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Abstract

For thermal modeling to play a significant role in treatment planning, monitoring, and control of 

magnetic resonance-guided focused ultrasound (MRgFUS) thermal therapies, accurate knowledge 

of ultrasound and thermal properties is essential. This study develops a new analytical solution for 

the temperature change observed in MRgFUS which can be used with experimental MR 

temperature data to provide estimates of the ultrasound initial heating rate, Gaussian beam 

variance, tissue thermal diffusivity, and Pennes perfusion parameter. Simulations demonstrate that 

this technique provides accurate and robust property estimates that are independent of the beam 

size, thermal diffusivity, and perfusion levels in the presence of realistic MR noise. The technique 

is also demonstrated in vivo using MRgFUS heating data in rabbit back muscle. Errors in property 

estimates are kept less than 5% by applying a third order Taylor series approximation of the 

perfusion term and ensuring the ratio of the fitting time (the duration of experimental data utilized 

for optimization) to the perfusion time constant remains less than one.
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1. Introduction

Thermal modeling plays an important role in ongoing efforts to improve magnetic 

resonance-guided focused ultrasound (MRgFUS) thermal therapies. While current treatment 

strategies use magnetic resonance temperature imaging (MRTI) during the therapy alone for 
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treatment guidance, effective use of thermal modeling can improve safety and streamline 

and shorten the overall treatment time, a known treatment limiting factor (Wu et al 2003, 

Kim et al 2011, 2012). For example, thermal modeling can be used to preemptively adjust 

treatments to prevent violation of tissue safety constraints and mitigate risks to healthy 

tissues and critical structures. Thermal modeling can also be used during treatment planning 

to make therapies more time efficient by tailoring power and duration settings to balance 

healthy tissue constraints with a desire for fast target treatment without excessive overdosing 

(Burtnyk et al 2010, Jenne et al 2012, Salgaonkar et al 2014, Schwenke et al 2015). During 

the treatment, thermal models can provide information to increase the spatial and temporal 

resolution or volumetric coverage of temperature monitoring (Todd et al 2010, Roujol et al 
2012, de Senneville et al 2013, Odéen et al 2015). In addition to improved safety 

monitoring, these additional data can provide model-predictive controllers with treatment 

feedback guiding impromptu adjustments for optimized thermal therapies (Salomir et al 
2000, Vanne and Hynynen 2003, Arora et al 2006, de Bever et al 2014). In each of these 

cases, however, the value of thermal models and the treatment predictions they provide 

depends upon the accuracy of the ultrasound and thermal properties used in those models.

With the development of accurate and robust MRTI capabilities comes the opportunity to 

develop or improve patient-specific property estimation procedures that are less invasive and 

less susceptible to positional uncertainties and noise errors than previous methods. In recent 

years, MRTI has been used in estimation techniques for determining a variety of ultrasound 

(Salomir et al 2000, Dragonu et al 2009, Dillon et al 2012, 2013, Appanaboyina et al 2013, 

Alon et al 2013), thermal (Cline et al 1994, Salomir et al 2000, Cheng and Plewes 2002, 

Huttunen et al 2006, Sumi and Yanagimura 2007, Dragonu et al 2009, Cornelis et al 2011, 

Zhang et al 2013, Appanaboyina et al 2013, Alon et al 2013, Dillon et al 2013, 2014, Zhang 

et al 2013, 2015), and perfusion properties (Cheng and Plewes 2002, Huttunen et al 2006, 

Dragonu et al 2009, Cornelis et al 2011, Appanaboyina et al 2013, Alon et al 2013, Dillon et 
al 2015).

This paper introduces a new analytical temperature solution that can be used with MRgFUS 

temperature data to provide estimates of four parameters of interest in patient-specific 

modeling: the ultrasound initial heating rate (IHR) and Gaussian beam variance (β), the 

tissue thermal diffusivity (α), and the Pennes perfusion parameter (w). This is the first 

analytical solution for estimating all of these parameters that incorporates finite duration 

ultrasound heating and the effects of perfusion. The solution is made possible by replacing 

the exponential perfusion term in a commonly applied focused ultrasound integral equation 

with its Taylor series approximation. A parametric simulation study assesses how the order 

of the Taylor series approximation, optimization fitting parameters, random Gaussian noise, 

and various ultrasound and thermal properties affect the estimation results. The technique is 

then demonstrated with in vivo MRTI data from focused ultrasound heating in rabbit back 

muscle. By applying the extensive dynamic and spatial MRgFUS data to the simultaneous 

estimation of these important parameters, this technique has unique potential to provide 

accurate properties for improved thermal modeling of MRgFUS thermal therapies.
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2. Theory

2.1. Heating solution

The transverse plane (figure 1) temperature change profile during focused ultrasound 

heating, Theat (°C), as a function of radial position r (mm) from the beam axis and time t (s) 

since the onset of heating, assuming a Gaussian power distribution with no axial conduction, 

uniform thermal properties, and perfusion modeled as a scalar thermal energy sink (Pennes 

1948), is expressed by (Cline et al 1994)

(1)

where IHR is the initial heating rate (°C/s) and β is the Gaussian variance (mm2) of the 

ultrasound beam. The perfusion time constant τbl (s) is related to the Pennes perfusion 

parameter w (kg/m3/s), tissue density ρ (kg/m3), and specific heats of tissue cp and blood cbl 

(J/kg/°C) by the equation τbl=ρcp/(wcbl). The conduction time constant τc (s) depends upon 

tissue thermal diffusivity α (mm2/s) and β according to τc=β/(4α).

In the past, applying (1) for analytical estimation of ultrasound and thermal properties has 

required eliminating the time integral through the assumption of instantaneous heating 

(Parker 1983, Cheng and Plewes 2002, Anand and Kaczkowski 2008, 2009, Dragonu et al 
2009, Cornelis et al 2011, Zhang et al 2013, 2015) or simplifying the integrand for 

evaluation by neglecting perfusion (Cline et al 1994, Dillon et al 2012, 2013, 2014) and/or 

utilizing only the center-line, on-axis solution (Parker 1985, Kress and Roemer 1987, Cline 

et al 1994, Dillon et al 2012). To our knowledge, the full analytical solution of (1) cannot be 

directly evaluated.

2.2. Taylor series expansion of perfusion

However, by approximating the exponential perfusion term with a low-order Taylor series 

expansion, obtaining a closed-form analytical solution to (1) is possible. In this study, we 

evaluate the 1st, 2nd, and 3rd order Taylor series perfusion term approximations (i.e. 3rd order 

approximation: exp(−t/τbl) ≈ 1 − (t/τbl) + (t/τbl)2/2 − (t/τbl)3/6). Figure 2 shows the 

exponential perfusion term exp(−t/τbl) and the proposed Taylor series approximations as a 

function of the exponential argument t/τbl. It is clear that the higher order approximations 

will remain valid for longer times, with approximation errors greater than 5% occurring at 

t/τbl> 0.29, 0.58, and 0.88 for the 1st, 2nd, and 3rd order approximations, respectively.

2.3. Taylor series-approximated analytical heating solutions

After substituting the appropriate Taylor series approximation into (1), the time integral can 

be evaluated for a closed-form analytical solution. These solutions are given in table 1, 

where Ei refers to the exponential integral function (Abramowitz and Stegun 1964). While 

the higher order approximations should remain valid for longer times, they also increase the 

complexity of the analytical solution and may increase the computation time required for 

identifying the parameters of interest.
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2.4. Taylor series-approximated analytical cooling solutions

It may be beneficial to include the analytical cooling solution in the estimation process, 

especially when short ultrasound heating durations, th (s), limit the number of MRTI 

acquisitions during heating. The desired cooling solutions are obtained by the superposition 

of heating solutions according to (Cline et al 1994, Dillon et al 2014)

(5)

These solutions are presented in table S1 of the supplementary material.

2.5. Estimation of ultrasound, thermal, and blood flow properties

Even though the complexity of the analytical solutions varies for the different order Taylor 

series approximations, the same parameters are required in each variant. With known times t 
and th and radial positions r for the MRTI data, the heating [(2), (3), or (4)] and/or cooling 

[(S1), (S2), or (S3)] solutions can be optimized in a least-squares minimization utilizing four 

parameters: IHR, β, τc, andτbl. The tissue thermal diffusivity (α) can be calculated from 

fitting parameters β and τc and the Pennes perfusion parameter (w) from τbl. While many 

previous methods have employed only single position data or required multi-step estimation 

procedures, this method can estimate each of these four important parameters using 

temperature data from multiple locations and times simultaneously.

3. Methods

3.1. Numerical simulations of temperature data

The ultrasound power deposition pattern was simulated as a radial Gaussian in a 2D plane 

perpendicular to the beam axis at a spatial resolution of 0.1 mm isotropic. As part of the 

parametric study, the full width at half maximum (FWHM) of the ultrasound varied between 

1, 1.5, 3, and 5 mm, with a nominal value of 3 mm. The magnitude of the power deposition 

was adjusted to yield 10 °C temperature rise during thermal simulations. Temperatures were 

calculated with a 2D finite-difference time-domain solver at a spatial and temporal 

resolution of 0.1 mm isotropic and 0.01 s, respectively. The ultrasound heating time th was 

24 s (approximately the duration of current clinical sonications) and cooling temperatures 

were simulated for an additional 24 s. Adiabatic boundary conditions were assumed at the 

edges of the model and the blood temperature was assumed equal to the uniform, initial 

tissue temperature. Tissue density was set at 1000 kg/m3 and tissue and blood specific heats 

were assumed equal at a value of 4000 J/kg/°C. The parameter study adjusted the tissue 

thermal diffusivity α between values of 0.075, 0.1, 0.125, 0.15, and 0.175 mm2/s (nominal α 

= 0.125 mm2/s), and the Pennes perfusion parameter w was simulated at 1, 5, 10, 20, 30, 40, 

and 50 kg/m3/s (nominal w = 5 kg/m3/s). To more realistically represent MRTI data, the 

temperatures were subsampled to 0.5 mm isotropic spatial resolution and 4 s temporal 

resolution. In high signal regions, MRI noise distributions can be approximated by a 

Gaussian function (Anand and Sahambi 2010); therefore, random Gaussian noise was added 

to the temperatures with a standard deviation (SD) of 0.1, 0.2, 0.5, 1, and 2 °C (nominal 
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noise = 0.2 °C). The study included 250 independent noise trials for each parameterized 

case. In a few cases, no noise was added to the data to identify errors under ideal conditions.

3.2. Optimization of parameters to estimate properties

The properties of interest were estimated as described in section 2.5 on an Intel Core 2 Duo 

T6500 Processor (2.10 GHz, 4.00 GB RAM) using MATLAB function fminsearchbnd. This 

function places constraints on each of the four fitting parameters (IHR: 0–10, β: 0–10, τc:0–

25, and τbl:10–∞), but still allows for a range of values larger than would be anticipated 

clinically. For reference, values of τbl calculated using a tissue property database compiled 

from many studies are presented in table 2 (Hasgall et al 2015). Fitting parameters for each 

trial started from a random initial guess. The study assessed the order of the Taylor series 

approximation in the analytical solutions, and the 3rd order approximation was used in the 

nominal case. Two parameters related to the selection of data in the optimization process 

were also considered in the parametric study. First, the fitting time included the first 8, 16, 

24, 32, 40, or 48 s of simulated data (nominal fitting time= 48 s). Second, the fitting radius 

(0, 2, 4, or 6 mm) incorporated all data within that distance of the beam axis (see portrayal in 

figure 1) in the optimization process (nominal fitting radius= 4 mm). A fitting radius of 0 

mm indicates that only the data from the point at the center of the focal zone (r=0) are 

included, requiring use of the on-axis analytical solution provided by Kress and Roemer 

(1987) and its corresponding cooling solution evaluated using (5).

3.3 Experimental protocol

To demonstrate the technique in vivo, MRgFUS was performed on a female New Zealand 

white rabbit under IACUC approval. The rabbit was placed supine on the MRgFUS system 

under general anesthesia, and the back muscle was sonicated with an acoustic power of 8 W 

for 24 s (see figure 3 for setup). MR temperature images (Siemens 3T Trio, 3D segmented 

echo planar imaging (EPI), repetition time = 36 ms, echo time = 11 ms, flip angle = 20°, 

bandwidth = 744 Hz/pixel, EPI factor = 9, spatial resolution = 1×1×3 mm, field of view = 

192×114 mm, 8 slices with 25% oversampling, temporal resolution = 4.7 s) were acquired 

with a single-loop coil positioned under the rabbit and a two-channel surface coil placed on 

the rabbit’s abdomen. The coil signals were weighted and combined by the inverse 

covariance matrix (Roemer et al 1990), data were zero-filled interpolated to 0.5 mm 

isotropic resolution (Todd et al 2011, Dillon et al 2013), and temperatures were calculated 

with the proton resonance frequency method (De Poorter et al 1995, Ishihara et al 1995) 

using a 2D referenceless technique with fifth order polynomial (Rieke et al 2004). Tissue 

properties were estimated with the 3rd order Taylor series approximation using a fitting time 

of 80 s and fitting radius of 10 mm in the transverse plane where the maximum temperature 

rise occurred. After the animal was euthanized, invasive thermal diffusivity measurements 

were made in the back muscle with a commercial thermal property analyzer (KD2 Pro, 

Decagon Devices, Pullman, WA, USA).

4. Results

Noise-free simulation results are shown in figure 4, in which the fitting time (x-axis), Taylor 

series approximation order (rows), and Pennes perfusion parameter w are varied (color 
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gradation). Results are normalized on the y-axis as the ratio of the estimated to true property 

values. These plots show that, in the absence of noise, results are most accurate for low 

perfusion levels and short fitting times. In addition, the 3rd order Taylor series approximation 

is consistently the most accurate. As perfusion and fitting times increase, property estimates 

using the 2nd order Taylor series approximation degrade significantly.

Figure 5 combines all the results of figure 4, and its x-axis (tfit = fitting time) is non-

dimensionalized by the perfusion time constant τbl. For each Taylor series approximation 

order, results for different perfusion levels overlap. Thus, regardless of perfusion level, 

accurate estimates of IHR, β, and α (< 7% error) can be made using any of the Taylor series 

approximations with the condition that tfit/τbl < 1. However, accurate estimates of w require 

a 3rd order Taylor series approximation and that tfit/τbl < 1 for < 5% error or tfit/τbl < 1.5 for 

< 10% error.

As fitting times increased from 8 to 48 s, average computation times for estimating 

properties ranged from 42–61 s for the 1st order Taylor series approximation, 42–65 s for the 

2nd order approximation, and 52–78 s for the 3rd order approximation.

Figure 6 uses box-and-whisker plots of the 250 trials at each noise level to show that 

increased noise in temperature data leads to more variability in property estimates, as 

expected. The Pennes perfusion parameter w is the property most sensitive to noise.

Increasing the fitting radius reduces variability in property estimates as seen in figure 7. The 

number of voxels included in the optimization process was 1, 45, 193, and 437 for the 0, 2, 

4, and 6 mm fitting radius, respectively. The greater computational burden of using more 

voxels’ data for a larger fitting radius results in longer computation times (rightmost plot of 

figure 7).

The size of the ultrasound beam has minimal effect upon property estimates, with <5% 

reduction in the interquartile range (IQR) for all estimates when increasing the beam FWHM 

from 1 to 5 mm (see supplemental data). In all cases, the median value was within 1% of the 

true property value.

Variation in the tissue thermal diffusivity α does not produce any observable differences in 

property estimates (see supplemental data). The entire IQR was contained within ±2%, ±3%, 

±3%, and ±6% of the true values for IHR, β, α, and w, respectively.

In figure 8, the Pennes perfusion parameter w is varied, and fitting times are adjusted for 

perfusions greater than 20 kg/m3/s to ensure that tfit/τbl < 1. When estimating IHR, β, and α, 

changes in perfusion do not result in observable changes in estimation. The variability of w 
estimates decreases with increasing perfusion values. When fitting times are reduced to 

ensure tfit/τbl < 1, a slight increase in the variability of results is seen.

Several locations and times from the least-squares fit (blue line) of (4) to the in vivo 
MRgFUS data (× markers) are shown in figure 9. The left plot includes data from the 

heating period at times t = 2, 12, and 21 s. The middle plot shows cooling temperatures at 

times t = 26, 35, and 78 s. The right plot shows the experimental temperature versus time 
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curve and fit at the location of maximum temperature change (13.9 °C). The properties 

estimated for these data are IHR = 2.3 °C/s, β= 1.5 mm2, α= 0.146 mm2/s, and w = 1.3 

kg/m3/s. Invasive measurements of thermal diffusivity (N=5) have a mean and standard 

deviation value of 0.155± 0.008 mm2/s.

5. Discussion

The primary finding of this study is that by utilizing a 3rd order Taylor series expansion of 

the exponential perfusion term, a closed-form analytical temperature solution is attainable 

that can be used with MRTI data for accurate property estimation independent of beam size, 

tissue thermal diffusivity and perfusion levels, provided that the data for fitting is selected 

such that tfit/τbl < 1.

5.1. Effects of solution properties

The 3rd order Taylor series approximation consistently provided the most accurate property 

estimates and maintained <5% error under the condition tfit/τbl < 1. Somewhat surprisingly, 

results with the 2nd order Taylor series approximation were generally worse than those of the 

1st order approximation. This most likely occurs because the 2nd order expression 

overpredicts perfusion when the approximation is invalid (see figure 2), thus 

overemphasizing its contribution in the analytical expression, while the 1st order expression 

underpredicts perfusion, which reduces the impact of its error in the estimation process.

5.2. Effects of fitting properties

In the noise-free case, better estimates of all properties are obtained when using a short 

fitting time. With the addition of noise, which is always present in reality, utilizing 

additional data from more fitting points is desirable. Because the analytical solution 

becomes invalid for long times, it is recommended that the choice of fitting time be 

constrained by tfit/τbl < 1. This constraint should only be consequential when high perfusion 

values are anticipated in the tissue of interest, i.e. in the kidneys (see table 2).

Using a single voxel (fitting radius = 0 mm) eliminates information about the spatial 

distribution of temperatures and explains why estimates of spatial parameters β and α could 

not be made for that case (figure 6). While estimates of IHR and w can be made with the 

center-point solution, increasing the fitting radius led to a dramatic reduction in the 

variability of results and demonstrates the value of the extensive data available from MRTI. 

However, there may be diminishing returns with increased fitting radius as temperature 

changes relative to the noise decrease with increasing distance from the ultrasound beam 

axis and computation times increase.

5.3. Effects of noise and ultrasound properties

The Pennes perfusion parameter w was found to be the property most sensitive to noise in 

the temperature data, because it has the smallest effect of all estimated properties upon the 

temporal and spatial distribution of temperatures. It is noteworthy that in the absence of 

noise, 9% of the 250 trials failed to converge to within ±5% of the true property values 

because MATLAB exits the optimization algorithm if the solution has not converged within 
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800 iterations. This occurs because the search space is shallow, particularly in the perfusion 

dimension, and errors in one parameter are compensated by offsets in other parameters, 

slowing convergence to the global minimum, i.e. the true property values. With more 

advanced optimization algorithms, it is likely that the solution would converge more quickly 

and these outliers would be eliminated.

Increasing the size of the ultrasound beam led to minor improvements in estimation results. 

While the effect of IHR was not assessed, a greater IHR will increase the magnitude of 

temperature changes and should lead to improved estimation results.

5.4. Effects of tissue properties

Accurate property estimates were made for all thermal diffusivity and perfusion values 

tested. Changes to thermal diffusivity had limited effect upon the variability of property 

estimates and greater perfusion values led to less variability in property estimates. However, 

under the constraint tfit/τbl < 1, the shorter fitting times required by high perfusion values led 

to increased variability in estimates.

5.5. Experimental demonstration of technique

The demonstration of the technique with MRTI data in rabbit back muscle shows that 

property estimates with in vivo data are possible. The initial slope of the temperature versus 

time curve and the width of the temperatures over time were well matched by the fitting 

parameters of IHR and β. The thermal diffusivity estimate was within 6% of the mean 

measured thermal diffusivity. Differences between the estimated perfusion value (1.3 

kg/m3/s) and published values for muscle perfusion (0.6 kg/m3/s) are negligible when 

considering the minimal impact such low perfusion values have on temperature curves. 

Ultimately, the ability of the technique to accurately fit the heating and cooling MRTI data 

both spatially and temporally increases confidence that this technique has potential for 

property estimation in MRgFUS applications.

5.6. General observations

The accuracy of this property estimation technique depends upon the accuracy of the 

temperature measurements as well as the appropriateness of the analytical solution’s 

approximations. Any magnetic field drift, systematic artifacts, or other measurement errors 

in the temperature data may introduce errors in property estimates. Additionally, 

assumptions of constant, uniform thermal, acoustic, and perfusion properties will lead to 

errors if such properties change dynamically or vary spatially. In heterogeneous tissues such 

as malignant tumors, this technique would likely provide average properties that, while not 

indicative of true tissue anatomy, would also be useful for thermal modeling and treatment 

planning purposes. However, in areas of severe property variation, such as in close proximity 

to large blood vessels, this technique is not likely to converge to meaningful property values. 

Further studies are needed to more extensively investigate the accuracy and usefulness of 

property estimates from applying this technique in heterogeneous tissues.

The magnitude of the noise used for much this study (SD = 0.2 °C) may be lower than that 

encountered clinically, particularly when hardware limitations require the use of the MRI 
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body coil for temperature measurements. However, the effects of greater noise in clinical 

data upon property estimates would likely be counteracted by the greater temperature rise 

induced by clinical treatments (20–40 °C instead of 10 °C). Future work will apply 

retrospective analysis of clinical treatment data to further validate this technique. Also, 

application-specific coils have the potential to greatly reduce the noise magnitude (Minalga 

et al 2013) and would make possible pretreatment clinical evaluation of these properties 

without requiring ablative sonications.

This new approach increases the amount of data utilized for property estimation, both 

temporally and spatially, when compared with previous analytical solutions. It is the first 

technique to simultaneously account for and estimate ultrasound properties (IHR and β), 

tissue thermal diffusivity, and the Pennes perfusion parameter. As such, it has unique 

potential for improving property estimation for thermal modeling applications in MRgFUS 

thermal therapies.

6. Conclusion

The new analytical solution has been shown to accurately and robustly estimate ultrasound, 

thermal, and perfusion properties independent of the ultrasound beam size, thermal 

diffusivity, and Pennes perfusion parameter. Where possible, longer fitting times and a larger 

fitting radius should be used to include more MRTI data in the optimization process and 

mitigate the effects of noise. To obtain estimation results with less than 5% error, it is 

recommended that the 3rd order Taylor series expansion solution be used with the fitting 

time constrained such that tfit/τbl < 1.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Orientation of coordinate axes for property estimation with respect to the ultrasound 

transducer.
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Figure 2. 
The exponential perfusion term exp(−t/τbl) and its Taylor series approximations as a function 

of the argument t/τbl.
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Figure 3. 
Experimental setup for in vivo estimation of properties in rabbit back muscle. The 

ultrasound transducer sonicates vertically through a coupling water bath to focus in the 

center of the back muscle. The MR temperature imaging volume is identified with a dashed 

box.
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Figure 4. 
Noise-free estimation results with variation of fitting time (x-axis), order of Taylor series 

approximation (rows), and perfusion levels (color gradations). Property estimates are 

normalized by their true values.

Dillon et al. Page 15

Phys Med Biol. Author manuscript; available in PMC 2017 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Combination of all figure 4 results with the x-axis non-dimensionalized by the perfusion 

time constant τbl. When estimating IHR, β, and α < 7% error is possible using any of the 

Taylor series approximations if tfit/τbl < 1. When estimating w, a 3rd order Taylor series 

approximation and tfit/τbl < 1 results in errors <5%. See figure 4 for color legends.
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Figure 6. 
Property estimation as a function of noise in the temperature measurements. The Pennes 

perfusion parameter w is the property most sensitive to noise.
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Figure 7. 
Property estimation as a function of the fitting radius. As the fitting radius increases, 

variability in estimates decreases and the computation time increases.
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Figure 8. 
Property estimation as a function of the Pennes perfusion parameter w. By adjusting the 

fitting time such that tfit/τbl < 1 (*: tfit=32 s, †: tfit=24 s, ‡: tfit=16 s), accurate property 

estimates are made regardless of perfusion levels. The variability of w estimates first 

decreases with increasing perfusion but then increases when the fitting times are reduced.
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Figure 9. 
Experimental MRgFUS temperature data in rabbit back muscle with optimized least-squares 

fit. The left plot shows temperatures and fit during heating, while the middle plot includes 

data during the cooling period. The right plot shows the experimental temperature versus 

time curve and fit at the location of maximum temperature change.
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Table 1

Closed-form analytical temperature solutions during ultrasound heating.

Order of Approximation Temperature solution

1

Theat, 1(r, t) =
IHR · τc

τbl
τcexp −r2

β − (t + τc)exp −r2/β
1 + t /τc

+
r2τc

β + τc + τbl Ei −r2
β − Ei −r2/β

1 + t /τc

(2)

2
Theat, 2(r, t) = Theat, 1

+
IHR · τc

τbl
2

r2τc
4β +

3τc
4 τcexp −r2

β + t
4 −

r2τc
4β −

3τc
4 (t + τc)exp −r2/β

1 + t /τc

+
(r4 + 4r2β + 2β2)τc

2

4β2 Ei −r2
β − Ei −r2/β

1 + t /τc

(3)

3
Theat, 3(r, t) = Theat, 2

+
IHR · τc

τbl
3

(r4 + 8r2β + 11β2)τc
2

36β2 τcexp −r2
β

− t2
18 −

(r2 + 5β)τct

36β +
(r4 + 8r2β + 11β2)τc

2

36β2 (t + τc) exp −r2/β
1 + t /τc

+
(r6 + 9r4β + 18r2β2 + 6β3)τc

3

36β3 Ei −r2
β − Ei −r2/β

1 + t /τc

(4)
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Table 2

Pennes perfusion parameter w and perfusion time constants τbl for various tissues (Hasgall et al 2015).

Tissue w (kg/m3/s) τbl (s)

Kidney 63 18

Heart Muscle 17 64

Liver 14 74

Brain 9 113

Uterus 8 147

Fat 0.6 1075

Muscle 0.6 1672

Nonperfused tissue 0 ∞
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