Skip to main content
. 2016 Apr 16;5(5):235–249. doi: 10.1002/psp4.12071

Table 2.

Common modeling formalisms in QSP

Modeling approach Mathematical form Strengths Potential drawbacks Example & software/language
Statistical data‐driven Algebraic + probabilistic equations • Data‐driven biology • Less mechanistic
• Best for coordinated measurement of numerous variables
Apoptosis signaling32
Logic‐based Rule‐based interactions • Intuitive rules • Less kinetic richness
• Best for coordinated measurement of numerous variables
Kinase pathway crosstalk56 (MATLAB Fuzzy Logic toolboxa); Myeloma cell‐line pharmacodynamics53 (MATLAB ODEfy54)
Differential equations Temporal ODEs or SDEs • Continuous temporal dynamics
• Random effects, if SDEs
• Potential stiffness
• Requires rich kinetic data
NGF signaling pathway and targets16 (MATLAB Simbiologya)
Spatiotemporal PDEs or SDEs • Continuous spatial and temporal dynamics
• Random effects, if stochastic SDEs
• Computational expense
• Spatial information needed
Ocular drug dissolution and distribution55 (ANSYSb)
Cellular automata & agent‐based models Interaction and evolution rules for collection of “agents” • Intuitive rules
• Spatial and temporal dynamics
• Random effects & emergent behaviors
• Computational expense
• Spatial information needed
• Link to higher level behaviors
TB granuloma & inhaled treatment response56 (C++)

ODEs, ordinary differential equations; PDEs, partial differential equations; QSP, quantitative systems pharmacology; SDEs, stochastic differential equations.

a

Mathworks, Natick, MA. bANSYS, Canonsburg, PA.