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Abstract Introduction: The Uniform Data Set (UDS) contains neuropsychological test scores and demo-
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graphic information for participants at Alzheimer’s disease centers across the United States funded
by the National Institute on Aging. Mean regression analysis of neuropsychological tests has been
proposed to detect cognitive decline, but the approach requires stringent assumptions.
Methods: We propose using quantile regression to directly model conditional percentiles of neuro-
psychological test scores. An online application allows users to easily implement the proposed
method.
Results: Scores from 13 different neuropsychological tests were analyzed for 5413 cognitively
normal participants in the UDS. Quantile and mean regression models were fit using age, gender,
and years of education. Differences between the mean and quantile regression estimates were found
on the individual measures.
Discussion: Quantile regression provides more robust estimates of baseline percentiles for cogni-
tively normal adults. This can then serve as standards against which to detect individual cognitive
decline.
� 2016 Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The Uniform Data Set (UDS) is a central database con-
taining information on participants at contributing Alz-
heimer’s disease centers and Alzheimer’s disease research
centers funded by the National Institute on Aging. The par-
ticipants in UDS are self-selecting and may not be represen-
tative of the entire population. Using the UDS, Weintraub
et al. [1] provided an exploratory analysis of the relationship
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between neuropsychological test scores and age, years of
education and gender. They found that, in almost all cases,
age, education, and gender should be taken into account
when modeling the expected score of a test. Shirk et al. [2]
proposed using these models to estimate percentiles for a
given patient by calculating a z-score conditional on the pa-
tient’s individual characteristics. The z-score was then refer-
enced to the standard normal distribution to estimate the
percentile for the subject’s performance on a given test.

Natural cognitive decline due to age can be accounted for
by adopting a statistical model that incorporates age. This re-
sults in an estimate of the percentiles that are dependent on
the age of the patient. The statistical models can be made
more precise by also including years of education and
gender. Ideally, participants can take the test while healthy
and create a baseline percentile for the subject in comparison
with the peer group that share the same age, education, and
ation. This is an open access article under the CC BY-NC-ND license (http://
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gender. Any future substantial decline from the baseline per-
centiles would provide a warning sign to take more sophis-
ticated tests to detect cognitive decline. For example,
suppose we have a patient who initially scored at the 95th
percentile for a given test, meaning 95% of the cognitively
healthy population with the same age, gender, and years of
education performed worse than the patients on the test. If
after 1 or 2 years when taking the test again, their test score
dropped to the 80th percentile as calibrated by the same sta-
tistical model, this would flag the subject for further medical
attention. Even though the patient is still performing rela-
tively well, we would expect them to stay around the same
high percentile because the statistical model accounts for
decline due to age.

In the literature, mean regression analysis is often used to
model the percentiles, which relies on strong modeling as-
sumptions. The popular z-score approach by Shirk et al.
[2] adopts mean regression and assumes that the random er-
rors are normally distributed and the variance is constant.
The model assumes that the variance of test scores is the
same for different genders, years of education, and age.
These assumptions are also crucial for the mean regression
method to calculate confidence intervals and P values for co-
efficient estimates. For sufficiently large samples sizes, the
confidence intervals and P values are approximately valid
even if the normality assumption is violated. If the constant
variance assumption is not satisfied, then the P values and
confidence intervals will not be correct, although the esti-
mates of the coefficients are not systematically biased.
When modeling percentiles, deviations from these underly-
ing assumptions become more problematic. A deviation
from either assumption could result in biased percentile es-
timates that cannot be corrected even if the data set is huge.

We propose a new approach to create baseline norms for
neuropsychological tests using quantile regression and pro-
vide a web-based application to implement the procedure.
Quantile regression was proposed in a seminal article of
Koenker and Bassett [3] and aims to directly model the condi-
tional percentiles. We refer to Koenker [4] for a thorough re-
view of quantile regression. In the present article, we applied
both quantile regression and mean regression to analyze a
cognitively normal subset of the UDS neuropsychological
data to create the baseline norms and compared the results.
2. Methods

2.1. Subject selection

To create baseline percentiles for patients without signs of
cognitive decline, analysis was limited to cognitively normal
adults with complete information on age, gender, and years of
education. Specifically, we limit the analysis to participants in
the UDS that met the following criteria: (1) a global clinical
dementia rating score of 0; (2) a total functional assessment
questionnaire score of 0; (3) a normal score from the neuro-
psychiatric inventory questionnaire (NPI-Q); (4) no missing
data for age, gender, or education; and (5) visit dates from
January 2005 to February 2013. In addition, we only use
data from a subject’s first visit. These criteria are similar to
those used by Weintraub et al. [1], with the difference that
analysis was limited to participants with first visits from
September 2005 to August 2007. In our study, there were
5413 participants who met the aforementioned requirements.

Of the 5413 participants, 78% were white, 16% black, 3%
multiracial, 2% Asian, and 1% other. Hispanic was not
included as a category for race. The age range was 13%
younger than 60, 30% between 60 and 69, 37% between 70
and 79, 18% between 80 and 89, and 2% older than 90 at
the time of first visit. Females were over-represented (69%
of the participants). The breakdown by total years of educa-
tion was 18% with,12 years, 20% between 13 and 15 years,
24% with 16 years, and 38% with �17 years of education.
2.2. Neuropsychological tests

We analyzed results from the following UDS neuropsy-
chological tests: mini-mental state examination (MMSE)
[5], Wechsler memory scale-revised subtests logical mem-
ory A (first story, immediate and delayed recall) [6], digit
span forward and backward [6], semantic fluency (animals
and vegetables) [7], Boston naming test (BNT; 30 item—
odd numbered) [8], Wechsler adult intelligence scale-
revised (WAIS-R) digit symbol coding subtest [9], and trail
making test (TMT) parts A and B [10]. A review of these
tests and how they have been used for the UDS was provided
in Weintraub et al. [1]. For delayed recall of logical memory
A, participants were asked to remember parts of a story after
a delay. In version 1.1 of the UDS, the delay was 30 minutes
and for version 1.2 and 2.0, the delay was 20minutes, but not
all participants were delayed at the recommended time. The
precise delay time had been recorded for each subject, and
this information was used when modeling the performance
for the logical memory A delayed recall test [1].
2.3. Data analysis

Both quantile and mean regression models were fit for the
aforementioned neuropsychological tests. For the predictors,
we considered age, years of education, and gender as single
variable models, and also a full model that includes all three
variables. To test the assumptions of normality and homo-
scedasticity, we used a Kolmogorov-Smirnov test for
normality [11] and a Breusch-Pagan [12] test for homosce-
dasticity. Quantile regression does not rely on the assump-
tions of normality or homoscedastic errors to model the
conditional percentiles. All analyses were carried out using
R 3.1.1. The quantreg package [13] was used for quantile
regression, and the lmtest package [14] was used for the
Breusch-Pagan test; otherwise, calculations were imple-
mented using the base software.
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3. Results

3.1. Marginal test scores

Fig. 1 contains histograms similar to those presented in
Weintraub et al. [1] but updated for our data selection
method. The test scores of the BNT, MMSE, and TMT A
and B all have skewed distributions. Not all participants
had values for all the tests. Sample sizes ranged from 5117
for the WAIS-R digit symbol coding test to 5315 subjects
who took the MMSE. The scores for the TMT A and B are
the number of seconds to complete the test, with maximum
times of 150 and 300 seconds, respectively. Censoring can
result in biased estimators when using standard mean regres-
sion, but the problem of censoring was fairly light for our tar-
geted sample, namely, less than 1% for test TMT A (7 of
5270), and 1.6% for TMT B (86 of 5238). The skewness
for the BNT scores is caused by a large number of partici-
pants scoring very high on the examination. Almost 18%
(925 of 5250) received the maximum score of 30. For
MMSE total scores, this was more extreme with almost
45% (2406 of 5315 participants) getting the maximum score
of 30. We will later demonstrate with the BNT that quantile
regression does a better job than mean regression at
modeling response values for skewed data. Another potential
problem is that the digit span test has integer-valued scores
in a small range, 0–12 for digit span backward and forward,
0–8 for digit span backward: Length and 0–7 for digit span
forward: Length. To limit the complexity of our models,
we will not be incorporating the discrete nature of the results
for the digit span tests in our models, but using a generalized
linear model may be a better approach. The scores for WAIS
digit symbol, logical memory A immediate and delayed are
approximately symmetric and bell shaped.
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Fig. 1. Histogram of sample test scores. Abbreviations: MMSE, mini-m
3.2. Conditional analysis

Shirk et al. [2] proposed to calculate the z-score to esti-
mate a person’s test score percentile. The z-score was
obtained by dividing the difference of the observed score
and the model predicted score by the standard deviation
estimate from the model. The test score percentile is then
estimated by finding the corresponding percentile from a
standard normal distribution. In their article, they recognize
their approach requires the assumptions that the error terms
follow a normal distribution and have constant variances [2].
The normality and constant variance assumption are com-
mon in mean regression models, but are mostly used to
derive P values for the estimates of the coefficients. The
regression coefficients are valid under milder conditions
and for large sample sizes the P values are robust to the
assumption of normality. Estimation of the conditional per-
centiles, however, is sensitive to these assumptions, and de-
viations from the assumptions are likely to result in biased
estimates.

For each test, except logical memory A delayed, four
different regressions are fit. One each for the three predic-
tors: years of education, age, and gender, and a model that
includes all three predictors. The models for logical mem-
ory A delayed also included length of the time delay as an
additional predictor in all four models. Log transforma-
tions are used for TMT A and (B) These models were
fit to replicate the results of Weintraub et al. [1], but
they will not be exactly the same because of the different
criteria used for data selection. For each model, we per-
formed a Kolmogorov-Smirnov test for normality [11]
and a Breusch-Pagan test for homoscedasticity [12]. In
both cases, very low P values indicate violations of the
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Fig. 2. Models of conditional percentile using approach of Shirk et al. [2]

are labeled as z-score. Quantile regression fits are labeled as quant model.
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regression assumptions. Table 1 reports the P values
for these tests when using all predictors. The results
demonstrate that these assumptions do not hold for the
vast majority of the models. Tests of normality are very
sensitive for large samples sizes, and the Breusch-Pagan
test relies on the assumption that the errors are normally
distributed. We also analyzed QQ plots and residuals
versus fitted plots that confirm the assumptions of con-
stant variance and normality do not hold for many of
these models. As these two underlying assumptions are
crucial for the mean regression, we propose quantile
regression as an alternative approach that does not require
the error terms to have a normal distribution or constant
variance.

We use the BNT to demonstrate the differences between
quantile regression and mean regression. Fig. 2 depicts
quantile regression and z-score method [2] fits for the
10th, 50th, and 90th percentiles. In these models, BNT
score is the response and age is the sole predictor. In
mean regression, a line is fit to the data to model the con-
ditional mean. The conditional mean is interpreted as the
average score on the BNT for a given age. The conditional
90th percentile is the score that 90% of the population
scores below for a given age. The mean regression method
shifts the line to model the conditional percentiles, but the
slope remains the same. In quantile regression, the lines for
each percentile are fit separately and the slopes for the lines
can change with the percentile. In Fig. 2, the middle black
line is the least squares fit. Using the mean regression
method to find a line for the 90th percentile is problematic
because for the majority of the range of age the line is
above the maximum score of 30 for the test. Directly
modeling the conditional 90th percentile results in horizon-
tal line at 30 indicating that regardless of age the 90th
percentile score is the maximum of 30. For the 10th
percentile, the quantile regression estimator has larger esti-
Table 1

P values for the K-S test for normality and B-P test for homoscedasticity

Neuropsychological test

K-S test for

normality

B-P tests for

homoscedasticity

Boston naming test ,.01 ,.01

Category fluency: Animals ,.01 .18

Category fluency: Vegetables .01 ,.01

Digit span backward ,.01 ,.01

Digit span backward: longest sequence ,.01 .01

Digit span forward ,.01 .21

Digit span forward: longest sequence ,.01 .12

Logical memory A delayed .31 ,.01

Logical memory A immediate .34 ,.01

MMSE ,.01 ,.01

Trail making: A ,.01 ,.01

Trail making: B ,.01 ,.01

WAIS digit symbol .09 ,.01

Abbreviations: K-S, Kolmogorov-Smirnov; B-P, Breusch-Pagan;MMSE,

mini-mental state examination; WAIS, Wechsler adult intelligence scale.

NOTE. Small P values indicate evidence against normality or constant

variances assumptions.
mates for early ages, but it has a steeper slope. Indicating
that for subjects at the 10th percentile, we can expect a
steeper decline due to age.

To create a more precise model, we also include the vari-
ables age, years of education, and gender. For gender, we use
males as the baseline, and the coefficient represents the
models estimated difference between females and males.
Results for the mean, median, and 10th and 90th percentiles
are presented in Table 2. Estimates for the conditional mean
and median are similar with education being the only vari-
able that does not have an overlapping confidence interval.
For the 90th percentile fit, none of the variables have a slope.
The reason for this is across age, years of education, and
gender, there are a large number of participants who got
the maximum score of 30. For the 10th percentile, the slopes
are all different from those of the median. Of particular inter-
est is that the slope for age has a steeper decline than the fit
for median behavior. This implies that for patients that per-
formed poorly on the BNT, we would expect their
Table 2

Mean and quantile regression models for Boston naming test score

Model Coefficient Estimate 95% confidence interval P value

Mean Age 20.045 (20.053 to 20.037) ,.01

Education 0.33 (0.30 to 0.36) ,.01

Female 20.69 (20.88 to 20.54) ,.01

Median Age 20.036 (20.043 to 20.029) ,.01

Education 0.23 (0.20 to 0.26) ,.01

Female 20.46 (20.61 to 20.31) ,.01

10th percentile Age 20.07 (20.085 to 20.052) ,.01

Education 0.60 (0.51 to 0.69) ,.01

Female 21.18 (21.73 to 20.64) ,.01

90th percentile Age 0 (20.0036 to 0.0036) 1

Education 0 (20.03 to 0.03) 1

Female 0 (20.05 to 0.05) 1



Table 3

Percentile estimates for an 80-year-old male with 12 years of education

Test Score Z all Q all Z gender Q gender Z education Q education Z age Q age

Boston naming test 25 41 27 23 10 33 21 43 29

Category fluency: Animals 9 7 4 2 1 4 2 5 2

Category fluency: Vegetables 7 14 9 7 3 4 2 5 2

Digit span backward 4 19 17 10 4 12 5 16 12

Digit span backward: longest sequence 3 11 7 6 1 8 1 10 2

Digit span forward 6 16 17 9 5 12 7 16 14

Digit span forward: longest sequence 5 9 3 5 2 6 2 9 3

Digit span forward 6 16 17 9 5 12 7 16 14

Digit span forward: longest sequence 5 9 3 5 2 6 2 9 3

Logical memory A delayed 7 13 15 6 5 6 6 8 7

Logical memory A immediate 6 20 23 12 15 10 12 13 14

MMSE 27 22 23 11 8 10 10 14 14

Trail making: A 3.37 82 79 58 52 74 72 71 68

Trail making: B 4.43 73 69 43 38 60 56 62 58

WAIS digit symbol 52 92 90 67 65 79 81 76 75

Abbreviations: MMSE, mini-mental state examination; WAIS, Wechsler adult intelligence scale.

NOTE.Mean regression with z-score method and quantile regression are indicated by Z and Q. All, gender, education, and age represent models with all three

variables, gender only, education only, or age only as the predictors.
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performance to decline quicker than the rest of the popula-
tion. This information is helpful in differentiating between
potential cognitive decline and decline that is expected due
to age.

Motivated by thework of Shirk et al. [2], we used quantile
regression and the z-score method to estimate the percentile
for an 80-year-old male with 12 years of education. The
scores and estimated percentiles from that method are given
in Table 3. To get the estimates using the quantile regression
method, 99 quantile regression models were fit for each test,
from the 1st percentile to the 99th. The 99 models provide 99
predicted values for each percentile. The estimated condi-
tional percentile is the number of the predicted values
smaller than the observed score, except for the TMT A and
B tests. Those two tests measure time to completion for a
task, and a lower score indicates higher performance so
the estimated conditional percentile is the number of pre-
dicted values larger than the observed score.

Table 3 demonstrates that the z-score and quantile regres-
sion methods give different estimates for the percentiles.
Most noticeable are the differences for the BNT estimates
with all three variables as predictors. For this model, the z-
score approach has the subject in the 41st percentile,
whereas the quantile regression approach having the subject
at the 27th percentile. The estimates also depend on which
predictors are included in the model. The quantile regression
estimates for the WAIS score method range from the 60th
percentile to the 90th depending on which model is used.
Table 4

Differential analysis for BNT, where a subject with a negative change in percenti

Threshold 0.05 0.10 0.15 0.20

Mean regression sensitivity 0.30 0.22 0.15 0.12

Quantile regression sensitivity 0.29 0.25 0.21 0.15

Mean regression specificity 0.75 0.84 0.90 0.92

Quantile regression specificity 0.76 0.79 0.83 0.88
3.3. Differential analysis

To compare the quantile and mean-based approaches, we
used the baseline models for the BNT to provide percentile
predictions for subjects who did follow-up tests. For the
follow-up data, we limit our analysis to (1) subjects included
in the baseline model, (2) visits between January 2005 and
February 2013, and (3) a normal score from the NPI-Q or
the first non-normal score. We then have a total of 9283
follow-up visits from 3869 patients and 1642 visits that
included a non-normal score NPI-Q. The baseline models
include age, gender, and years of education. We fit quantile
regression models for the 0.01, 0.02, up to 0.99 percentiles.
To perform the differential analysis, we first estimate the
conditional percentile using the subjects’ age, gender, years
of education, and test score at the follow-up visit. Then, we
calculate the change in percentile from their initial visit.
Negative changes may be indicative of a decline in cognitive
ability beyond what is expected due to aging. In Table 4, we
report the sensitivity and specificity for different thresholds,
where sensitivity measures the percentage of non-normal
cognitive abilities correctly classified. At a given threshold,
negative changes that are larger in magnitude than the
threshold are classified as potential cognitive decline. If a
subject’s original score was at the 0.60 percentile and had
a follow-up score at the 0.54 percentile, then they would
be classified as non-normal at a threshold of 0.05 but not
0.10. The results in Table 4 show that using the quantile
le larger than the given threshold is classified as having cognitive decline.

0.25 0.30 0.35 0.40 0.45 0.50

0.07 0.06 0.04 0.03 0.02 0.02

0.12 0.10 0.07 0.05 0.03 0.02

0.96 0.97 0.98 0.99 0.99 1.00

0.91 0.93 0.95 0.97 0.97 0.98
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regression approach provides better specificity than the
mean regression–based approach. Note that sensitivity is
potentially the more important criterion as the goal is to
identify cognitive decline as early as possible.
3.4. Website application

We have developed a website, https://bsherwood.
shinyapps.io/quantEst/, that allows users to implement our
method without any programming. Users can upload data,
specify a model, and specify the grid size of the percentiles.
Then, they can download the estimated percentiles. In addi-
tion, the web produces a plot that shows how the slopes vary
by percentiles. The Supplemental Material includes a tuto-
rial on how to use the website.
4. Discussion

There exists a wide range of tests for early signs of cogni-
tive impairment, but the results of these tests depend on
several factors. To compare a patient’s scores to their peers,
we recommend including age, years of education, and
gender in the model. Controlling for age recognizes that
even if patients are not suffering from cognitive impairment,
we expect their scores to decrease as a natural result of
aging.

In our modeling, we controlled for age, gender, and years
of education. Dikmen et al. [15] observed practice/retest ef-
fects for several neuropsychological tests including the
BNT. Our models could be further improved by also ac-
counting for the practice effects, which is expected to pro-
duce a more accurate and useful model. Crawford and
Howell [16] suggested that one approach is to include an
individual’s initial score as a predictor. This can be incorpo-
rated into our quantile regression model. Furthermore, we
believe the time between repeated tests could be another use-
ful predictor if such information is available. In Shirk et al.
[2], they did not account for retesting, although their model
could also handle these adjustments. The goal of this article
was to demonstrate the differences between the mean regres-
sion approach presented in Shirk et al. [2] and using quantile
regression. For this reason, we choose not to incorporate
practice/retest effect in the models proposed in this article.

Baseline percentiles can be used to create standards for
patients that take into account demographic factors. De-
clines from these baselines can be used to identify early
stages of cognitive decline. It has already been suggested
to use z-scores with mean regression models to estimate con-
ditional percentiles, but this approach is likely to yield
biased estimates if there is nonconstant variance or the error
terms do not follow a normal distribution. We propose a new
quantile regression approach to directly estimating the con-
ditional percentiles, an approach that will not be biased by
non-normal distributions or nonconstant variances. To
make the proposed approach more accessible, we have
developed a website that allows users to implement the
method through a graphical user interface.
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RESEARCH IN CONTEXT

1. Systematic review: Statistical methods have been
proposed in the literature for estimating conditional
percentiles of neuropsychological tests scores, but
they often rely on stringent assumptions. We intro-
duce quantile regression to directly estimate the con-
ditional percentiles. Previous related work in
Alzheimer’s literature and foundational articles for
quantile regression are cited.

2. Interpretation: Using quantile regression provides
different estimates for conditional percentiles than
methods based on mean regression. In addition, we
find that the assumptions required to apply mean
regression to estimate conditional percentiles often
do not hold for the neuropsychological tests of inter-
est. The quantile regression method is more robust
and does not require such strict assumptions.

3. Future directions: The article proposes an alternative
method for estimating conditional percentiles of a
neuropsychological test score. These scores can be
used to monitor cognitive decline while accounting
for natural decline due to age. Determining how large
a change in percentile should be a flag for cognitive
decline merits further investigation.
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