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Abstract

Longitudinal studies of rare events such as cervical high-grade lesions or colorectal polyps that 

can recur often involve correlated binary data. Risk factor for these events cannot be reliably 

examined using conventional statistical methods. For example, logistic regression models that 

incorporate generalized estimating equations often fail to converge or provide inaccurate results 

when analyzing data of this type. Although exact methods have been reported, they are complex 

and computationally difficult. The current paper proposes a mathematically straightforward and 

easy-to-use two-step approach involving (i) an additive model to measure associations between a 

rare or uncommon correlated binary event and potential risk factors and (ii) a permutation test to 

estimate the statistical significance of these associations. Simulation studies showed that the 

proposed method reliably tests and accurately estimates the associations of exposure with 

correlated binary rare events. This method was then applied to a longitudinal study of human 

leukocyte antigen (HLA) genotype and risk of cervical high grade squamous intraepithelial lesions 

(HSIL) among HIV-infected and HIV-uninfected women. Results showed statistically significant 

associations of two HLA alleles among HIV-negative but not HIV-positive women, suggesting that 

immune status may modify the HLA and cervical HSIL association. Overall, the proposed method 

avoids model nonconvergence problems and provides a computationally simple, accurate, and 

powerful approach for the analysis of risk factor associations with rare/uncommon correlated 

binary events.
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1 Introduction

Longitudinal cohort studies often involve repeated observations related to conditions 

(events) that can recur over time, but are nonetheless uncommon or even rare. Examples 

include repeated occurrences of AIDS-defining illnesses, adverse pregnancy outcomes (e.g. 
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pre-eclampsia, prematurity, and fetal abnormalities) and the repeated development of 

cervical neoplasia, polyps of the colon, benign breast disease, etc. Because repeated events 

involving the same subjects over time are often correlated, statistical methods that take into 

account these inherent intra-subject correlations have been developed, such as logistic 

regression models that incorporate generalized estimating equations (GEE).1 However, if the 

events are rare, either complete separation or quasi-separation2 can occur so that the estimate 

for at least one coefficient in the regression model and their standard error will be infinite, 

leading to non-convergence of the model. Complete separation, using an example with a 

single binary exposure variable, corresponds to both “empty cells” in the off-diagonal of the 

exposure by event table; quasi-separation corresponds to only one empty cell in the off-

diagonal cells. Further, even if the model did converge, the conventional assumption of 

asymptotic consistency and normality for the parameter estimates may not be applicable; i.e. 

the effect estimates may be inaccurate and statistical inferences may be invalid.3–9 These 

concerns hold true even for a large size of the study and, furthermore, may grow as the use 

of genetic/epi-genetic assays and other new technologies increasingly involve the analysis of 

exposures (e.g. genotypes) that are also rare, leading to either complete or quasi-separation 

and therefore nonconvergence.

Exact conditional logistic regression models have long been used to study binary events in 

cross-sectional and case-control studies (i.e. single endpoint) with sparse data (e.g. due to 

small sample size, multiple exposure strata, few events, etc.).10–14 However, there are few 

exact methods for correlated binary event data. Tang et al.15 considered exact and 

approximate unconditional methods for testing the equality of successful surgery rates for 

both eyes between two groups of patients. But the method is only applicable when each 

cluster contains exactly two individual observations. Hunsberger et al.16 proposed a 

simulation-based method for testing logistic regression coefficients with cluster samples 

when there are few positive outcomes. In their proposed simulation-based method, the 

approximate distribution of the generalized-score test statistic under the null hypothesis was 

generated from simulation. To account for the correlation between binary data, the intra-

class correlation parameter was estimated first from the original data set and then was used 

when generating the distribution of the test statistics. This proposed method therefore 

lessens the reliance on asymptotic distribution assumptions; however, it does rely on the fact 

that the logistic regression model to be converged. For rare or uncommon events, we often 

encounter nonconvergence of the logistic regression model. An exact trend test on binary 

correlated data was proposed17 based on a quadratic exponential model for multivariate 

binary outcomes.18,19 In addition to conditioning on the sufficient statistics for baseline 

parameters, their exact inference further conditioned on the sufficient statistics for the 

correlation parameter in order to eliminate the nuisance correlation parameter. The method 

can be used for a logistic regression model with a single binary or ordinal scale variable. 

However, this additional condition on the sufficient statistics of the correlation parameter 

imposes more constraint on the data space so that the computation of the exact p-value 

requires using a complicated algorithm involving a network approach20 which currently 

cannot be implemented directly with standard statistical software. A Bayesian approach was 

proposed to deal with clustered binary data with complete or quasi-complete separation 

through the use of a weakly informative prior distribution21 and another approach was 
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recently proposed to extract information about the prior distribution from part of the data 

and use this estimated prior distribution for the remaining part of the data.22 These methods 

provide a plausible solution to rare event clustered binary data. However, the Bayesian 

methods assume a mixed effects model rather than a marginal model in which the intra-class 

correlation is treated as a nuisance parameter. Furthermore, the Bayesian methods also 

require extensive and complicated computations. Methods to analyze correlated binary data 

for rare or uncommon events with few assumptions regarding the correlation structure of the 

data, and are mathematically straightforward and easy to use, are needed.

To address these concerns, we propose a two-step approach, involving an additive model to 

measure associations between potential risk factors and rare or uncommon events that are 

subject to recurrence, followed by a permutation test, to estimate the statistical significance 

of these associations. Additive models, such as linear regression models, are much more 

likely to converge than multiplicative models, such as logistic regression models. However, 

statistical inference based on normal approximation may no longer be appropriate when 

events are rare or uncommon. Instead, permutation tests provide a mathematically 

straightforward and computationally simple approach that avoids any parametric assumption 

of the parameter estimates.

In this paper, we first present the two-step approach, and then use simulation studies to 

evaluate the performance of the new method and compare it with conventional statistical 

models in section 3. In section 4, we apply the two-step approach to a real data set from a 

longitudinal study of human leukocyte antigen (HLA) genotype and risk of high grade 

squamous intraepithelial lesions (HSIL), an uncommon event that can recur, among HIV-

infected and HIV-uninfected women. Finally, we present our conclusions and discussion in 

section 5.

2 A two-step approach

Consider a binary disease outcome Yij for subject i at jth visit, and xi is a binary exposure 

variable of interest (e.g. a genetic variable such as the presence or absence HLA genotype 

Drb*15:01), where i = 1, …, n and j = 1, …, Ji. Here, we focus on risk factors that are also 

binary, since the motivating example for this paper is a study of genetic variation and 

cervical HSIL.

When the outcome is rare so few Yij = 1 and the remainder are zero, a logistic regression of 

Yij on Xi may either not converge or fail to yield a reliable statistical inference. An 

alternative is to use an additive model (i.e. linear regression model), which uses an “identity” 

link function. Linear regression models provide estimates of difference in event risk between 

exposure groups: when events are rare, the difference in risk is close to 0, not near the 

boundary of its parameter space, thus achieve model convergence much more readily than 

logistic regression models. However, the distribution of the risk difference tends to be 

skewed when events are rare and, therefore, the use of a normal approximation may lead to 

low statistical power. Instead, we propose using a permutation test to empirically examine 

the statistical significance of the main and interactive effects of the exposure.
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2.1 Assessing the exposure effect

A linear regression model is defined as follows

(1)

where β1 is interpreted as the difference in proportions of events between the two exposure 

groups. This difference can be interpreted as the increased risk due to the exposure. Denote 

Xi be the covariate matrix for subject i, Xi = (1, xi)T II and β = (β0, β1)T where II is a vector 

of 1’s. Model (1) is then estimated using the following estimating equation

where  and Cov(Yi) = Aiϕ and Ri(α) is the working correlation between 

repeated events from the same subject and ϕ is the dispersion parameter. An appropriate 

working correlation can be assumed and a robust variance is used. However, when events are 

rare, although less frequently as compared to the logistic regression GEE model, the linear 

regression GEE model can occasionally have a nonconvergence problem, related to the 

estimation of the robust variance. Further, the validity of the statistical inference on β1 under 

rare events is unknown.

Therefore, we propose to first estimate β1 assuming independence between subject’s 

repeated observations and then obtain an empirical p-value for β1 using a permutation test. 

With an independent working correlation and a binary x, it can be easily shown that β̂1 = P̂
1 

− P̂
0 where P̂

1 and P̂
0 are observed proportion of events across all visits in the nonexposed 

and exposed groups, respectively.

In a permutation test, an empirical p-value23–25 for the hypothesis of H0:β1 = 0 is obtained. 

Here the permutation is conducted at the level of the subjects but not at the level of the 

repeated observations so that the correlation structure within the subject is maintained: 

sicker patients who had relatively more events remain to be sicker patients and healthier 

patients who had little events remain to be healthier patients in the permuted sample. The 

distribution of Y under the null hypothesis and, therefore, the variation in the estimated 

event rate across subjects do not change after permutation. The variation of the parameter 

estimates which depends on subjects’ variation in the permuted sample consequently 

remains unbiased. The strength of a permutation test is that it requires no assumptions 

regarding the distribution of β̂1. The procedure of the permutation test is described in the 

following steps (Algorithm 1):

1. Compute for β̂1 = P̂
1 − P̂

0;

2. Permute subject id;

3. Calculate β1 based on the permutated data: ;

4. Repeat steps 2 and 3 for N times, where N is a pre-specified large number.
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The empirical two-sided 

, i.e. the larger 

value between (1) the proportion of times the magnitude of  is greater than or equal to the 

magnitude of β1̂ and (2) twice the proportion of times that  is more extreme than β̂1. When 

the event rate is very low (e.g. <1%) the empirical distribution of β1̂ may be highly discrete. 

To address this, the mid p-value is sometimes used as an alternative to the traditional 

empirical p-value, in order to better approximate that for a continuous distribution and to be 

less conservative.23–25 The mid , i.e. the 

proportion of times that the magnitude of  is greater than the magnitude of β̂1 plus half the 

proportion of times the magnitude of  is equal to the magnitude of β̂1.

Note that the above algorithm does not provide a confidence interval for β1. An apparent 

option is to obtain a confidence interval based on bootstrapping samples of the original data. 

However, the bootstrap method does not apply to the rare events case related to the 

discreteness in the empirical distribution of the parameter estimate. Consider an extreme 

example, if the exposure group did not experience any events but the nonexposure group did 

so that the estimate of β1 is negative. A bootstrapping sample by resampling the subjects 

will always give a negative estimate of β1 (i.e. the estimate is bounded by 0) so that the 

confidence interval based on bootstrap percentiles always excludes 0, leading to a significant 

test regardless the magnitude of β1 and the size of the study. More research on methods to 

obtain an appropriate confidence interval estimate when events are rare is warranted.

2.2 Assessing interactions

To assess statistical interactions and detect differences in exposure–disease associations 

between two or more strata (e.g. HIV-positive versus HIV-negative women), a linear 

regression model is defined as follows

(2)

where wi indicates the stratum of the ith person. Similarly as model (1), this model can be 

estimated using GEE as described above with a covariate matrix Xi = (1, xi, wi, xiwi)T II4 

and a parameter vector β = (β0, β1, β2, β3)T. Same as model (1), this model can also 

sometimes run into non-convergence problem related to the estimation of the robust variance 

also if converged the validity of the statistical inference based on the robust variance 

estimates has not been examined. Therefore, we propose to use a two-step approach of first 

obtaining a parameter estimate by ignoring the correlation between repeated observation and 

then using permutations to obtain an empirical p-value. With an independent working 

correlation and binary x and binary strata w, it can be shown that β̂3 = (P̂
11 − P̂

10) − (P̂
01 − 

P̂00) where P̂
kl is the observed proportion of events across all observations for the kth 

stratum and lth exposure group, k, l = 0,1.
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The permutation test for the interaction effects has rarely been used because it is in general 

more complex than that for the main effect. One major complication is that it is uncertain 

whether or not to remove the main effect from the model and how to remove the main effect. 

Several approaches have been proposed for independent continuous outcome. These include 

randomization of the residuals with adjustment of main effects,26 or with adjustment of both 

the main and interaction effects in the model.27 An exact permutation test (not to be 

confused with standard exact methods) was proposed to permute uncorrelated residuals 

obtained from the transformation of the correlated residuals.28 A comparison between these 

methods and the method of simply permuting the observations themselves determined that 

the exact method performs slightly better when sample sizes are small.28 Because the exact 

permutation test requires obtaining a transformation matrix using decomposition of the 

idempotent matrix, i.e. I-H, where I is an identity matrix and H is the hat matrix, the method 

is not applicable here as this transformation matrix may not exist under rare events data. 

Because the method of removal of main effects was shown to be asymptotically exact,29 in 

this paper we used the approach of permuting the residuals with appropriate adjustment of 

the main effects. The procedure is described in the following steps (Algorithm 2):

1. Compute for β3̂ = (P̂
11 − P̂

10) − (P̂
01 − P̂

00);

2. Compute for the residual êij for model with only main effects, i.e. P(Yij = 1) = β0 

+ β1xi + β2wi for all i and j;

3. Permute the subject id to obtain permuted residuals;

4. Calculate β3 based on the permutated residuals: 

where r̂kl is the average of permuted residuals for the kth stratum, k = 0,1 and lth 

exposure group, l = 0,1;

5. Repeat steps 3 and 4 for N times.

The empirical two-sided p-value is then calculated using the same method for Algorithm 1. 

Either algorithm, Algorithm 1 or 2, can be easily implemented using existing statistical 

software. A program written using the R software package is available upon request. In the 

following section, we use simulations to evaluate the performance of our proposed approach 

for studying correlated binary data involving uncommon events and compare it with logistic 

and linear regression GEE models.

3 Simulations

3.1 Main effect

First, we generated a dataset in which there were n = 400 subjects with a 30% prevalence of 

binary exposure variable X = 1 and each subject had 10 repeated observations. The sample 

size and parameters were set to be similar to the data in our example (shown below) as a 

starting point. The correlated binary data were generated using a beta binomial distribution 

so that binary outcomes from the same subject share the same rate of events over time. Let 

P1 and P0, denote the overall event rates for X = 1 and X = 0, respectively, and ρ be the 

correlation between repeated observations. We set P0 = 0.001 and let P1 vary from 0.001 to 

0.01, representing a rare to uncommon event rate and let ρ vary from 0.2 and 0.5, 
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representing a low to moderate level of correlation. For each simulated data set, we 

calculated the p-values for the exposure-disease association based on the proposed two-step 

method as well as the logistic regression GEE model and the linear regression GEE model. 

For both GEE models, we used the independence working correlation because this 

assumption leads to a slightly better convergence rate than other working correlation 

assumptions as it does not require an extra step to estimate the working correlation 

parameters. The simulation was repeated 1000 times.

For each regression model, we calculated the convergence rate, and determined the 

proportion of p-values below 5% among the simulated datasets in which the model 

converged. Briefly, the proportion of p-values below 5% when P1 = P0 = 0.001 (i.e. β1 = P1 

− P0 = 0) provides the “empirical level of significance” where the nominal level is 5%, i.e. 

considered as an indication of validity of the test; conversely, when P1 ≠ P0 (i.e. β1 ≠ 0) the 

proportion below 5% indicates the “empirical power”. We also determined the proportion of 

p-value below 5% among all datasets treating nonconvergence as a failure to demonstrate a 

significant exposure effect. This latter definition is useful, since in practice if a model fails to 

converge there is often no further investigation, leading to a possible false negative result.

We also calculated and compared the bias in effect estimates for the logistic regression GEE 

models and the linear regression GEE models that converged and the bias in β̂1 using the 

proposed method. Bias is expressed as the percentage change from the known value in the 

simulation. Note that although the linear regression GEE model under independent working 

correlation gives the same effect estimates as the proposed method, the linear regression 

GEE model can sometimes run into non-convergence problem related to the estimation of 

the robust standard error when β̂1 = 0 in the simulated data sets. When the portion of 

nonconvergence is nonignorable, the omission of data sets with β̂1 = 0 can bias the average 

estimates when the true β1 ≠ 0. Therefore, there are some differences in average bias 

estimates between the linear regression GEE models that converged and the proposed 

method in Tables 1 and 2.

As shown in Table 1, the linear regression GEE model had a much higher convergence rate 

than the logistic regression GEE model. While both types of regression models, as well as 

the proposed two-step approach, were each shown to be valid; the regression methods were 

too conservative, particularly according to the empirical level of significance among all 

simulated data sets. The permutation test had, as expected, the greatest empirical power as 

well as lowest bias under a range of effect sizes that the simulations incorporated. For 

example, when ρ = 0.2 and OR = 4.0 for logistic regression (β1 = 0.003 for linear 

regression), the empirical statistical power was 4.8% for the linear regression model, 14.8% 

(20.2% among converged) for the logistic regression model and 31.0% for the permutation 

test; the relative bias was −12.6% for the logistic regression model and 1.9% for the linear 

regression model and the proposed method; when OR = 1, the logistic regression model had 

a bias of 185% while the proposed method almost had zero bias. This finding that the two-

step approach achieves the highest statistical power and has the least bias was true regardless 

of level of correlations (ρ = 0.2 or 0.5).
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3.2 Interaction effect

Next, we evaluated the procedure for assessing interaction by a binary stratum variable (w). 

We assumed 200 subjects with w = 0 and P(X = 1) = 40%; 400 subjects with w = 1 and P(X 
= 1) = 30%. Again, these numbers were chosen to be similar to those in the example. The 

event rates were set to be: P00 = 0.0005, P01 = 0.001, P10 = 0.001 and P11 varying from 

0.0015 to 0.0205, where Pkl is the proportion of events for the kth stratum and lth exposure 

group, k, l = 0,1 so that the difference in exposure effects between w = 1 and w = 0, i.e. β3 = 

(P11 − P10) − (P01 − P00) varies from 0 to 0.019. The correlation between repeated 

observations ρ was set to be 0.2 and 0.5. Model convergence, empirical significance/power 

and bias were evaluated. Table 2 shows that there was little convergence of the logistic 

regression GEE models, whereas most linear regression models converged. Similar to the 

first set of simulations, bias was low for the proposed method in estimating the interaction 

effects (<7%), and much higher for logistic regression. Further, the permutation test was the 

most powerful test.

3.3 A larger sample size

To examine if the findings above persist with a larger sample size, we increased the sample 

size to be n = 1000 subjects for the main effect and n = 1200 for the interactive effect while 

the other parameters remained the same. Table 3 indicates that with a larger n, the issue of 

lack of convergence, inaccuracy and low statistical power remained particularly in the 

logistic GEE models but the severity of the issue reduces sometimes significantly as the 

number of events increases. This observation is especially true for the model with a main 

effect. For example, when P1 = P0 = 0.001 so that the expected number of events is 10, there 

were about 25% of the data sets for which the logistic regression GEE models failed to 

achieve convergence and the bias was large. But when P0 = 0.001 and let P1 = 0.004 so that 

the expected number of events is about 20, almost all the logistic regression GEE models 

converged and the bias was low and the statistical power was comparable to what observed 

for the proposed two-step method. For the model with an interactive effect, although the 

convergence and accuracy was also greatly improved with a larger number of subjects, it is 

yet far from satisfactory. For example, even when the ratio of two odds ratios becomes 10.4 

and the expected number of events is 15, there was about 60% of the logistic regression 

model failed to converge and the bias was still greater than 5% and the statistical power 

continued to be much lower than that from the proposed two-step approach. The 

performance of the linear regression GEE model, on the other hand, is close to that of the 

proposed two-step approach as the number of events increases. Whether or not a “threshold” 

on the number of total events exists in order for the logistic regression GEE approach to 

achieve acceptable performance needs to be further investigated.

It should be emphasized that the proposed method outperforms the logistic regression GEE 

and the linear regression GEE models when the events are rare, as we demonstrated in our 

simulations. But when the events are not rare, such superiority of the proposed method no 

longer exists. We did another set of simulations (result not shown) which indicated that 

when events are not rare, the logistic regression GEE models and the proposed method 

perform similarly while the linear regression GEE models tend to have a slightly lower 

statistical power.
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4 Motivating example

We applied the proposed method to examine the association between cervical HSIL and 

HLA genotype in HIV-positive and HIV-negative women. HLA genes are among the most 

variable in the human genome and the encoded HLA proteins play a central role in the 

adaptive T-cell responses to viral infections. It was therefore hypothesized that an 

association between HLA and HSIL would be observed in HIV-negative but not as much in 

HIV-positive women, since immunogenetic factors would have less of a biologic impact in 

broadly immunocompromised individuals. Consequently, we were also interested in 

examining the possible interaction between HLA genes and HIV status. The study was based 

in a longitudinal cohort called the Women’s Interagency HIV Study (WIHS), which enrolled 

2793 HIV-positive and 975 HIV-negative women during two enrollment periods, in 1994 

and again in 2001.30–33 At each semi-annual visit, DNA of human papillomavirus (HPV), 

the virus that causes cervical cancer, was detected using a well-established and highly 

sensitive polymerase chain reaction (PCR) assay, and Pap tests were conducted. High-

resolution HLA class I and II genotyping34 was conducted in a stratified random sample of 

830 women in the WIHS cohort based on HIV status and CD4 levels. At the time of the 

study, the women had completed 15 semi-annual visits. Overall, there were 512 HIV-positive 

and 285 HIV-negative women with a total of 3682 visits and 2400 visits, respectively. Here 

we focus on two HLA alleles that were previously examined to illustrate the method: 

DRB*15:01 (denoted by Drb1501) and Bw4;33 the former was previously reported increase 

and the latter decrease risk of cervical HSIL. The event rate of any HSIL was 10%. 

However, HSIL containing specific HPV genotype was uncommon. HPV 16 is the most 

important cancer-related HPV type and HPV 18 is the second most important cancer-related 

HPV type. In this dataset, the event rate of HSIL containing HPV16 (HPV16HSIL) was less 

than 3% while that for the HSIL containing HPV18 (HPV18HSIL) was less than 1%. In this 

paper, we focused on HPV18HSIL as the endpoint because in our original analysis when the 

conventional statistical methods were applied to examine the association of HLA genotypes 

with the occurrence of HSIL containing either HPV16 or HPV 18, the analysis on 

HPV18HSIL had the most issue with model convergence.

First, we estimated the level of correlation between repeated observations based on a beta-

binomial model for the binary outcomes, under the null hypothesis of no exposure and 

disease association. We used the method of moment to obtain an estimate of correlation, 

specifically,

so that the correlation between repeated observations from the same subject was estimated to 

be 0.2, a small but nonignorable level of correlation between repeated events in this dataset. 

Next, we conducted analyses of HLA genotype and its relation with HPV18HSIL using (i) 

logistic regression GEE model (i.e. the traditional approach), (ii) linear regression GEE 
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model, and (iii) the proposed two-step approach. We also assessed whether these 

associations differed by HIV status.

As shown in Table 4, the logistic regression GEE models for DRB1501 and its association 

with HPV18HSIL failed to converge for either HIV-positive or HIV-negative women or the 

interaction model. In contrast, the linear regression GEE model converged and showed a 

decreased risk of HPV18HSIL of 0.36% related to DRB1501 among HIV-positives, but an 

increased risk of 0.67% among HIV-negatives. While neither of these associations were 

statistically significant based on the linear regression GEE model, the permutation test 

showed the association in HIV-negative women to be statistically significant (p = 0.047), 

whereas the result in HIV-positive women did not approximate significance (p = 0.882). The 

interaction term was of borderline significance in the permutation test (p = 0.071).

For allele Bw4, the logistic regression GEE model did not converge in HIV-negative women, 

nor in the analysis of the interaction effect, whereas all models using linear regression 

converged. Furthermore, the proposed permutation test but not the linear regression GEE 

model showed that there was an inverse association of Bw4 with HPV18HSIL that was 

significant among HIV-negative women (p = 0.025).

For both the alleles, the two-step approach but not the two GEE models suggested a stronger 

association with HPV18HSIL in HIV-negative women than HIV-positive women, supporting 

our hypothesis that HLA genotypes have less of a biologic impact in immunocompromised 

individuals (HIV-positive women).

It is worth noting that even though in the simulations the empirical statistical power is 

uniformly higher for the two-step method, it does not imply that the p-values obtained in any 

data set such as in this example will be invariably smaller for the two-step method. Instead, 

the finding from the simulations suggests that when there is a real effect, the two-step 

method on the average is more likely to achieve statistical significance than the other two 

methods.

5 Conclusion and discussion

This paper describes a statistical approach for measuring associations between risk factors 

and rare or uncommon events that are subject to recurrence—often correlated endpoints. As 

we demonstrated in the simulations, traditional methods such as GEE models in particular 

the logistic regression GEE models in the case of rare events data can no longer provide 

valid statistical inference because they either fail to converge or their parameter estimates 

lose consistency as well as asymptotical normality. The proposed statistical approach 

involves two steps: (i) a linear (additive) regression model to estimate the strength of the 

association, and (ii) a permutation test to estimate the statistical significance of the 

association. The permutation was conducted at the level of the subjects but not at the level of 

the repeated observations so that the correlation structure within the subject is maintained. 

Because the permutation test, unlike multiplicative or additive GEE models, does not need to 

estimate a robust variance, our two-step approach avoids the problem of model convergence. 

Further, the permutation test does not require a normality assumption for parameter 
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estimates which may violate under rare or uncommon events and therefore achieves a much 

higher statistical power than is possible using either logistic or linear regression GEE 

models. The proposed approach is also easy to implement using widely available statistical 

software.

Overall, the proposed statistical method represents an important advance in measuring risk 

factor associations with rare or uncommon but correlated binary outcomes. There is a 

misconception in the literature that rare event problems only occur when sample sizes are 

small or when there are too many strata and there is a tendency in practice to dismiss rare 

events data because it is not informative. In the simulation study, we considered up to over 

1200 subjects with over 10,000 repeated visits and in our example, we have about 800 

subjects with 6000 repeated visits and only two strata (i.e. HIV positive and negative) yet 

rare event problems occurred. Therefore, we hope this paper emphasized that rare event 

problems do occur even in a large data set without many strata and rare or uncommon events 

do not imply lack of information. In fact, important exposure and disease associations can be 

identified from rare/uncommon events data as we have illustrated in our example.

In the current paper we used a study of incident HSIL and a genetic risk factor as the 

primary example of this type of data, but the considerations raised in this paper potentially 

affect the analysis of many longitudinal cohorts, and in the Introduction we discussed other 

examples. The application of the proposed method will grow as the use of genetic/epi-

genetic assays and other new technologies increasingly involve the analysis of exposures 

(e.g. genotypes) that are also binary and rare or uncommon, also leading to separation 

problems. For example, an important application of the proposed method to genetic/epi-

genetic data is to examine the risk of a single binary outcome in association with several 

binary genetic variables of interest that may be rare/uncommon and correlated with one 

another. The proposed method can be potentially extended to this situation through the use 

of the correlated exposures as the outcome variable and the single binary outcome as the 

exposure variable. Additional research is also warranted to extend the method to incorporate 

continuous exposure variables and multiple confounders, as well as to develop methods to 

estimate confidence intervals for each risk estimate.
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