresis on microfluidic chips using the
DiversiLab manufacturer’s protocol for detection (Agilent Bioanalyzer
2100; Agilent Technologies, Inc., Santa Clara, CA) and analysis (Diversi-
Lab online software). Isolates in which band patterns demonstrated
�95% similarity (Pearson’s correlation) were considered to represent the
same strain type (17). Among isolates analyzed by rep-PCR, PCR ampli-
fication and sequencing were also performed to further characterize bla
genes as revealed by microarray testing.

MLST and hsp60 sequencing. Gene amplification and sequencing of
seven housekeeping genes (rpoB, gapA, mdh, pgi, phoE, tonB, and infB) for
Klebsiella spp. and eight housekeeping genes (dinB, icdA, pabB, polB, putP,
trpA, trpB, and uidA) for E. coli were performed as previously described
(18, 19), and allele and sequence types (STs) were determined by using the
multilocus sequence typing (MLST) Pasteur website (http://www.pasteur
.fr/recherche/genopole/PF8/mlst/). We used hsp60 sequencing, which tar-
gets a single housekeeping gene, to further determine relatedness among
Enterobacter spp. (20).

Phylogenetic analysis and plasmid replicon typing. A previously de-
scribed multiplex PCR-based method was used to assign E. coli to one of
the four major phylogenetic groups (A, B1, B2, and D) (21). From rep-
PCR strain types, plasmid replicon typing was performed on representa-
tive isolates according to the scheme described by Carattoli et al. (22).

RESULTS
Characteristics of pediatric patients in the study population.
Enterobacteriaceae strains phenotypically identified as ESBL- or
carbapenemase-producing bacteria were recovered from 225 chil-
dren during the study period. The median age was 4.2 years
(range, 0.008 to 18.9 years), and 27% were younger than 1 year of
age (Table 1). In this study, the majority (56%) were female, 36%
were Hispanic, and 44% of the children presented in the outpa-
tient setting.

Characteristics of bacterial isolates in the study population.
Of the 225 isolates, the majority (60.9%) were E. coli, followed by
16.4% Klebsiella spp., 13.3% Enterobacter spp., 4.9% Proteus spp.,
3.6% Serratia spp., and 0.9% other (including Morganella and
Citrobacter spp.). The most common specimen source was urine
(69.8%); 4.9% were from blood, 16.9% were from respiratory
sources (sputum, tracheal aspirate and bronchoalveolar lavage),
2.7% were from wounds or abscesses, 2.2% were from peritoneal
or abdominal sources, 0.4% were from the central nervous system,
and 3.1% were from other sources.

Antimicrobial susceptibility testing. The antibiotic suscepti-
bility testing of the 222 available isolates are summarized in Table
2. Overall, carbapenems and amikacin retained the greatest activ-
ity, with 98.2% of isolates susceptible to meropenem or imipenem
and 97.1% susceptible to amikacin; 82.2% of urinary isolates were

TABLE 1 Demographic and healthcare setting of Chicago children
infected with MDR Enterobacteriaceaea

Variable No. (%) of children (n � 225)

Median age in yrs (range) 4.2 (0.008–18.9)
Male 98 (44)

Race
Hispanic 80 (36)
White 71 (32)
Black 34 (15)

Age �1 years 60 (27)

Healthcare setting
PICU 59 (26)
NICU 15 (7)
Pediatric ward 52 (23)
Outpatient 99 (44)

a MDR, multidrug resistant, i.e., resistant to three or more antibiotic classes.
“Outpatient” includes ambulatory healthcare and the emergency department. PICU,
pediatric intensive care unit; NICU, neonatal intensive care unit. All values represent
“number (%)” unless indicated otherwise in column 1.
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susceptible to nitrofurantoin. Isolates had relatively high rates of
resistance (�40 to 60%) to gentamicin, tobramycin, trim-
ethoprim-sulfamethoxazole, tetracycline, and fluoroquinolones
(ciprofloxacin and levofloxacin, see Table 2).

Composition of bla genes in Enterobacteriaceae isolates. Ta-
ble 3 summarizes the bla genes detected by DNA microarray test-
ing. Molecular characterization revealed that 90.7% of isolates
contained an ESBL, AmpC, or carbapenemase gene, and in some
isolates more than one bla was found (238 bla genes in 225 iso-
lates). CTX-M-type ESBLs were the most common bla genes de-
tected; they were found in 152 of 225 Enterobacteriaceae isolates
(67.6%). Approximately half (49.8%) belonged to the blaCTX-M-1

group, which contains blaCTX-M-15, the gene most frequently asso-
ciated with pandemic CTX-M E. coli strains (1, 23). Additionally,
blaTEM- and blaSHV-type ESBL genes were found in 5.3 and 16.4% of

isolates, respectively, and only 0.4% isolates contained blaPER-type

ESBL genes.
blaAmpC cephalosporinase genes comprised the resistance de-

terminants detected in 32/225 (14.2%) of isolates, of which 7
(3.1%) were blaCMY-type genes and 25 (11.1%) were blaACT/MIR-type

AmpC genes. blaCMY genes were predominantly identified in E.
coli (6 of 7), whereas the majority of 25 ACT/MIR genes were
recovered from Enterobacter spp. (84%), with 16% in E. coli iso-
lates. blaACT/MIR in Enterobacter spp. were often associated with
blaSHV-type ESBL genes, 12/21 (57%), and coexistence of ESBL and
AmpC genes were found in 21 of 32 (65.6%) Enterobacteriaceae
isolates. blaAmpC genes were not detected in Proteus or Serratia
spp.; however, a blaCMY-like gene was found in one Citrobacter
freundii isolate, which represents an intrinsic chromosomal
blaAmpC gene specific to Citrobacter spp., based on DNA sequence

TABLE 2 Anatomical sites of isolation and antibiotic susceptibility patterns of ESBL- and carbapenemase-producing Enterobacteriaceae isolates
from children

Anatomical
sitea

No. of
isolatesb

% susceptiblec

CTX CAZ FEP P/T CPMd GNT TOB AMK FQ TMP-SMX TET NIT

All 222 2.5 3.7 4.5 79.1 98.2 56.2 45.0 97.1 50.8 60.4 42.6 81.8
Urine 155 2.8 4.5 3.8 86.7 98.1 54.3 44.8 97.4 43.1 37.5 43.5 82.2
Respiratory 38 2.6 2.6 2.8 64.3 97.3 44.7 45.9 97.4 73.7 56.8 60.0 0.0
Blood 10 0.0 0.0 0.0 33.3 100 55.6 55.6 100 55.6 33.3 0.0 0.0
Wound 7 0.0 0.0 28.6 100 100 57.1 28.6 100 28.6 57.1 0.0 ND
Other 7 0.0 0.0 0.0 69.0 100 71.4 57.1 100 57.1 28.6 50.0 ND
Abd/Perit 4 0.0 0.0 0.0 100 50.0 0.0 50.0 100 100 25.0 ND ND
CNS 1 0.0 0.0 0.0 ND 100 100 100 100 0.0 100 ND ND
a “Respiratory” includes bronchoalveolar lavage fluid, trachea, and sputum cultures. “Wound” includes abscess and wound cultures. “Abd/Perit” includes intra-abdominal and
peritoneal fluid cultures. CNS, central nervous system cultures.
b That is, the number of isolates with antibiotic susceptibility data available.
c CTX, cefotaxime; CAZ, ceftazidime; FEP, cefepime; P/T, piperacillin/tazobactam; CPM, carbapenems (includes imipenem, meropenem, and ertapenem); GNT, gentamicin; TOB,
tobramycin; AMK, amikacin; FQ, fluoroquinolones (includes ciprofloxacin and levofloxacin); TMP-SMX, trimethoprim-sulfamethoxazole; TET, tetracycline; NIT, nitrofurantoin.
ND, no data.
d Carbapenem resistance was due exclusively to the CPE isolates.

TABLE 3 bla genes detected in the collection of Enterobacteriaceae isolates from Chicago children

bla gene (no.) in Enterobacteriaceae
samples (n � 225)a

% detection of bla genes in isolates (no. of isolates) by organismb

All (225) E. coli (137) Klebsiella spp. (37) Enterobacter spp. (30) Proteus spp. (11) Serratia spp. (8) Other (2)

Genes encoding ESBL (202)
CTX-M-1 group (112) 49.8 81.3 10.7 3.6 4.5 0.0 0.0
CTX-M-9 group (36) 16.0 83.3 11.1 2.8 2.8 0.0 0.0
CTX-M-2 group (4) 1.8 25.0 25.0 0.0 50.0 0.0 0.0
TEM (12) 5.3 66.7 8.3 8.3 16.7 0.0 0.0
SHV (37) 16.4 16.2 29.7 40.5 0.0 13.5 0.0
PER (1) 0.4 100 0.0 0.0 0.0 0.0 0.0
VEB (0) 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Genes encoding AmpC (32)
ACT/MIR (25) 11.1 16.0 0.0 84.0 0.0 0.0 0.0
CMY (7) 3.1 85.7 0.0 0.0 0.0 0.0 14.3c

Genes encoding carbapenemases (4)
KPC (3) 1.3 25.0 75.0 0.0 0.0 0.0 0.0
IMP (1) 0.4 0.0 100 0.0 0.0 0.0 0.0

Total bla genes (238)
a bla, �-lactamase gene, ESBL, extended-spectrum �-lactamases; AmpC, AmpC cephalosporinases; KPC, Klebsiella pneumoniae carbapenemase; IMP, active on imipenem.
b Isolates may contain more than one bla gene; 9.3% (n � 21) of the isolates were bla gene negative. Wild-type, narrow-spectrum bla genes were not included in the totals.
c This value represents an intrinsic chromosomal blaAmpC gene specific to Citrobacter spp., which was picked up by the DNA microarray (Check-Points) as a blaCMY-II-like gene.
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analysis. Carbapenemases were detected in four isolates (1.8%),
three of which were identified as blaKPC and one K. pneumoniae
contained a blaIMP metallo-�-lactamase gene. The blaKPC genes
were carried by two K. pneumoniae and one E. coli strains, and all
were identified by DNA sequencing to be blaKPC-2. Other ESBL,
pAmpC, or carbapenemase bla genes were not detected in carbap-
enemase-containing isolates.

Rep-PCR, MLST, bla and hsp60 gene sequencing, and plas-
mid replicon typing. Rep-PCR was performed on all E. coli, Kleb-
siella spp. and Enterobacter isolates. We identified 40 different
strain types of E. coli by rep-PCR. A dendrogram of the most
highly represented rep-PCR profiles is shown in Fig. 1, represent-
ing 32.5% of the isolates. These corresponded to phylogroup B2. A
subset of isolates with rep-PCR profiles related to one or more
other strains were further studied by MLST, bla gene sequencing
and replicon typing, and the majority were found to correspond to
ST43 (ST131 in Achtman’s MLST scheme), carry blaCTX-M-15, and

contain plasmids of incompatibility types of replicon FIA, FII, and
FIB. The E. coli strain harboring a blaKPC-2 gene belonged to phy-
logroup D, was identified as a novel sequence type (ST701), and
had a distinct fingerprint pattern.

With respect to K. pneumoniae isolates, the rep-PCR profiles
were mainly unrelated (see Fig. S1 in the supplemental material).
Plasmid replicon typing revealed that the blaKPC-2-producing K.
pneumoniae isolates contained plasmid replicon types I1 and A/C,
and MLST showed that neither belonged to the ST258 lineage
(ST22 and ST29). The K. pneumoniae containing the blaIMP gene
was identified in ST253. Genetic relatedness in Enterobacter
strains by rep-PCR (Fig. 2) correlated well with the hsp60 sequenc-
ing results and have been presented previously (24).

Phylogenetic grouping of E. coli. Phylogenetic groups of E.
coli include four main groups (A, B1, B2, and D), and groups B2
and D are most often associated with severe clinical disease attrib-
uted to increased virulence factors (21). Of 136 E. coli isolates

FIG 1 Genetic relatedness in representative ESBL E. coli isolates from Chicago children. Isolates in which band patterns demonstrated �95% similarity
(Pearson’s correlation) were considered to be clonal and of the same strain type. Phylogroup, phylogenetic group; ESBL, extended-spectrum �-lactamase; MLST,
multilocus sequence type, Pasteur scheme. ST43 is equivalent to ST131 on the Achtman’s scheme. MLST was performed on select isolates from rep-PCR strain
types. The CTX-M-1 group of note contains CTX-M-15, associated with the pandemic CTX-M type ESBL in E. coli. The CTX-M-9 group of note contains
CTX-M-9 and CTX-M-14, the second most common circulating CTX-M type ESBL. LC 157 is a novel ST type.
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tested, 119 (87.5%) were phylogenetic group B2 or D, with 67.6%
and 19.1% belonging to B2 and D, respectively. One result was
indeterminate (B2/D). Of all the E. coli strains, 78/136 (57.4%)
were associated with blaCTX-M-1 group and 19.1% were associated
with blaCTX-M-9 group. Most (65/78, 83.3%) belonged to the B2-E.
coli blaCTX-M-1 group. Only 14 (10.3%) and 3 (2.2%) of the strains
were of phylogroups A and B1, respectively.

DISCUSSION

In this unique survey, we linked resistance phenotypes with the
genetic determinants of antibiotic resistance in Enterobacteriaceae
isolates from children. The children from which these isolates
were recovered were from three different centers located in the

same city. As a result, we have an important “snapshot” on the
molecular epidemiology of this emerging problem. A recent na-
tional study of trends of ESBL-producing Enterobacteriaceae in
children using antimicrobial susceptibility data from 300 U.S. lab-
oratories reported that the prevalence of the ESBL phenotype in
Enterobacteriaceae isolated from children more than tripled dur-
ing the study period, from 0.28% in 1999 to 0.92% in 2011, with
the largest increases occurring in young children ages 1 to 5 years
and in the intensive care unit setting (although the increase was
seen in all age groups and health care settings) (11). This is con-
sistent with our patient demographics. We also found that the
most common circulating strain in children was phylogenetic
group B2, multilocus sequence type 43 (ST43) E. coli harboring

FIG 2 Genetic relatedness of �-lactamase-carrying Enterobacter isolates from Chicago children. A dash indicates no �-lactamase gene was detected. Isolates in
which band patterns demonstrated �95% similarity (Pearson’s correlation) were considered clonal and of the same strain type. ESBL, extended-spectrum
�-lactamase. AmpC, AmpC cephalosporinase; MLST, multilocus sequence type, Pasteur scheme. The term “ACT/MIR” means the gene may be an ACT- or
MIR-type AmpC cephalosporinase gene but was not further differentiated by DNA microarray (Check-Points).
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blaCTX-M-1 group ESBLs, which contain blaCTX-M-15, the predom-
inant ESBL type disseminating globally. The pandemic, MDR,
CTX-M-producing E. coli strains are of a large clonal lineage pos-
sessing the FimH30 allele (of the type 1 fimbriae fimH adhesin
gene) and belong to the virulent phylogenetic group B2 (associ-
ated with extraintestinal pathogenic E. coli) and ST43 of the Pas-
teur MLST scheme, which is specific to the H30 subclone of the
ST131 of the Achtman’s MLST scheme (25).

The E. coli ST43/ST131 CTX-M strains are diverse due to a
broad range of plasmids carrying a variety of resistance determi-
nants; however, these strains commonly carry genes associated
with resistance to fluoroquinolones, concomitant resistance to
aminoglycosides, and trimethoprim-sulfamethoxazole (TMP-SMX)
(26). In the United States, E. coli ST43 and ST131 are discovered
more commonly among health care-associated strains; however,
there are increasing reports of community acquisition globally.
These isolates are associated with serious infections, especially of
the urinary tract and bloodstream, and have significant attribut-
able morbidity and mortality (1, 23). In our pediatric population,
we found that of 136 E. coli isolates, 68% were phylogenetic group
B2, and 84% of those strains harbored blaCTX-M-1 group ESBL
genes, an observation consistent with adult and Chicago area data
(25–27). We also found significant coresistance with 51, 56, and
60% of isolates displaying fluoroquinolone, aminoglycoside, and
TMP-SMX resistance, respectively.

The rise of ESBL-producing Enterobacteriaceae in the pediatric
community is important for many reasons. There are few drugs
available and approved to treat infections with these organisms in
children (9, 23), and children who become colonized with MDR
Enterobacteriaceae may be colonized for prolonged periods, even
up to 4 years, thus potentially serving as ongoing, silent sources of
spread (23, 28, 29). Although the predominance of blaCTX-M-type

ESBL genes in E. coli in our population was consistent with data
from adults, the genotypic information from other studied genera
was different. Our study was performed in a region that is endemic
for KPC-producing Enterobacteriaceae strains, but we did not find
evidence of the ST258 K. pneumoniae which harbors the blaKPC

gene (blaKPC-2 or blaKPC-3) in our patient population (30). The
blaKPC-containing K. pneumoniae isolates that we identified were
ST22 and ST29 and carried blaKPC-2. Our findings are consistent
with single-center pediatric studies suggesting that U.S. children
with carbapenemase-producing Enterobacteriaceae may be more
commonly infected with endemic strain types circulating within
their institution or region, which may differ from adult studies
where long-term-care facilities have been shown to be a significant
reservoir of KPC-containing K. pneumoniae affecting acute care
hospitals via interfacility transfer (10, 29, 31). Furthermore, recent
national phenotypic data suggest that carbapenem-resistant En-
terobacteriaceae infections are increasing in U.S. children and that
the genetic makeup of these carbapenem-resistant pathogens
likely differs from adults (12).

Our finding of a blaIMP metallo-�-lactamase (MBL)-produc-
ing K. pneumoniae in our population likely represents a “sentinel
event,” and cases of MBLs in U.S. children have only recently been
described, including infections associated with New Delhi MBL
(NDM) (32). Knowing the molecular mechanisms of �-lactam
resistance in Enterobacteriaceae is extremely valuable since it may
impact treatment decisions and infection control procedures such
as patient isolation, cohorting, and environmental cleaning meth-
odologies. The rapid global dissemination of carbapenemase

genes, such as the blaKPC, blaNDM, blaVIM, and blaIMP MBL genes,
as well as the blaCTX-M ESBL genes, is due to the successful inte-
gration and transfer of mobile genetic elements in Gram-negative
bacteria. Local and regional surveillance identifying patients car-
rying these organisms can help prevent intra- and interfacility
spread (33).

Our AmpC cephalosporinase data are unique in that the most
common transmissible blaAmpC genes thought to be circulating in
U.S. children and adults are the blaCMY-2 genes, which are most
often found in E. coli (23, 34); however, in our isolates, the most
common blaAmpC genes identified were blaACT/MIR-type genes
in Enterobacter isolates (84%), which were associated with
blaSHV-type ESBL genes in 40.5% of cases. Typing of a subset of
Enterobacter isolates revealed blaACT-16 and blaACT-17 genes and
plasmid replicon type FIIA. Our data suggest that for Enterobacter,
the dissemination of ESBLs may be related to specific mobile ge-
netic elements, i.e., “promiscuous plasmids” carrying bla genes,
rather than predominant circulating clonal types (Fig. 2). Of note,
6% of isolates in this study were found to contain only blaAmpC

genes; however, all were phenotypically identified as ESBL pro-
ducers. We emphasize this as the treatment of ESBL and AmpC
producers is different. For example, one might consider cefepime
therapy in the treatment of infections due to AmpC-positive
isolates, whereas for ESBL producers, cefepime is discouraged,
and many institutions place patients with ESBL-producing Enter-
obacteriaceae infections under isolation precautions. Further de-
tailed characterization of these strains is necessary to delineate
whether “silent dissemination” of plasmid-mediated AmpC is oc-
curring in the pediatric population at a greater frequency than
previously recognized (28, 35, 36).

We recognize the limitations of our study. The design is a ret-
rospective cohort study of resistance mechanisms in Enterobacte-
riaceae recovered from children located at three centers in a single
geographic region, which may impact generalizability to other re-
gions. Isolates were collected on the basis of phenotypic resistance
suggestive of ESBL and carbapenemase production; therefore, no
antibiotic-sensitive strains were collected. In addition, whereas a
plasmid-based location of the bla genes by the majority of isolates
is supported by DNA sequence analysis, some of these genes may
represent chromosome-based mechanisms of resistance. Further
studies are ongoing to assess plasmid localization of the determi-
nants uncovered during the study. We did perform DNA sequence
analysis for a subset of isolates and plasmid replicon typing in
order to further strengthen our DNA microarray results.

In conclusion, our study represents the first multicentered U.S.
study of the molecular epidemiology of ESBL-, AmpC-, and car-
bapenemase-producing Enterobacteriaceae isolates from children
cared for at pediatric acute care facilities within a single metropol-
itan area. We found that the characterization of plasmid-mediated
�-lactam resistance in children is complex and diverse and that
the molecular characteristics in pediatric isolates exhibit differ-
ences compared to strain types circulating in adults in an area
where such infections are endemic. This diversity and complexity
must be further studied to assess the potential impact of various
molecular types in pediatric infections and the imminent threat of
silent dissemination of these dangerous bacteria within a vulner-
able population. Our study also highlights the unique challenges
that will be faced when developing strategies to control the spread
of MDR organisms in children: having novel strain types as carri-
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ers of carbapenemase genes portends an even more complex mo-
lecular epidemiology.
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