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Abstract

Multilevel and longitudinal studies are frequently subject to missing data. For example, biomarker 

studies for oral cancer may involve multiple assays for each participant. Assays may fail, resulting 

in missing data values that can be assumed to be missing completely at random. Catellier and 

Muller proposed a data analytic technique to account for data missing at random in multilevel and 

longitudinal studies. They suggested modifying the degrees of freedom for both the Hotelling-

Lawley trace F statistic and its null case reference distribution. We propose parallel adjustments to 

approximate power for this multivariate test in studies with missing data. The power 

approximations use a modified non-central F statistic, which is a function of: 1) the expected 

number of complete cases, 2) the expected number of non-missing pairs of responses, or 3) the 

trimmed sample size, which is the planned sample size reduced by the anticipated proportion of 

missing data. The accuracy of the method is assessed by comparing the theoretical results to the 

Monte Carlo simulated power for the Catellier and Muller multivariate test. Over all experimental 

conditions, the closest approximation to the empirical power of the Catellier and Muller 

multivariate test is obtained by adjusting power calculations with the expected number of complete 

cases. The utility of the method is demonstrated with a multivariate power analysis for a 

hypothetical oral cancer biomarkers study. We describe how to implement the method using 

standard, commercially available software products and give example code.
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 1. Introduction

 1.1 Balanced linear mixed models for complete and missing data

Mixed models are used often in biomedical research to account for correlations between 

repeated measures of outcomes, even with missing data. Throughout, we use the term 

“repeated measures” in the most general sense as multiple measurements of any form taken 

on a single independent sampling unit. Repeated measurements can be taken across time 

(longitudinal) or space (spatial), within clusters (multilevel), using different scales 

(multivariate outcomes), or in designs with combinations of these factors. For convenience, 

we will call each measurement taken on an independent sampling unit a “unit of 

observation.” Each independent sampling unit may have several such units of observation.

In this work, we consider the problem of calculating power for experiments which may have 

outcome data missing completely at random. We limit the discussion to balanced linear 

mixed models as described by Muller and co-authors [1, 2]. We describe the model for the 

complete data first, and then explain how the missing data process may affect power 

calculations.

Muller et al. [1] make the following assumptions about balanced linear mixed models: 1) 

each independent sampling unit has the same number and choice of response variables, 2) 

each independent sampling unit has the same covariance structure, and 3) covariates have 

the same value for the entire independent sampling unit, no matter which unit of observation 

is considered. Note that we shall relax Assumption 1 shortly to allow for missing data. 

Assumption 3 corresponds to using a single value of each predictor for each independent 

sampling unit. This means that the models we consider cannot have time- or space-varying 

covariates in longitudinal or spatial studies, different treatment assignments within clusters 

for multilevel studies, or different predictors for various outcome variables in multivariate 

studies. To clarify the definition of balanced linear mixed models used in this work, we 

present examples below which include descriptions of study design, study goals, 

independent sampling units, units of observation and predictors.

An example of a longitudinal study with complete data for which a balanced linear mixed 

model is appropriate is a study of the shape of the weight gain curve of women during 

pregnancy. Each woman is measured nine times, on the first day of each month of gestation. 

Each woman is an independent sampling unit, and the unit of observation is the weight of 

the woman at each month. We assume that the covariance between the repeated 

measurements is the same for all women. The model coefficients represent the average 

weight at each time point, if only an intercept is used as a predictor. Assumption 3 means 

that the model could include pre-pregnant BMI, which has the same value for each of the 

nine weight measurements for one participant. If, however, the investigators wished to add a 

time-varying covariate such as total dietary fat intake measured for each month of gestation 

for each pregnant woman, a balanced linear mixed model would not be appropriate. The 

investigators would need a more complex modeling strategy.

An example of a single level, group-randomized trial with complete data for which a 

balanced linear mixed model is appropriate is a group-randomized trial comparing the 
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effectiveness of two workplace alcohol reduction programs. Here, we assume that each 

workplace is randomized to one of the two programs, and that the workplace is the 

independent sampling unit. Each workplace has many workers. The unit of observation is 

the self-reported average amount of alcohol consumed by each worker in each workplace in 

the week following the program. The group-randomized trial can be modeled using a 

balanced linear mixed model if every group (or cluster) includes the same number of 

participants, if the covariance structure is the same in each workplace, and if the predictors 

in the model are the same for every worker in a single workplace. In the balanced linear 

mixed model describing such an experiment, the coefficients are estimates of the average 

amount of alcohol consumed for each alcohol reduction program. Since workplaces rather 

than workers are randomized to a program, the main predictor, treatment group, can be used 

in the balanced linear mixed model. If, however, the investigators wanted to adjust for 

previous participation in an alcohol reduction program, they would need to use a different 

modeling strategy since the participation variable has a potentially different value for each 

worker.

If the workplaces are clustered within neighborhoods, the design becomes a multi-level trial. 

As long as the same number of workplaces appear in each neighborhood, the correlation 

between and within workplaces is the same across neighborhoods, and the randomization is 

at the neighborhood level, the resulting trial can be modeled with a balanced linear mixed 

model.

The final example, the one for which we present a power analysis in Section 6 of this paper, 

is a study with multiple outcomes. The goal of the study is to assess the diagnostic value of 

three oral cancer screening biomarkers, measured on each participant. Here, the study 

participant is the independent sampling unit, and the unit of observation is the measurement 

of each biomarker. Each biomarker is sampled from individuals, some with diagnosed 

cancer of the oral cavity or pharynx (cases) and some with no previous oral cancer diagnoses 

(controls). The predictors in the model are indicator variables for cases and controls. The 

study investigator plans to compare biomarker levels between cases and controls and needs 

to account for the correlation between biomarkers and potentially missing data points. A 

balanced linear mixed model is appropriate for this study because the same number and type 

of measurements are taken on each participant, the disease is diagnosed on the level of the 

participant, and one can assume that the covariance structure of the biomarkers is the same 

for each participant. The coefficients of the model are the average levels of each biomarker 

for those with cancer, and those without cancer. When using a balanced linear mixed model, 

the investigator can include participant level information as predictors or covariates, such as 

the disease state. However, the investigator would need a different and more complex model 

if they would like to adjust for a variable measured on the biomarker level.

We have described balanced linear mixed models for experiments with complete data. 

However, in many longitudinal, spatial, multivariate and multilevel experiments, missing 

outcome data is common. In this manuscript, we describe power analysis for experiments 

which when planned, fulfill all the assumptions for a balanced linear mixed model, but when 

observed, may have missing outcome data. This relaxes assumption 1: the observed 

experiment may have a different number of units of observation for each independent 
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sampling unit. For the example with women during pregnancy, this means that each woman 

may have a different number of weight measurements, a subset of the full nine months of 

weight measurements. For the workplace alcohol treatment experiment, it means that each 

workplace may have a different number of workers. For the biomarkers example, it means 

that each study participant may have one, two or three of the biomarker values planned.

We assume that the data is missing completely at random (MCAR) [3] with some constant 

probability, π. The MCAR assumption means that the chance that each unit of observation is 

missing is unrelated to observed or unobserved characteristics of the independent sampling 

unit, or the temporal or spatial details of the unit of observation. The MCAR assumption is 

appropriate when data are missing due to a random event, such as participants relocating or a 

failure of the instruments used to conduct the experiment. The assumption is not appropriate 

if data are missing due to some process that is correlated with the data values themselves. 

An example of violating the MCAR assumption occurs if an instrument only records values 

above a certain level or if participants drop out of a therapeutic drug study because the drug 

worsens symptoms more than placebo. We provide a more formal definition of the missing 

data process in the methods section.

 1.2 Multivariate hypothesis testing for balanced linear mixed models

A standard data analysis approach for studies with multiple correlated outcomes is to use a 

mixed model Wald test with Kenward-Roger degrees of freedom [4]. The test may be used 

for studies with either complete or missing data. However, mixed model data analysis using 

the Wald test has two problems. Depending on the experiment, the models may have a low 

rate of convergence or an inflated Type I error rate. Convergence problems may occur 

because of the difficulty of estimating the multiple parameters needed for an unstructured 

covariance structure (Table I) [2, 5-7]. The observed Type I error rate may exceed the target 

Type I error rate if the analyst misspecifies the true covariance (Table II) [7]. Inflation occurs 

in simulation studies even with sample sizes of 100, as in the experiment considered by 

Gurka et al. [7], shown in Table II. More importantly, Gurka et al. [7] showed 

mathematically that the inflation can occur with infinitely large sample sizes.

For balanced linear mixed models with complete outcome data, Muller et al. recommend 

that researchers choose a multivariate hypothesis test instead of the Wald test. They argue 

that a multivariate test “always controls test size and has a good power approximation, in 

sharp contrast to mixed model tests” [1]. In studies with complete outcome data and a 

balanced design, the mixed model can be recast as a general linear multivariate model and 

the mixed model Wald test with Kenward-Roger degrees of freedom becomes equivalent to 

the multivariate Hotelling-Lawley trace test.

Calculation of the Hotelling-Lawley trace statistic requires complete data, limiting the utility 

of this multivariate approach. To address this gap, Catellier and Muller [2] provided a 

modification to the Hotelling-Lawley trace test reference distribution. The modification 

permits the use of the multivariate approach even for studies with missing outcome data, so 

long as the planned study analysis fits the assumptions for a balanced linear mixed model. 

The Catellier and Muller [2] approach controls the Type I error rate in many experimental 

scenarios, even in the presence of missing outcome data.
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 1.3 Multivariate power approximations for balanced linear mixed models

A multivariate data analysis requires an aligned multivariate power analysis [8]. Current data 

and power analysis techniques for balanced linear mixed models and multivariate hypothesis 

tests assume complete data [1]. For analysts facing the possibility of missing outcome data, 

and choosing to use a Catellier and Muller multivariate test, a new power method is needed. 

In this work, we propose new power approximations for the Catellier and Muller 

multivariate test. We compare members of a class of power approximations, and suggest a 

specific power approximation that yields power values with accuracy to the second decimal 

place for many common experimental designs with missing data.

In the current work, the new power approximations are described in eight sections. Section 2 

contains general notation. Section 3 reviews known methods for data analysis of the 

balanced linear mixed model, both with complete data and missing data. Section 4 describes 

new power approximations for the Catellier and Muller test for the balanced linear mixed 

model with potentially missing data. In addition, code is provided for implementation of the 

method. Section 5 presents simulation results for the approximations. Section 6 

demonstrates the utility of the method for planning an oral cancer biomarkers study. Section 

7 discusses the implications of the work, and provides recommendations for implementing 

the method, including guidance on executing the method using commercial software. 

Section 8 describes future directions of the research.

 2. General notation

Throughout, notation is similar to that used in Muller and Stewart [9]. Let A = {aij} be a 

matrix with dimensions (r × c) and transpose A′ = {aji}. Indicate row i of A as Ai and column 

j of A as aj. Let vec(A) = [A1 A2 ... An]′. The direct product of matrices A and B is A ⊗ B = 

{aijB}. Let In denote the identity matrix with dimensions (n × n). Write 1(r,c) and 0(r,c) to 

denote (r × c) matrices with all elements equal to 1 and 0, respectively. Denote the trace of A 
as tr(A). The rank of A is indicated by rank(A). For A square and full rank, denote A–1 as the 

unique and full-rank inverse. Write the expected value of the random variable X as E(X).

Let X ~ F(ν1, ν2, ω) indicate that the random variable X has a non-central F distribution with 

numerator degrees of freedom ν1, denominator degrees of freedom ν2, and non-centrality 

parameter ω. Write FF(x; ν1, ν2, ω) to indicate the probability that X ~ F(ν1, ν2, ω) falls in 

the interval [0, x). Similarly, write  to indicate that FF(f; ν1, ν2, ω) = p 
for probability p ∈ [0,1] [9]. Similar notation is used for the central F distribution, the only 

difference being the absence of the non-centrality parameter.

 3. Known methods for multivariate hypothesis testing for balanced linear 

mixed models

 3.1 Multivariate hypothesis testing with complete data

Consider a complete balanced linear mixed model [1] with Nt independent sampling units 

[9, p. 101] and p repeated measures on each independent sampling unit. Let Y = {yij} be an 

(Nt × p) response matrix with p << Nt, X an (Nt × q) matrix of fixed effects of rank r ≤ q, B a 
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(q × p) matrix of fixed effect coefficients, Σ a (p × p) full rank, finite, positive definite, 

symmetric matrix, and E an (Nt × p) error matrix. Let C be an (a × q) contrast matrix for 

comparisons made between independent sampling units, and U a (p × b) contrast matrix for 

comparisons made between the repeated measures within an independent sampling unit [8].

Under the assumption that , the complete balanced mixed 

model can be written as

(1)

The complete balanced mixed model in Equation 1 can be written as an equivalent general 

linear multivariate model, [9, p. 245], shown below:

(2)

For either model form, the Hotelling-Lawley trace test for the general linear hypothesis H0 : 

CBU = Θ = Θ0, can be tested using . Here νe = Nt – r, 

, , and Sh = (Θ – Θ0)′ [C(X′ X)– C′]–1 

(θ – Θ0) [1]. Under the null hypothesis, the test statistic

(3)

has an approximate central F[ν1, ν2(νe)] distribution [10], with ν1 = ab and

(4)

 3.2 Multivariate hypothesis testing with missing data

Catellier and Muller [2] suggested a data analytic technique for the general linear 

multivariate model with missing data only in Y. The approach maintains accurate Type I 

error rate in small samples.

To implement the approach, define missing data summary statistics Nmk, for k ∈ {1, 2, 9}, 

as follows. Here, the subscripts parallel Catellier and Muller [2, Table 1]. For D = {dij}, let 

dij = 1 if yij is non-missing and 0 otherwise. Let 

. The number of non-missing pairs 

of observations in columns j and j′ of Y is . Let , 
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 and Nm9 = N̄
jj′. Notice that with complete data, Nm1, Nm2, and Nm9 all 

collapse to Nt.

With νmk = (Nmk – r), three possible test statistics for missing data are

(5)

which have approximate central F[ν1, ν2(νmk)] distributions [2], with ν1 = ab, and

(6)

Of the set of 11 statistics considered by Catellier and Muller, we focus only on Nm1, Nm2 

and Nm9. The missing data summary statistic Nm1 provides a lower bound for the effective 

sample size. Catellier and Muller [2] recommended Nm2 to control test size in data analyses 

using the Hotelling-Lawley trace. Tu et al. [11] suggested using E(Nm9), the trimmed sample 

size, to calculate an upper bound for power.

 4. New multivariate power approximations for balanced mixed models 

with complete or missing data

For complete data, Muller et al. [1, 8] proposed calculating power for the Hotelling-Lawley 

trace using a non-central F approximation. With ν1 and ν2(νe) as described in Section 3.1, 

Muller et al. [1] defined  and the non-centrality parameter as 

ω(νe) = νeK(νe). Power was approximated as P(νe) = 1 – FF[fcrit(νe); ν1, ν2(νe), ω(νe)].

For power calculations, the missing data process must be explicitly defined. With π ∈ [0, 1), 

the population proportion of missing data, assume that dij are independently and identically 

distributed Bernoulli(π) random variables. Further assume that dij are independent of the 

values in Y. Note that the assumed missing data process gives rise to data that are missing 

completely at random [3].

If the process that creates missing data is random, and independent of the values of the data 

itself, one can imagine a series of possible realizations of D. Each realization of D 
corresponds to a Y matrix with a varying number of missing values, at varying locations. In 

turn, each Y matrix yields a different power for the experiment. Calculating the expected 

power yields the average power over all possible realizations of D.

Under the assumption that the power function is approximately linear in Nmk in a 

neighborhood of E(Nmk), approximate E[P(Nmk)] ≈ P[E(Nmk)], where the expectation is 

calculated over the distribution of D = {dij}.

It can be shown that
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(7)

and

(8)

We provide the results of a regression model for E(Nm2) (Table V, Appendix A) as the 

calculation proved intractable. Notice that for complete data, E(Nm1), E(Nm2), and E(Nm9) 

reduce to Nt. A SAS/IML module to calculate E(Nm1), E(Nm2), and E(Nm9) is included in 

Appendix C. In addition, a version of the free, open-source code appears at 

www.SampleSizeShop.org.

Each Nmk yields a separate power approximation. Calculate the approximations as follows:

Step 1: For the null hypothesis Θ = Θ0, define values for α, X, C, U, B and Σ.

Step 2: For ν*mk = E(Nmk) – r, calculate .

Step 3: Calculate the non-centrality parameter, ω(ν*mk) = ν*mkK(ν*mk).

Step 4: Calculate power as a function of the non-central F distribution as

(9)

 5. Numerical evaluations

 5.1 Methods

To evaluate the accuracy of the power adjustment, theoretical power was compared to 

simulated empirical power for a range of experimental designs. As in Catellier and Muller 

[2], the designs defined α = 0.05, π ∈ {0, 0.05, 0.10}, and hence expected percentage of 

missing data (100 · π) ∈ {0%, 5%, 10%}, p ∈ {3, 6}, Nt ∈ {12, 24, 48, 96, 192, 384}, C = 

[0(3, 1) I3] and U = Ip. The case with Nt = 12, and p = 6 was omitted due to being 

implausibly small. For predictors, X = Xe ⊗ 1(Nt/4, 1) with Xe a (4 × 4) matrix containing an 

intercept, and the linear, quadratic and cubic orthogonal trends over the repeated measures. 

The hypothesis of interest was the presence of a linear, quadratic, or cubic trend over the 

response variables for each group.

Choices for B and Σ were modeled after Catellier and Muller [2] and Barton and Cramer 

[12]. Other factors included the diagonal elements of Σ (either equal, or unequal), and the 

correlation between the dependent variables (low or high). Values for Σ appear in Appendix 

B. For concentrated non-centrality [13], B = Bc(p) = Δ[0(p, p) 1(p, 1)]′. For diffuse non-

centrality [13], B = Bd(p) = Δ[0(p, 1) Σ1/2]′. In both cases, Δ was chosen to give power values 

∈ {0.20, 0.50, 0.80, 0.90}, for complete data.
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For each experimental design, theoretical power was calculated as in Equation 9 using three 

separate adjustments: E(Nm1), E(Nm2) and E(Nm9). Empirical power was simulated as in 

Catellier and Muller [2]. For each design, a dataset was generated with random missing 

values. The missing data summary statistics, Nm1, Nm2, and Nm9 were tallied. The EM 

algorithm [14] was used to impute missing data values and find estimates for B and Σ. An 

observed F statistic was calculated for the Hotelling-Lawley trace with the modifications 

described in Section 3.2. The statistic was then compared to the modified null case reference 

distribution, also described in Section 3.2. For each combination of experimental factors, 

empirical power was calculated as the proportion of times the null hypothesis was rejected 

over 10,000 realizations of the data.

Experimental designs with less than 10% convergence (1,000/10,000 trials) were excluded 

from the results. Convergence failure of the EM algorithm sometimes yields considerably 

fewer trials than planned. Designs that lead to convergence failure may also cause 

convergence of the EM algorithm on local maxima, resulting in incorrect estimates. In 

addition, most data analysts prefer analytic methods with high convergence rates.

The accuracy of the power approximations was measured using either the deviation, the 

median deviation, or the maximum absolute deviation. The deviation was calculated as the 

theoretical power minus the empirical power. The median (or maximum) deviation was 

calculated as the median (or maximum) across experimental conditions with p, π, and 

complete data power held constant. Deviations, median deviations, or absolute deviations 

closer to zero indicated greater accuracy.

Raw deviations, rather than absolute deviations were used in order to highlight the sign of 

the deviation. Similarly, the median, rather than the mean, was used since the median 

preserves information about signs.

 5.2 Results

There were 26 experimental designs for which fewer than 10% of the 10,000 trials 

converged, approximately 3% percent of the 792 designs considered.

The effects of variance structure, sample size, and power on the deviations of the three 

power approximations are summarized in Table IV, Figure 1 and Figure 2, respectively. In 

general, the power approximation using Nm1 had the best accuracy, with accuracy improving 

as sample size increased. Accuracy was about the same, no matter the complete data power, 

or the variance structure. For any of the three power approximations, the accuracy improved 

as the number of repeated measures and the percentage of missing data decreased.

The accuracy of all three power approximations was largely unaffected by changes in 

variance structure and type of non-centrality (Table IV). However, the percentage of missing 

data and the number of repeated measures did affect accuracy for all three approximations. 

The power approximation using Nm1 retained accuracy for designs involving p = 3, no 

matter the percentage of missing data.
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Figure 1 shows the effect of sample size on the accuracy of the three power approximations. 

The designs considered were all chosen so that the complete data power was 90%. For 

designs with p = 6, the EM algorithm converged for fewer than 10% of trials for most 

designs with Nt ≤ 24. Deviations were smaller for designs with fewer repeated measures and 

a smaller percentage of missing data. For power approximations using Nm1, deviations 

became smaller as sample size increased, with good performance by Nt = 48. The maximum 

absolute deviation for approximations using Nm1 and designs with p = 3 was 0.02, even with 

10% missing data. By contrast, the power approximations using Nm2 and Nm9 overestimated 

the empirical power across all sample sizes. None of the power approximations performed 

well for p = 6, and 10% missing data.

In Figure 2, the complete data power was demonstrated to have little effect on the accuracy 

of the power approximation using Nm1. Here, the focus was on designs with Nt = 48. For 

most experimental scenarios, the power approximation using Nm1 was within approximately 

0.05 of the empirical power irrespective of the complete data power. Accuracy was best for 

designs with fewer repeated measures and less missing data. With p = 6, and 10% missing 

data, the performance of the approximation was poor.

 6. Demonstration

To demonstrate the utility of the method, we conduct a power analysis for a hypothetical oral 

cancer biomarkers study. Cancer of the head and neck has a 50% five-year survival rate and 

up to two times the mortality rate in black males [15]. The high mortality rate is believed to 

be due to late stage diagnosis and treatment [15-17]. To facilitate earlier identification of 

disease, Elashoff et al. [18] evaluated 10 salivary biomarkers for the detection of oral 

squamous cell carcinoma. The biomarkers showed increased expression in cases over normal 

controls.

Suppose a researcher would like to validate three of the salivary biomarkers studied by 

Elashoff et al. [18], IL-1B, IL-8, and SAT, in the Veterans Affairs population. The researcher 

plans an unmatched case/control study. There will be 75 participants with diagnosed oral 

squamous cell carcinoma, and 75 participants without carcinoma. A saliva sample will be 

taken from each participant and analyzed to determine the levels of each biomarker. The 

researcher wishes to test the null hypothesis that there is no difference between cases and 

controls in the mRNA expression levels for any biomarker.

Per the recommendations of Muller et al. [1], the researcher plans to use a general linear 

multivariate model (Equation 2) and the Hotelling-Lawley trace. The planned Y is a (150 × 

3) matrix containing the mRNA expression levels for the three biomarkers and X = I2 ⊗ 

1(150/2, 1). For power analysis, the researcher plans to use α = 0.05, C = [1 –1], U = I3, and a 

compound symmetric , with σ2 = 2.9 and ρ = 0.4. In 

addition, the researcher considers B = [μc μn]′, with control means 

, δ′ = [–1.3 –2.1 –1.4] and case means . The values 

for σ2, μc, μn, and δ are extrapolated from Table 3 in Elashoff et al. [18]. The parameter ρ is 

chosen arbitrarily. In a real power analysis, ρ would be based either on the literature or on 
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the previous experience of the researcher. The constant K is used to vary the difference in 

group means. Note that, when K = 0, μc, = μn and there is no difference between the cases 

and controls on levels of the biomarkers. When K = 1, mean biomarker levels for each of the 

three biomarkers exactly match those of Cohort 4, in Table 3 of Elashoff et al. [18].

The power analysis must account for potential missing data. Funds for the study are limited 

and failed assays will not be rerun, which could result in randomly missing data points. The 

researcher anticipates a 6% assay failure rate [19]. To account for the missing data, the 

researcher will use the modified F test recommended by Catellier and Muller [2].

The researcher calculates power for the study using E(Nm1), as suggested in Section 4. 

Power curves for 0%, 5%, and 10% missing data are shown in Figure 3. At the planned 

sample size, the study has 90% power for mean differences at least as great as those 

observed by Elashoff et al. [18] and up to 10% missing data.

Example SAS/IML code for the oral cancer biomarker power analysis is given in Appendix 

D.

 7. Discussion

Accurate sample size calculation is a vital component of responsible research. 

Overestimation of the sample size can expose study participants to unnecessary risk. 

Underestimation of the sample size can result in studies that cannot be replicated, and which 

exhaust resources that could have been used for conclusive scientific progress.

The approach presented in the current work gives a general method to approximate power 

for balanced linear mixed models using a multivariate test. The approach extends power 

methods for the balanced linear mixed model with complete data [1] to similar models with 

missing data. The manuscript focuses on an adjusted multivariate Hotelling-Lawley trace 

test [2] since that test provides accurate Type I error rate, even in small samples. It is 

important to develop a power method aligned with the planned data analytic approach [8].

The new power approximations can be implemented using the module and example provided 

in Appendices C and D, respectively. Copies of the free open-source module and example 

also appear at www.SampleSizeShop.org. The implementation has two steps. First, a custom 

SAS/IML [20] module computes the expected values of Nm1, Nm2 or Nm9, as desired. Next, 

the chosen expected value is passed into POWERLIB [21, Version 2.2]. POWERLIB then 

provides the chosen power approximation for the Hotelling-Lawley trace statistic.

The power approximations can also be computed using alternative, readily available 

software packages. The simple module to compute the expected values of Nm1, Nm2 or Nm9 

can be ported easily to other programming languages, such as R [22] or MATLAB [23]. To 

compute the power, users may choose any power software that provides approximations for 

multivariate tests. Examples include PASS [24] or GLIMMPSE [25]. If the program does 

not allow use of fractional sample sizes, the user may need to round the expected values of 

Nm1, Nm2 or Nm9 to the nearest whole number.
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We provide the following recommendations for researchers who choose to use the power 

approximations:

1) For most experimental designs using the balanced linear mixed model, we 

recommend that researchers use the power approximation with Nm1 to approximate 

power. The approximations using Nm2 and Nm9 tend to overestimate the power. By 

contrast, the approximation using Nm1 is either very accurate, or provides a slight 

underestimation.

2) In designs with large numbers of repeated measures and a high anticipated amount 

of missing data, all of the power approximations deviate substantially from the 

empirical power. Under these conditions, the choice of power approximation should 

balance the benefits of the research with the potential harms to study participants. 

In some cases, the study presents no great harm to participants. Thus, researchers 

may desire a liberal sample size calculation, one that will enroll more than enough 

participants. If so, the researchers should use the approximation with Nm1. If the 

study may expose participants to harm, study designers should be conservative in 

their approach and enroll as few participants as possible. If so, researchers should 

choose the approximations using Nm2 or Nm9.

3) Researchers designing studies with small sample sizes and large numbers of 

repeated measures who expect more than 10% missing data should consider 

alternatives to the Catellier and Muller [2] data analysis. For many such designs, 

the Catellier and Muller [2] approach fails more than 9 out of 10 times. If the 

variance model is known, study investigators should use the Wald test with 

Kenward-Roger denominator degrees of freedom [4].

 8. Future work

Development of approximations for power often require consideration of multiple 

realizations of some random factor. Random factors may include, for example, the pattern of 

missing data [the current work, 11, 26] or a random covariate [27-29]. In this manuscript, 

and in the papers on random covariates, a common approach is described to account for the 

random factors. The expectation of the power over all possible realizations of the random 

factor is approximated by the power function, evaluated at the expected value of the random 

factor. A similar approach should work for other problems with random factors, including 

random and random time- or spatially-varying covariates, or covariates that vary within 

groups or clusters. In addition, the approach could be applied to the Wald statistic for the 

mixed model with missing data.

In order to calculate the expected value of the random missing data patterns, Ringham et al. 
(in submission) assumed a specific probability process. In future work, additional missing 

data probability processes will be considered. One process of interest allows for correlation 

between dij and dij′. Another process of interest includes a conditional relationship between 

dij and di(j+1) so that, if yij is missing then yi(j+1) is also likely to be missing. This process 

produces monotone missing data with a high probability.
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 Appendix A

Table V reproduces results from Ringham et al. (in submission). Using the results in the 

table, estimate E(Nm2) as:

 Appendix B

The numerical evaluations in the current work used variances and correlations as in Barton 

and Cramer [12] and Catellier and Muller [2], reproduced below. Write σ2(p, v), v ∈ {Equal, 

Unequal} to specify the vector of variances used for p repeated measures and i type of 

variance. Similarly, let ρ(p, w), w ∈ {Low, High} indicate the correlation matrix used for p 
repeated measures and w type of correlation. Define

and
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 Appendix C

The following SAS/IML module computes the expected value of Nm1, Nm2, or Nm9 An 

example call is listed in the “Usage” line of the header comment.
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 Appendix D

The SAS/IML program below uses the power approximation with E(Nm1) to calculate power 

for the oral cancer biomarkers example in Section 6. Inputs for the power analysis are taken 

from Table 3 in Elashoff et al. [18]. The program uses the NMK module in Appendix C to 

compute E(Nm1). The expectation is passed into POWERLIB, which approximates power 

for the multivariate hypothesis tests using E(Nm1) as an adjusted sample size. Power in 

approximated for a range of effect sizes and percentages of missing data. Results are output 

as a power curve (Figure 3, Section 6).

Note that, should the user wish to approximate power with an alternate statistical package, 

the program could be truncated prior to the POWERLIB call. Results from the NMK module 

could be output to a dataset. The dataset could then be imported into a statistical package of 

the user's choice.
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Figure 1. 
Median deviation for 90% complete data power.
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Figure 2. 
Deviations for power approximations using Nm1 and experimental designs with Nt= 48.
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Figure 3. 
Power curves for a hypothetical oral cancer biomarkers study.
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Table I

Convergence rates for mixed models.

Study % Converged

Catellier and Muller (2000) 10

Serrano (2008) 37

Gurka, Edwards, Muller (2011) 61

Fouladi and Shieh (2004) 84
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Table II

Type I error for mixed model with correct and incorrect covariance models, α = 0.05, Nt = 100, p = 5, 20% 

missing data.

Type I Error

Correlation Model Correct Incorrect

Autoregressive (AR) 0.047 0.064

Linear in Time 0.048 0.088

Linear in Time & AR 0.044 0.117
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Table III

Sandwich estimator Type I error rates for target α = 0.05, time by treatment test, p times, two groups, Nt 

independent sampling units.

Nt p Type I Error

10 4 0.15

10 8 0.37

40 4 0.07

40 8 0.08

40 32 0.30
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Table IV

Deviations for complete data power of 90% and Nt = 48.

Non-centrality π ρ σ 2 N m1 N m2 N m9

p = 3 p = 6 p = 3 p = 6 p = 3 p = 6

Concentrated 5 Low = 0.022 −0.032 0.039 0.073 0.073 0.137

Concentrated 5 Low ≠ 0.014 −0.034 0.032 0.071 0.065 0.135

Concentrated 5 High ≠ 0.010 −0.020 0.027 0.085 0.061 0.149

Concentrated 10 Low = 0.017 −0.114 0.060 0.152 0.139 0.286

Concentrated 10 Low ≠ 0.018 −0.125 0.061 0.140 0.141 0.274

Concentrated 10 High ≠ 0.019 −0.118 0.062 0.148 0.141 0.282

Diffuse 5 Low = −0.002 −0.042 0.015 0.063 0.049 0.127

Diffuse 5 Low ≠ 0.007 −0.045 0.024 0.060 0.058 0.124

Diffuse 5 High ≠ 0.006 −0.050 0.023 0.055 0.057 0.119

Diffuse 10 Low = 0.001 −0.132 0.044 0.133 0.123 0.267

Diffuse 10 Low ≠ −0.001 −0.131 0.042 0.134 0.121 0.268

Diffuse 10 High ≠ −0.001 −0.150 0.042 0.115 0.121 0.249
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Table V

Regression coefficients for the regression of E(Nm2) on Nt/10, p, and π.

i Xi βi SE βi
p

1 Intercept 62.7318676 1.39997758 < 0.001

2 Nt −5.5156768 0.48554341 < 0.001

3 p −1.6042196 0.19829228 < 0.001

4 1 – π −147.7255861 2.42449211 < 0.001

5 Nt
2 −0.1324363 0.03086649 < 0.001

6 p 2 0.0640387 0.00512660 < 0.001

7 (1 – π)2 87.3472243 1.05263141 < 0.001

8 Ntp −0.4981166 0.05868018 < 0.001

9 Nt(1 – π) 14.8545994 0.56777048 < 0.001

10 p(1 – π) 1.2421550 0.23187504 < 0.001

11 Ntp(1 – π) 0.4137540 0.06862130 < 0.001

12 Nt
2p2 0.0019218 0.00035756 < 0.001

13 Nt
2 1 − π 2 0.1812043 0.04124270 < 0.001

14 p2 (1 – π)2 −0.0423721 0.00685029 < 0.001

15 Nt
2p2 1 − π 2 −0.0013272 0.00047793 0.0055
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