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A multicaloric material as a link 
between electrocaloric and 
magnetocaloric refrigeration
Hana Ursic1, Vid Bobnar1, Barbara Malic1, Cene Filipic1, Marko Vrabelj1, Silvo Drnovsek1, 
Younghun Jo2, Magdalena Wencka3 & Zdravko Kutnjak1

The existence and feasibility of the multicaloric, polycrystalline material 0.8Pb(Fe1/2Nb1/2)O3-0.2Pb(Mg1/2W1/2)
O3, exhibiting magnetocaloric and electrocaloric properties, are demonstrated. Both the electrocaloric 
and magnetocaloric effects are observed over a broad temperature range below room temperature. The 
maximum magnetocaloric temperature change of ~0.26 K is obtained with a magnetic-field amplitude 
of 70 kOe at a temperature of 5 K, while the maximum electrocaloric temperature change of ~0.25 K is 
obtained with an electric-field amplitude of 60 kV/cm at a temperature of 180 K. The material allows a 
multicaloric cooling mode or a separate caloric-modes operation depending on the origin of the external 
field and the temperature at which the field is applied.

The search for caloric materials to be applied in solid-state refrigeration has recently become one of the most 
active fields in condensed-matter science1–6. The caloric effect is related to a change of the material’s entropy 
under the sudden application of an external field: magnetic, electric, or mechanical1,2,7,8. Depending on the origin 
of the entropy change, the caloric effects can be classified as magnetocaloric (MC), electrocaloric (EC) and mech-
anocaloric (mC), the last of which includes the elastocaloric and barrocaloric effects1. For all three individual 
effects prototype cooling devices have already been proposed7,9–11.

Lately, materials exhibiting multicaloric properties have become the “holy grail” of developments in new, solid-state 
cooling technologies. Until recently, the coexistence of the MC and EC effects had only been proposed theoretically12–16. 
According to a recent review of caloric materials1 this coexistence has not been experimentally confirmed, as it is difficult 
to find a multiferroic material that exhibits both ferromagnetism and ferroelectricity. More recently, a study appeared 
reporting the multicaloric Y2CoMnO6

17; however, as the authors explained, this material is an improper ferroelectric 
and for such materials the conventional methods for an EC determination are not suitable. Furthermore, in a recent 
publication18 it was again stated that the multicaloric effect in a single-phase material is still awaiting an experimental 
confirmation. Until now, the effect has only been examined in ferromagnetic and ferroelectric composite materials18. In 
our work we show experimentally that the single-phase relaxor 0.8Pb(Fe1/2Nb1/2)O3-0.2Pb(Mg1/2W1/2)O3 (PFN-PMW) 
exhibits both magneto- and electrocaloric effects, making it a multicaloric material.

Relaxor ferroelectrics are structurally disordered polar materials, which are characterized by both site and 
charge disorders and the presence of random fields. They represent a different low-temperature state of polar 
dielectrics, which can be regarded as an intermediate state between dipolar glasses and normal ferroelectrics19. 
PFN-PMW is a perovskite solid solution between the multiferroic PFN (ferroelectric at room temperature, 
becoming antiferromagnetic at low temperatures) and antiferroelectric PMW, which is diamagnetic. It has been 
shown that PFN-PMW exhibits a typical relaxor behavior not only in electrical, but also in magnetic properties: 
(i) a broad frequency dispersion in both, the electrical and magnetic susceptibilities, and (ii) a glass-like slowing 
down of the electric and magnetic dynamics, both following the Vogel-Fulcher behavior20. This means that in zero 
electric/magnetic fields no long-range ferroic state is established down to the lowest temperatures, and that the 
system is characterized by the presence of nanosized electrical and magnetic clusters of variable sizes21. We show in 
this investigation that these coexisting spin and dipolar subsystems can, with the application of external conjugate 
fields, lead to a multicaloric response. PFN-PMW is thus presented as a system in which both electrocaloric and 
magnetocaloric effects coexist or can be separately switched on or off using an external electric or magnetic field.
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Results
The magnetization vs. magnetic field (M-H) hysteresis loop of the PFN-PMW material at 5 K is shown in Fig. 1a. 
Note that the density of the sintered pellets is 8.15 g/cm3. When increasing the temperature (inset, Fig. 1a), the 
hysteresis loops become suppressed. The temperature dependence of the magnetization is shown in Fig. 1a, where 
a temperature increase results in a decrease of the magnetization. The highest measured magnetization of 2.3 
emu/g is achieved at 5 K and 70 kOe. In Fig. 1b the magnetocaloric temperature changes Δ​TMC vs. T and H are 
shown. The MC temperature change Δ​TMC is 0.26 K at 5 K and 70 kOe, and it gradually decreases with an increas-
ing temperature, but it can still be detected up to 300 K. Furthermore, Δ​TMC increases with an increasing mag-
netic field H; the largest increase in Δ​TMC is observed at the lowest measured temperature of 5 K (inset in Fig. 1b).

To validate the magnetic measurements on the PFN-PMW material using two independent methods, in addi-
tion to the Quantum Design Physical Property Measurement System (PPMS) measurements (Fig. 1a), the M vs. 
T was also measured using a Superconducting Quantum Interference Device (SQUID) (Fig. 1c, inset). The latter 
measurements were performed at lower magnetic fields, i.e., from 0.5 to 10 kOe; however, a similar trend was 
observed in the measurements made using both methods (see the comparison in Fig. 1c).

The results of the direct and indirect EC measurements of the PFN-PMW are shown in Fig. 2. As expected, the 
Δ​TEC increases with increasing temperature as it approaches the phase transformation at ~270 K. For example, 
the Δ​TEC is 0.15 K at 180 K and 40 kV/cm, and it increases to 0.21 K when the temperature increases by 20 K. The 
Δ​TEC  also increases with an increasing electric field. The highest Δ​TEC of 0.245 K was measured at 60 kV/cm and 

Figure 1.  (a) M vs. T at H from 13 to 70 kOe measured using a Quantum Design PPMS. Lines are a guide for 
the eye. Inset: M-H hysteresis loops measured at 5 and 240 K. (b) Δ​TMC vs. T and in inset Δ​TMC vs. H calculated 
from the measurements given in (a). The black arrow indicates the decrease in temperature. (c) Δ​TMC vs. T 
calculated from M-T measurements measured using a SQUID and shown in the inset. For comparison the  
Δ​TMC vs. T measured using a Quantum Design PPMS at 13 kOe is also given (black squares).



www.nature.com/scientificreports/

3Scientific Reports | 6:26629 | DOI: 10.1038/srep26629

180 K. During the direct EC measurements no significant Joule heating was detected up to 220 K, although when 
increasing the temperature, some Joule heating (≥​0.06 K) was observed.

Hence, we show experimentally that in the PFN-PMW material the electrocaloric and magnetocaloric effects 
coexist and can be separately switched on or off using an external electric or magnetic field. A schematic diagram 
of such electrocaloric, magnetocaloric and multicaloric cooling cycles of the studied material is shown in Fig. 3. 

Figure 2. ΔTEC vs. T at electric field amplitudes from 5 to 60 kV/cm. The solid and crossed squares represent 
the direct and indirect EC measurements, respectively. Lines are a guide for the eye.

Figure 3.  A schematic diagram of the magnetocaloric (left), electrocaloric (middle) and multicaloric 
(right) cooling cycles. 
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In spite of the fact that the Δ​TMC and Δ​TEC are relatively small (i.e., maximum measured values of ~0.26 K and 
~0.25 K, respectively), the feasibility of such a single-phase multicaloric MC and EC material is proven, which 
should promote the further development of multicaloric materials with larger cooling responses.

Discussion
A missing link between magnetocaloric and electrocaloric cooling is proposed and experimentally demonstrated 
with the polycrystalline PFN-PMW multicaloric material. We show that such a multicaloric material exists and, 
furthermore, that the magnetocaloric and electrocaloric modes can be applied in two different temperature 
regions, extending the operating temperature range of the caloric material from 5 K up to 220 K. Since in this 
temperature range both caloric effects coexist, the application of both stimuli can enhance the total caloric effect. 
Such a combined caloric effect in multiferroic materials can lead to hybrid cooling systems of a new generation 
that are capable of working across a broad temperature range.

Methods
For the synthesis of the PFN-PMW powder, PbO (99.9%, Sigma-Aldrich, 211907), Fe2O3 (99.9%, Alfa, 
014680-Ventron), Nb2O5 (99.9%, Sigma-Aldrich, 208515), WO3 (99.8%, Alfa, 82120-Ventron), and MgO (98%, 
Sigma-Aldrich, 24338) were used. The homogenized, stoichiometric mixture (200 g) was mechanochemically 
activated in a high-energy planetary mill (Retsch, Model PM 400) for 40 h at 300 rpm using a tungsten carbide 
milling vial and balls. The synthesized powder was milled in an attrition mill with yttria-stabilized zirconia (YSZ) 
balls in isopropanol for 4 h at 800 rpm. The powder was then uniaxially pressed into disks and further consoli-
dated by isostatic pressing at 300 MPa. The powder compacts were sintered in double alumina crucibles in the 
presence of a packing powder with the same chemical composition to avoid possible PbO losses. The compacts 
were sintered at 1123 K for 2 h in an oxygen atmosphere at heating and cooling rates of 2 K/min. The density 
was determined using a Micromeritics – AccuPyc II 1340 gas pycnometer. The X-ray diffraction pattern and the 
microstructure of the ceramics are summarized in Supplementary Information, Figures S1 and S2.

The M-H curves were detected at temperatures between 5 K and 300 K with a 16-T PPMS using the AC 
Measurement System (ACMS) option. Furthermore, the magnetization vs. temperature at different magnetic 
fields (from 0.5 kOe to 10 kOe) was measured using a SQUID from 20 K to 270 K. The sample’s weight was 30 mg.

For the electrical measurements, the faces of the disks with a diameter of 6 mm and a thickness of 70 μ​m 
were coated with Cr/Au by RF-magnetron sputtering (5 Pascal). For the direct EC measurements, a modified 
high-resolution calorimeter was used, since it allowed a precise temperature stabilization of the bath (±​0.1 mK). 
The temperature was measured with a small-bead thermistor. The direct EC measurements were supported by 
indirect methods in which the magnetocaloric and electrocaloric temperature changes were calculated using 
equations (1) and (2), given in Supporting Information. The details of the method can be found in22,23. The 
methodology as well as the measurements of the complex dielectric constant ε*​(v, T), the polarization-electric 
(P-E) field response and the heat capacity Cp versus temperature are summarized in Supplementary Information 
(Figures S3–S5).
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